
International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
 ISSN: 2349-6495

www.ijaers.com Page | 52

Software Release Management Evolution -
Comparative Analysis across Agile and

DevOpsContinuous Delivery
Samer I. Mohamed

Modern Science and Arts University, Faculty of Engineering, Electrical and communication department, Egypt

Abstract—Software release management is the process of
managing, planning, scheduling and controlling a
software build through different stages and environments;
including testing and deploying software releases.
Traditional approaches like ad-hoc and
incremental/iterative approaches prove not to satisfy the
current demanding clients or IT business. Thus a need for
new techniques arise like agile software development,
DevOps continuous delivery. DevOps and Agile
complement each other to deploy working functionality
into production faster. The main goal of Continuous
Delivery and DevOps is to release more reliable
applications faster and more frequently to satisfy the
client and business needs. This paper sheds a light on the
evolution of the software release management starting
from traditional techniques towards agile and continuous
delivery via DevOps. Analytical case study will prove how
new software release managements techniques succeeded
to bridge the gap of traditional techniques both in time to
market and quality efficiency to fulfil the IT business
needs.
Keywords—Continuous delivery, Operational
excellence, Software Release management, Agile
approach, DevOps.

I. INTRODUCTION
Software delivery evolves over the past years to fit for the
objective of satisfying the end clients and IT industry
needs. The ability of IT organizations and their products,
systems, and services to compete, adapt, and survive
within the current market depends increasingly on
software delivery.Mobility, cloud computing and
virtualization all put high pressure on IT organizations,
and R&D to innovate new approaches/methodologies for
software delivery to satisfy the high demand from
customers [16]. Time to market, quality, reliability,
productivity and customer satisfaction become critical for
IT organizations to survive and able to compete within
current IT market.
The fundamental agile principle of releasing frequently
tends to get overlookedor ignored by organizations that
approach agile transformations by scalingteams. It has

been overlooked by these organizations that new practices
calledDevOps and Continuous Delivery (CD) have begun
to emerge to address this gap.In DevOps, the objective is
to blur the lines between Development and Operations
teams so that new capabilities flow easier from
Development into Production. On a smallscale, blurring
the lines between Development and Operations at the
team levelimproves the flow. In large organizations, this
tends to require more structuredapproaches like CD [15].
Applying these concepts at scale is typically the source of
thebiggest breakthroughs in improving the efficiency and
effectiveness of softwaredevelopment in large
organizations, and it should be a key focus of any large-
scaletransformation.
Software release management process for future releases
is considered a complex process since not all
requirements can usually be met with available time and
resource constraints in one software release. This process
allows the product stakeholders to receive portions of
their requirements in the product releases based on each
release constraints. This type of software development
called incremental software development [10].There are
many challenges for the release planning process which
make it one of the most complex process in software
requirements engineering [11], I will summarized some of
these difficulties as follows.

� Requirements are not well specified and
understood because there is usually no formal
way to describe the requirements. Non-standard
format of requirement specification often leads
to incomplete descriptions and makes it harder
for stakeholders to properly understand and
evaluate the requirements.

� Uncertainty of data due to meaningful data for
release planning are hard to gather and/or
uncertain. Specifically, estimates of the available
effort, dependencies of requirements, and
definition of preferences from the perspective of
involved stakeholders are difficult to gauge.

� Constraints exist while planning the releases
needs to be taken into account by the product
manager while allocating the requirements to

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
 ISSN: 2349-6495

www.ijaers.com Page | 53

various releases. Most frequently, these
constraints are related to resources, schedule,
budget or effort and hard to determine as shown
in figure 1.

� Unclear objectives from various stakeholders
and the facility to define “Good” release plans
are hard at the beginning. There are competing
objectives such as cost and benefit, time and
quality, and it is unclear which target level
should be achieved [19].

� Release planning is typically done ad hoc,
not based on sound data, models, experience
and methodology. This is even the case when
planning for several hundreds of features. As
a consequence, the created plans do not
create the maximum value achievable from
the resulting products.

Fig.1:Planning and development process

Agile basically means an ability to harness change for
competitive advantage. An agile software delivery has
the ability to respond to and create change in a way that
allows it to react to and gain advantage over its traditional
counterparts of software development approaches. Agile
businesses can implement concepts quickly (speed-to-
market). They are able to quickly recognize, capture, and
respond to new and emerging markets.Agile
methodologies are the normal evolution of the traditional
approaches of software development like water fall,
incremental delivery, and/or iterative software delivery.
Agile methods offer a viable solution when the software
to be developed has fuzzy orchanging requirements, being
able to cope with changing requirements throughout the
life cycleof a project [2]. Agile methods have proved to
have a far higher agility and flexibility than thetraditional
software development [3] and are used to produce higher
quality software in a shorterperiod of time [4]. Adoption
of agile software development methods enables a

software developerto be more flexible and responsive to
the changing environments and customer demands.
DevOps and Continuous Delivery (CD) is another
subset of agile which the team keeps its software
ready for release at all times during development. It is
different from “traditional” agile in that it does not
involve stopping and making a special effort to create
a releasable build. CD is a group of practices and
methodologies in software development that are
designed to improve the process of software delivery
aspects and ensure reliable software releases.
Ultimately, it enables the systematic, repeatable, and
more frequent release with high quality software to
end clients[5].
The paper is organized as follows: section II gives a
background for the evolution of the software release
management starting from the traditional approaches
towards new approaches of continuous delivery and
DevOps; section III illustrates the proposed E2E
framework and how IT services can be delivered in
seamless strategy under proposed framework. Section
IV introduces the proposed Proof of Concept (PoC)
model; where PoC description, details, results, and
recommendations are detailed; section V is the
conclusion of this study.

II. EVOLUTION OF SOFTWARE RELEASE
MANAGEMENT/DELIVERY

BACKGROUND
There are many models exist in the literature for the
software life cycle and release management which
describe the series of steps the system goes through
starting from realization of need, through construction,
maintenance and retirement. Brief description for some of
these models will be mentioned in the following sections.
2.1. Ad-hoc methodology
This methodology focus only on planning the contents of
the next direct release using manual approach. Ad hoc
methods are used to determine solution plans but are far
from objective demands. Many organizations have an ad
hoc plan that relies solely on the judgment of the product
manager [11]. An ad hoc approach may be suitable for
relatively small in-house projects involving few tens of
requirements and relaxed constraints.
2.2. Incremental methodology
Incremental software development is the process in
which software product is developed in incremental
manner such that additive components and/or faults
correction are produced through the sequential
product releases. This will enable the end customers
to receive parts of the system early to get higher
business value and gain early feedbacks. Release
planning methodology for incremental software

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
 ISSN: 2349-6495

www.ijaers.com Page | 54

development incorporates set of decisions about
which software requirements to be implemented
during which release. This will be a critical and
challenging process especially with stakeholders
conflicting perspectives, competing targets and
different types of resources and financials constraints
[5]. Thus the objective from the release planning
process is to maximize the business value gained
while balancing the stakeholder’s objectives and
meeting the resources, costs, schedule, and mitigate
risks constraints.

2.3. Agile methodology
Agile approaches/methodologies guide software
developer engineers to break down their software
requirements down into small releases known as ‘User
stories’ to accelerate the feedback and response from the
client. This will facilitate aligning the software product
features/requirements to fit for the business needs. This
agile guiding principles centered to help small
development teams to better deliver smarter and more
efficient. Adopting this, software developers are able to
produce their code in shorter iterations slots to satisfy the
client and market needs. But the issue is raised when it
comes to the interlocks with the other teams down the
stream like operations, infrastructure teams due to
difference in culture, working approach, scope of work,
business processes, thus open the door for a need to
another approach to resolve both the communication
aspects between the interconnecting teams besides the
process and execution aspect towards the end goal of
satisfying the end client needs. DevOps and Continuous
delivery approaches designed to fix this agile drawbacks
from E2E perspective [9].
2.4. DevOps methodology
DevOps is a philosophy under which the business teams,
software development teams, and the operations teams

collaborate on a continuous basis to make sure that IT
solutions are available to business on time as per
expectations and that they run without disruption. It calls
for automation, collaboration, cultural change, process
adaptation, and an organizational structure that is less
complex and is easy to navigate. It addresses the people,
process, and tools, as well as the technology dimensions
needed to secure this collaboration and sync up the
different stakeholders to move functionality to production
faster. Both DevOps and agile in sync to release the value
and benefits of the software products towards the business
units. Besides it facilitate open channels and continuous
communications between the development and operations
team starting from the early stages of SDLC (Software
Development Life Cycle) to understand the business
vision and release planning aspects. The edge of DevOps
is pushing towards full automation SDLC towards the
clients especially for those apps require more than one
release/day. Currently there are massive set of tooling
towards this full automation SDLC [15].
2.5. Continuous delivery methodology
Continuous Delivery (CD) is built on the agile principles
to resolve some of the agile drawbacks as detailed in the
previous section like communication, processes, and
tooling aspects. CD is composed of set of methodologies
and practices within software delivery domain that are
designed to improve the process of software delivery to
ensure reliable software releases within shorter time [10].
It facilitates realizing the business value of software
products to the customer in shorter time or by other
means in continuous manner by making the software code
deployable at any point of time through the development
life cycle. Some of the added values of CD like:

• Accelerate time to market

• Ability to build the right product

• Improved productivity and efficiency

• Reliable releases

• Improved product quality.

• Improved customer satisfaction

III. PROPOSED PROOF OF CONCEPT
DEVOPS CONTINUOUS DELIVERY

FRAMEWORK
The previous sections show how the software release
management approaches evolve over time to satisfy the
end user demand and drawback of the Agile which only
addresses the software requirements through software
development and doesn’t address rapid delivery of
software to production systems. To address the rapid
delivery to production and disconnect between
development and operation teams via DevOps which
addresses the collaboration, and automation between

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
 ISSN: 2349-6495

www.ijaers.com Page | 55

software development and operation teams. The proposed
framework is an approach to agile development,
continuous integration, continuous testing, and
continuous delivery through the use of automated tools,
and streamlined processes. With the main objective to fill
gap of current traditional approaches like waterfalls,
incremental and evolutional approaches and even with
agile methodology as described earlier in the previous
sections. It helps with the new emerge trends in mobility,
information optimization and converged clouds to easily
deliver as per end-user rapid needs for social and mobile
applications as shown in figure 2. The framework delivers
incremental development continuously to production,
which reduces defects, eliminates excess cycle time,
provides continuous feedback and eliminates outage
windows when deploying to production. Automation is a
critical component of a successful DevOps continuous
Delivery approach, and the tools in this space continue to
rapidly advance.

Fig.2: Proposed DevOps continuous delivery framework
value

The proposed DevOps continuous delivery framework is
agnostic to a particular toolset as shown in figure 3, and is
customizable based on customer preference. The key
steps for automation that enable the proposed DevOps
continuous delivery framework include:

1. Daily Code Commit. Developers check-in code
into a central source code repository on a daily
basis.

2. Automated Builds. A Continuous Integration
(CI) server is continually polling the source
repository for changes, and when a change
occurs the code is checked out of the repository
and built. The built software is stored in a
repository manager by the CI server.

3. Automated Testing. The code is automatically
unit tested, code quality tested, smoke and UI
tested, and performance tested.

4. Automated Delivery. The built version is
deployed using provisioning tools that treat
infrastructure as code.

The proposed DevOps continuous delivery framework
introduced in [29] in more details as shown in figure 3.
This detail the set of toolset used through the framework
to facilitate End to End (E2E) continuous delivery starting
from provisioning the infrastructure towards deployments
of the code into production via continuous development,
build, integration and testing.

Fig.3: Proposed DevOps continuous delivery framework toolset

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
 ISSN: 2349-6495

www.ijaers.com Page | 56

Continuous Integration (CI) and Continuous Delivery
(CD) approach within the proposed framework as shown
in figure 4 is designed to create an automation
environment for the entire end-to-end release process so
that every change to the application results in a releasable
version that is built automatically. Software applications
are built using this framework in the development process
on every change checked in by the developers, thus make
the code always deployable at any point of time. This

effectively eliminates the need for integration testing
because the code is incrementally being integrated on a
daily basis which removes the cost associated with
developers spending time on this phase. The feature of
continuous deployment, ability to have frequent
incremental builds and mandating a comprehensive
automated testing process allows developers to detect
problems early and as a result, ensure higher quality.

Fig.4: Proposed DevOps continuous delivery framework architecture

The main edge for this framework to support rapid
deployment and release is the automation via set of tools
as shown in figure 3 that allow the DevOps team to
automate provisioning of infrastructure resources and
platforms. The server configuration, packages installed,
relationships with other servers are modeled with code,
and is automated and has predictable outcomes, removing
error-prone manual steps. The framework also introduce
automated configured toolset that fits with the
project/application scope needs and configure the
required tools into the end-to-end application
environment or infrastructure as infrastructure as a code
(IaaC). It uses software development best practices for the
infrastructure code and stores the code in a Code
Repository with tags and branches, and releases the code
just as if it were applications software. This infrastructure
code is continuously integrated, tested and deployed right
along the application software and is treated no
differently.
The Continuous Integration (CI) server is configured with
build steps to check for coding style, coding standards,
and other features using tools such as Chef or Codar [33].
After continuous build for the application package using
Jenkins [30], the frameworkrunsthe set of unit tests
regression from the CI server and deploy the code to the

development integration environment and execute
additional functional test scripts. Tools like Selenium
[35]is used for smoke and UI testing. Using CI server,
project teams still have the ability to get the output testing
results and artifacts of the build, unit testing, and
deployment and functional testing along with the source
version used for the build for better and continuous
improvement. The proposed automated deployment
provides a continuous delivery pipeline that automates
deployments to development, staging and production
environments. This approach significantly reduces the
manual intensive tasks, resource lag time and errors prone
from manual repetition. This is done via E2E automated
deployment tools and processes that aim of reducing
deployment risk, and giving the option of deploying code
multiple times per day without any degradation in service.
The outcomes releases are small in size to first reduce the
risk for system instabilities and customer user experience
issues, quickly realize the value of the new features to the
business more quickly, make the application code change
is easier to roll back and easier to test because the number
of changes per release is very small.
The proposed DevOps Continuous delivery framework
close the loop by integrating the operations aspect as well.
This is done via set of tools where operations and

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
 ISSN: 2349-6495

www.ijaers.com Page | 57

infrastructure teams are using once application package is
deployed to the production environment. These set of
tools like Codar [32] and Service Management (SM) [33]
are used to troubleshoot incidents and continuous monitor
across all phases of the application development,
testing,and deployment which is crucial for a successful
DevOps Continuous delivery implementation. This will
facilitate minimizing the costs of errors and changes by
providing continuous feedback throughout each phase of
the lifecycle.Tools like Splunk[36] are adopted by the
proposed framework for log analysis for developers and
tools like New Relic to monitor the performance of the
applications from the user’s perspective such as database-
transactions, and systems monitoring to focus on CPU
load, memory utilization, and disk space. These tools
allow project teams to better understand issues and
metrics, and ensures that we are optimizing resources to
reduce operational expenditures.
The main benefits realized from the proposed framework
can be summarized as follows:

• Design an E2E innovative framework to
overcome current legacy approaches issues and
drawbacks.

• Adapt new IT trends like converged
infrastructure, information, services and delivery
approaches to satisfy the market and client
needs.

• Enable services flexibility and portability.

• Articulate seamless and lean delivery
approaches.

• Utilize available resources/tools to maximize
value towards clients.

• Industrialized delivery model to sustain quality
while reducing cost

• Innovative approach to align services to the
business.

• Narrow down overhead communication between
teams and build on collaboration.

• Provides reliability, predictability, and efficiency
to ultimately get the most from the applications
portfolio.

• Build on project maturity through innovative
maturity calculator tool.

• Utilize outcomes from calculator to draft action
plan via CSFs/KPIs.

• Automated environment setup toolkit based on
push button approach.

• Facilitate smooth/seamless delivery model with
all interlocked teams.

• Plugin/customize the tools/resources to fit for
project purpose.

• Create new outcomes/value for the clients by
composing tools, asset, resources and IT
experiences.

• Develop real time instant insights for continuous
improvements, innovation.

• Support growth strategy with min time to
market.

• Link service offering with business outcomes
and client’s needs.

• Adopt the ‘Smarter rather than harder’ theme

IV. FRAMEWORK VALIDATION (CASE
STUDY)

To measure how the proposed DevOps continuous
delivery framework would help faster releases, case study
has been developed and set of measures/metrics are
used/proposed according to literature and industry
recommendations as follows. There are hard, quantifiable
technical and financial metrics we can measure, such as:

• Number and frequency of software releases

• Volume of defects

• Time/cost per release

• Change lead time

• Change failure rate Mean Time Between Failure
(MTBF)

• Mean Time To Repair (MTTR)

• Number and frequency of outages / performance
issues

The main objective from the case study is to show via
quantifiable figures, how the proposed framework over
achieve client needs compared to other traditional
approaches using the above set of metrics. The
specification of the testbed or system under test is based
on the following assumptions as:

• Four servers (Dev, Test, Nagios, Database)

• One target is done over a java application.

• Average no of code changes is 4 changes per
week

• Average no of environmental changes is 5
changes per week

• 3 ESXI servers with 6 virtual machines with
Centos OS

• Installed chef server for provisioning of all
servers with development of cookbooks for each
machine creation to

• make the creation automated

• Codar topologies are used to configure the
automation scripts

With assumptions, the following setup and configuration
steps are implemented on the proposed infrastructure to
test the outcomes from the proposed framework.

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
 ISSN: 2349-6495

www.ijaers.com Page | 58

• Build set of virtual m/c to host the new
integrated system/applications under the NSIT
framework (6 m/c of the following technical
configurations).

• 6 Virtual m/c is basically to simulate three
different environments (Development, staging,
Production).

• Configure and setup the different framework
tools (Configuration Management (CM),
Jenkins, Git, Codar, SM, Chef).

• Build the application server (front end and
backend servers including the Database (DB),
Load Balancers (LBs).

• Integrate the application servers (frontend and
DBs) hosted on the virtual m/cs.

• Deploy and configure the DB on the new build
DB server.

• Deploy the application on the new build
application server and ensure the connectivity
between the systems is as expected.

• Build the CI/CD (Continuous
Integration/Continuous Deployment) servers and
link with ‘Jenkins’ and ensure they are linked
with the integrated system of application and
DB.

• Build the testing server and deploy set of test
cases using ‘Selinum’.

Table.1: Proposed DevOps continuous delivery comparison results

Criteria Waterfall/ad-hoc Agile
Proposed DevOps continuous

delivery

Releases/month 1 every 6 months
1 every 3

weeks
X per day

#Defects 10 8 2

Change lead time Months Days Mins

MTBF 6 months 16 hours 4 hours

MTTR 6 months 24 hours 6 hours

Outages time X 5X shorter 10X shorter

Resources Productive time X 3X 7X

#Changes X 5X 14X

Change success rate X 80% X 99.5% X

As shown form the data in table 1, comparing the
different release management methodologies starting
from legacy/traditional methodologies like waterfall
through agile and proposed DevOps continuous delivery,
we see huge variance and value where on average 7x
times more productive than theirnon-high performing
peers. It produces 14x more changes, with one-half the
changefailure rate with 4x higher first fix rates, and 10x
shorter Severity 1 outages times. Highest deploy rate
produced from the framework on the tested
application/package was approximately 600 production
changes per week, with a change success rate of 99.5%.

V. CONCLUSION
The proposed Continuous delivery DevOps framework go
even beyond the entire SDLC by incorporate the stages
after package deployment to production. This paper sheds
light and shows how the proposed framework through
implementation of automation tools and business
processes, releases are being continuously delivered to
production systems without outage, higher quality, and
unnecessary manual processes. The proposed approach

reduces costs by providing environments that are fully
automated thus removing the need for staff to spend time
with manual processes. The delivery processes are simple,
repeatable and automated to allow for more frequent and
less error-prone releases. The proposed framework case
study proved the value gained against other traditional
approaches especially with current market and business
increasing demand via set of benchmark metrics. Which
leads to increased efficiencies through improved
development and operational processes, minimized and
better communication/collaboration between teams,
transparency via continuous monitoring and feedback,
improved quality from continuous integration and testing,
and less risk due to an automated environment?

REFERENCES
[1] S. Bang, S. Chung, Y. Choh, and M. Dupuis. A

grounded theory analysis of modern web
applications: Knowledge, skills, and abilities for
devops. In RIIT 2013 - Proceedings of the 2nd
Annual Conference on Research in Information
Technology, pages 61{62, 2013.

International Journal of Advanced Engineering Research and Science (IJAERS) Vol-3, Issue-6, June- 2016
 ISSN: 2349-6495

www.ijaers.com Page | 59

[2] L. Bass, R. Je_ery, H. Wada, I. Weber, and L. Zhu.
Eliciting operations requirements for applications. In
2013 1st International Workshop on Release
Engineering, RELENG 2013 - Proceedings, pages
5{8, San Francisco, CA, 2013.

[3] D. Cukier. Devops patterns to scale web applications
using cloud services. In Proceedings - SPLASH '13,
pages 143{152, Indianapolis, Indiana, USA, 2013.

[4] P. Debois. Opening statement. Cutter IT Journal,
24(8):3{5, 2011.

[5] A. Schaefer, M. Reichenbach, and D. Fey.
Continuous integration and automation for devops.
Lecture Notes in Electrical Engineering, 170
LNEE:345{358, 2013.

[6] W. Shang. Bridging the divide between software
developers and operators using logs. In Proceedings
- International Conference on Software Engineering,
pages 1583{1586, 2012.

[7] S. Stuckenberg, E. Fielt, and T. Loser. The impact of
software-as-a-service on business models of leading
software vendors: Experiences from three
exploratory case studies. In PACIS 2011 -
15thPaci_c Asia Conference on Information
Systems: Quality Research in Pacic, 2011.

[8] B. Tessem and J. Iden. Cooperation between
developers and operations in software engineering
projects. In Proceedings - International Conference
on Software Engineering, pages 105{108, 2008.

[9] M. Walls. Building a DevOps Culture. O'Reilly
Media, Sebastopol, CA, 2013.

[10] J. Webster and R. T. Watson. Analyzing the past to
prepare for the future: Writing a literature review.
MIS Q., 26(2):xiii{xxiii, June 2002.

[11] D. DeGrandis. Devops: So you say you want a
revolution? Cutter IT Journal, 24(8):34{39, 2011.

[12] D. Feitelson, E. Frachtenberg, and K. Beck.
Development and deployment at facebook. IEEE
Internet Computing, 17(4):8{17, 2013.

[13] L. Fitzpatrick and M. Dillon. The business case for
devops: A five-year retrospective. Cutter IT Journal,
24(8):19{27, 2011.

[14] S. Hosono and Y. Shimomura. Application lifecycle
kit for mass customization on PaaS platforms. In
Proceedings - 2012 IEEE 8th World Congress on
Services, SERVICES 2012, pages 397{398,
Honolulu, HI, 2012.

[15] J. Humble and J. Molesky. Why enterprises must
adopt devops to enable continuous delivery. Cutter
IT Journal, 24(8):6{12, 2011.

[16] B. Keyworth. Where is it operations within devops?
Cutter IT Journal, 24(12):12{17, 2011.

[17] B. Kitchenham. Procedures for performing
systematic reviews, 2004.

[18] O. Akerele, M. Ramachandran, and M. Dixon.
System dynamics modeling of agile continuous
delivery process. In Proceedings - AGILE 2013,
pages 60{63, 2013.

[19] A. Le-Quoc. Metrics-drivendevops. Cutter IT
Journal, 24(12):24{29, 2011.

[20] M. Loukides. What is DevOps? O'Reilly Media,
Sebastopol, CA, 2012.

[21] S. Neely and S. Stolt. Continuous delivery? easy!
Just change everything (well, maybe it is not that
easy). In Proceedings - AGILE 2013, pages
121{128, 2013.

[22] B. Phifer. Next-generation process integration:
CMMI and ITIL do devops. Cutter IT Journal,
24(8):28{33, 2011.

[23] H. Pruijt. Multiple personalities: the case of business
process reengineering. Journal of Organizational
Change Management, 11(3):260{268, Jan. 1998.

[24] J. Roche. Adopting devops practices in quality
assurance. Communications of the ACM,
56(11):38{43, 2013.

[25] S. Mohamed: DevOps Maturity Calculator DOMC -
Value oriented approach, International Journal of
Engineering Science and Research, Vol 2, Issue 2,
PP 25-35.

[26] S. Mohamed: DevOps shifting software engineering
strategy-value based perspective, International
Journal of Computer Engineering, Vol 17, Issue 2,
and PP 51-57.

[27] S. Mohamed: GOAL ORIENTED DEVOPS
TRANSFORMATION FRAMEWORK – METRIC
PHASED APPROACH, International Journal of
Current Research Vol 8, Issue 3, PP 28307-28313.

[28] S. Mohamed: New style of software lifecycle
strategies – Use Case perspective, International
Journal of Management, Information Technology
and Engineering, Vol 4, Issue 3, and PP 99-114.

[29] S. Mohamed: Innovative software delivery
framework towards software application
modernization, International Journal of Research in
Engineering & Technology, Vol 4, Issue 5, and PP
77-98.

[30] https://wiki.jenkins-ci.org, May 2016.
[31] http://www.tutorialspoint.com/git, Jun 2016.
[32] https://www.youtube.com/watch?v=fVUoWqmuYJ

M, Jun 2016.
[33] https://docs.chef.io/install_server.html, Apr 2016.
[34] http://www.tutorialspoint.com/ant/, May 2016.
[35] http://www.tutorialspoint.com/selenium/, Jun 2016
[36] http://www.splunk.com/view/SP-CAAAHSM, May

2016.

