
 REQUIREMENTS ENGINEERING ISSUES IN AGILE DISTRIBUTED

SOFTWARE DEVELOPMENT

Isu Kebutuhan Teknis dalam Pengembangan Perangkat Lunak Terdistribusi Agile

Mohammad Anggasta Paramartha
Bank Indonesia (Kantor Pusat)

Jl. MH. Thamrin 2 Jakarta 10350, Telp : 131 (local fare), 1500131 (outside Indonesia)
Fax (+62)21 386 - 4884

E-mail: anggasta@gmail.com , anggasta.i@bi.go.id

Naskah diterima tanggal 3 April 2017, direvisi tanggal 31 Agustus 2017, disetujui tanggal 15 September 2017

Abstract

There are two approaches of software development and their combination that have attracted a lot of interest from the
research community lately. The first is the Distributed/Global Software Development, which entails development in
multiple geographically dispersed sites. The second approach is the Agile Software Development, which incorporates
an evolving development process for better adaptation to changing environments and requirements. Their combination
is a challenging topic due to a lot of contradicting characteristics. In this paper, the successful communication
between remote sites and especially the communication of requirements in an Agile Distributed Software Development
process are investigated. The research is based on a case study at Cegeka, a Belgium ICT company with branches in the
Netherlands and Romania. The Dutch and Romanian sites are engaged in agile global software development practice,
facing a situation with requirements understanding. Enhancement of the awareness of the vision of the product and the
vision of the company through the communication of requirements between the Business Analyst and the Scrum Master
is the main challenge that this paper aims to address. However, due to the limited information we have on how the
Scrum Master and the Business Analyst from Cegeka communicate, we cannot give very specific answer but just a
general solution and best practices. Nonetheless it should be a good starting point for improving requirements
communication within the distributed software development process between the Romanian and the Dutch sites of
Cegeka.

Keywords : Agile, Scrum Master, Requirements Communication, Distributed, Software development

Abstrak

Ada dua pendekatan pengembangan perangkat lunak dan kombinasi dari kedua pendekatan tersebut menjadi bahan

yang menarik banyak minat komunitas riset akhir-akhir ini. Kedua pendekatan dimaksud yaitu pengembangan

perangkat lunak metode Distributed/Global, yang digunakan untuk lokasi yang tersebar secara geografis, serta

pengembangan perangkat lunak metode Agile, yang dapat dengan mudah beradaptasi terhadap perubahan lingkungan

dan kebutuhan. Kombinasi kedua pendekatan tersebut menjadi tantangan karena banyak karakteristik yang saling

bertentangan. Dalam tulisan ini, diamati proses komunikasi yang berhasil antara dua daerah yang berjauhan,

utamanya terkait kebutuhan dalam pengembangan perangkat lunak agile distributed. Penelitian ini merupakan studi

kasus di Cegeka, sebuah perusahaan TIK milik Belgia yang memiliki cabang di Belanda dan Rumania. Daerah Belanda

dan Rumania telah mencoba praktik agile global software development, namun pemahaman akan kebutuhannya belum

sama. Peningkatan kesadaran akan visi produk dan visi perusahaan melalui komunikasi terkait kebutuhan antara

Analis Bisnis dan Scrum Master adalah tantangan utama yang ingin disampaikan makalah ini. Namun, karena

terbatasnya informasi terkait bagaimana Scrum Master dan Analis Bisnis dari Cegeka berkomunikasi, penelitian ini

tidak dapat memberikan jawaban yang sangat spesifik namun solusi umum dan praktik terbaik. Meskipun demikian, hal

ini menjadi titik awal yang baik untuk meningkatkan komunikasi terkait kebutuhan dalam proses pengembangan

perangkat lunak agile distributed antara Rumania dan Belanda di Cegeka.

Kata kunci: Agile, Scrum Master, Kebutuhan Komunikasi, Terdistribusi, Pengembangan Perangkat Lunak

mailto:anggasta@gmail.com
mailto:anggasta.i@bi.go.id

INTRODUCTION

Over the last few years, there has been an

increasing interest from software enterprises
towards engaging in Global Software
Development (GSD). According to Hashmi et
al. (2013), GSD involves development of
software in a distributed environment which
crosses multiple geographical borders. GSD
can take two forms, outsourcing and distributed
teams within the same organization that are
scattered in different countries (Layman et al.,
2006). Some countries even promote
themselves as main software outsourcing
destinations, for instance India, China, or
Eastern European countries.

On the one hand, developing a software
product globally brings many advantages such
as reduction of development cost and less
overall project costs, access to a large pool of
knowledge, skills and labor (Carmel &
Agarwal, 2001; Layman et al., 2006; Hashmi et
al., 2013). On the other hand, the distance
between teams brings communication,
coordination and control problems (Carmel &
Agarwal, 2001). Lack of trust is also an issue
(Ramesh et al., 2006) and it could be
considered as an influential factor for the low
level of understanding “of the overall context
or background information at distant sites”
(Herbsleb & Mockus, 2003). Additionally, as
Holmström et al. (2006) point out,
geographical distance can hinder the
communication of vision and strategy among
distributed teams.

Apart from the distributed software
development hype, agile software development
has been accepted widely as the new paradigm
of software development. In contrast to the
traditional waterfall model, where integration
changes, e.g. design issues, interface errors or
performance issues, are considered complex
and a driver for higher costs of change, Agile
promises easier adaptability in changes which
contributes to increasing quality of software
products (Royce, 2009). Among the principles
that govern the Agile software development the
collaboration aspect is prevalent both in terms
of regular communication with the customer

for adjusting the priorities, scope and plan of
the project as well as in terms of teamwork
among distributed development teams (Royce,
2009). Agile method can support multi region
and geographic location with effective
communication between team members
(Dorairaj et al., 2011).

As a result of its adaptability to change
and its evolving scope, agile development
offers a solution closer to customer’s needs.
One of the agile software development
methodologies widely adopted nowadays is
Scrum, which comprises a project planning
methodology for managing and tracking
software development and offers a shared
vision and awareness of project activities
(Holmström et al., 2006; Hossain, 2008).

Taking into consideration the benefits
offered by both agile and distributed or global
software development, it can be beneficial to
combine them into practice with the
expectation that greater advantages will be
obtained. Successful integration of the
characteristics of GSD and agile development
is essential for reaping the expected benefits
(Hossain, 2008). Despite the benefits, this
combination might also bring more complexity
and challenges to tackle. An area where
specific focus should be addressed is the
communication of requirements in such a
distributed and agile context. The evolving
quality requirements (Ramesh et al., 2006) and
the effectiveness of the requirements’ handing-
over (Hashmi et al., 2013) are challenges that
need to be confronted.

To date there has been little best practice
and academic literature covering the topic of
development process issues in agile GSD
(Hossain, 2008). In this paper, an analysis is
made on the issues related to the requirements
engineering process in an agile distributed
context. The analysis in this report is based on
the practices followed and performed in the
Dutch branch of a Belgium software company
namely Cegeka. The incorporation of the vision
in, and the communication and understanding
of requirements in dispersed teams are
challenges investigated in this company setting.

REQUIREMENTS ENGINEERING ISSUES IN AGILE DISTRIBUTED

SOFTWARE DEVELOPMENT

 Mohammad Anggasta Paramartha

33

The analysis is made based on literature
research.

The next section presents the current
situation and problem confronted by the
company. In the third and fourth sections, the
research questions are defined and the research
methodology that was followed is described
respectively. Later on, a literature review is
presented as well as the findings concerning
possible solutions for addressing the
requirements issues of vision, understanding
and communication. In the sixth section, based
on this literature review, we give our own
recommendations to the company. Then, in the
last two sections the limitations of this report
and the conclusion which summarizes the
findings and contribution of this research are
provided.

Case Study

In this section the company is presented
as well as its current way of working. The
information has been acquired from the website
of the company and from discussions with Mr.
Gerard Murre (Director of the Shared Software
Factory - Netherlands) and Mr. Laurentiu
Oprea (Business Unit Manager - Romania)
who are involved in the process of the software
development.

The Company
Cegeka is an ICT (Information and

Communication Technology) company
founded in Belgium in 1992. They provide full
range of ICT services such as application
development and integration, outsourcing,
consulting, Infrastructure-as-a-Service and
Platform-as-a- Service. Their branch in the
Netherlands focuses on the health care sector
and the social living sector of the Dutch
market. They offer standardized software
solutions which can still be tailored to a certain
extent to match customer needs and
specifications as well as “availability, capacity
and flexibility” (ICT Outsourcing Services). In
general, though, they aim at addressing the
needs of a mass market rather than a specific
customer.

Through some acquisitions in Romania,
they developed their subsidiary which is
responsible for the software development. 95%
of software development is done in Romania.
The selection of Romania as an outsourcing
development site was based on strategic
decisions concerning its cultural and
geographical proximity, e.g. approximately
same time zone, near-shore location which is
quite easily accessed, and the availability of
skilled developers with low cost.

The vision and the mission of the
company are stated in the Table 1.

Table 1. Vision and Mission of Cegeka

Vision
“ICT can give you a strategic advantage. This is only possible if your ICT fits in
seamlessly with your business. Cegeka wants to work together with you to ensure that
your business and ICT remain permanently harmonised.

Mission
“We want to help you realise your ambitions, interpret your needs and solve your
problems by providing you with high-quality ICT solutions that make the difference.”

Agile Global Software Development at

Cegeka
Cegeka follows agile software

development process in distributed locations.
Agile global software development was
promoted by Cegeka Belgium 5-6 years ago,
whereas in the Netherlands it has been applied
only for the last year. Because of the longer
experience in agile software development, the

Belgian head office can be considered, which
was also admitted by the interviewees, more
mature in deploying this methodology than the
Dutch branch. Scrum is used as the method for
managing the agile development process.
Effectiveness of the overall process is a key
prerequisite which is currently lacking in the
Dutch-Romania joint way of working.

Jurnal Masyarakat Telematika dan Informasi

Volume: 7 No. 1 (Januari - September 2017) Hal.: 31-46

34

According to the information provided
by Mr. Gerard Murre and Mr. Laurentiu Oprea
during the interview, there is a certain
composition and distribution of roles among
the team members participating in a project.
Cegeka project teams are composed by a
Business Analyst, who has also the role of the
product owner and the customer proxy, a few
developers (the number of developers depends
on the project), testers and a Scrum Master who
is the Agile project manager. Only the Business
Analyst is located in the Netherlands, while the
rest are in Romania. The reason behind the
decision to locate the Business Analyst in the
Netherlands is to have better understanding of
the Dutch market and regulations related to the
target sectors and to which compliance should
be taken care of.

Following the (Cegeka's Agile Software
Factory) documentation on its way of working,
the responsibilities of the different roles in the
project team are explicitly defined. So, the
responsibility of the Business Analyst is to
have a close communication with the customer,
define, clarify and prioritize its needs and
requirements, eliminate possible assumptions
and fill in the requirements backlog. For
defining the requirements, user stories and
acceptance criteria are used, which are worked
out in collaboration with the customer. The
requirements are then communicated by the
Business Analyst to the Scrum Master and
consecutively to the development team, which
is responsible for the development, the
technical design and the architecture of the
solution. Finally, the Scrum Master assists the
team in working in an agile manner, monitors
the project risks and eliminates or mitigates
possible impediments. The project teams work
in two- week sprints using sprint backlogs in
which the user stories are divided in tasks, but
they present their progress in daily scrums
through videoconferencing meetings.

An essential component of this process
is the Requirements Management. According
to (Cegeka's Agile Software Factory), the
requirements, before being stated in the form of
user stories, are analyzed by the customer with

the assistance and supervision of the Business
Analyst. This procedure results in a High-Level
Analysis document which includes a
description of the business processes, a
functional description of the application and an
initial product backlog. The High-Level
Analysis document is updated, refined and
modified during the development process, but
its purpose is to provide an overview of the
business processes to which the solution will
contribute. In every iteration that follows the
initial project and requirements setup, a more
detailed analysis and representation of the
requirements is applied, leading to user stories.
Both processes are under the responsibility of
the customer proxy, who in the case of the
Dutch-Romanian collaboration is the Business
Analyst.

Problem Statement

During the discussion with the Director
of the Shared Software Factory and the
Business Unit Manager, some issues emerged
showing that the distributed collaboration and
development between the Netherlands and
Romania face challenges. It was valued as
highly important by both persons that the
developers in Romania feel attached to the
company and understand the company’s vision
and strategy.

Having team members in two different
countries requires efforts for establishing and
maintaining good communication among
the distributed team members and
understanding of the business processes and
reasons by the whole team. The main problem
identified through the interview is that the
developers have a lack of understanding of the
company strategy and vision. This is mostly
imposed by miscommunication between the
Business Analyst and the Scrum Master. The
Scrum Master functions as the intermediary in
the information flow, the gatekeeper. The
information (requirements) is generated from
the face-to-face collaboration between the
customer and the Business Analyst.
Afterwards, it is transferred to the Scrum
Master, who in the end explains it to the

REQUIREMENTS ENGINEERING ISSUES IN AGILE DISTRIBUTED

SOFTWARE DEVELOPMENT

 Mohammad Anggasta Paramartha

35

developers. The whole process is depicted by
Figure 1.

The only link between the developers and
the Dutch branch is the customer’s
requirements; this is the piece of information
that should be handled properly. Successful
and effective communication of requirements
can be a way of accomplishing the company’s
wish to increase the level of awareness among
developers from a business perspective. Thus,
the purpose of this paper is to find a solution to
fill in the gap between the two parts of the team
by focusing on the requirements and
communication aspects.

Figure 1. Requirements transfer process from
Cegeka Netherlands to Cegeka Romania

Research Questions

Based on the results from the interview,
we formulated the main research question as:

How to improve the requirements

communication between the Business

Analyst and the Scrum Master so that the

developers have a better understanding of

the company and product vision?

The following sub-questions are then
derived in order to provide guidance for
answering the main question:
1. How to incorporate company and product

vision into the software requirements or
through the whole agile process?

2. How to make communication between
Business Analyst and Scrum Master
better?

3. How to make developers more aware of
the company and product vision?

Research Methodology

Two ways of approaching the topic have
been conducted. Firstly, to obtain a better
understanding of the current situation of
Cegeka, we conducted an interview with Mr.
Gerard Murre (Director of the Shared Software
Factory- Netherlands) and Mr. Laurentiu Oprea
(Business Unit Manager - Romania) at the
Cegeka office in Veenendaal. From these
discussions, information for the company, the
current way of working and the present issues
were gathered. For further clarification on the
topic, e-mail contact was used.

Secondly, a literature review is chosen to
gain knowledge and a better overview of the
areas of concern in order to cover the three sub-
questions. In literature review, “the researcher
is concerned with charting the development of
a set of ideas, and with placing them within a
descriptive framework” (Cornford &
Smithson,2006). The scope of the research is
the investigation of available processes for
appropriate handling of requirements in agile
distributed environments in the software
industry. Therefore the following steps
are taken:

1. Searching and choosing
related literature

2. Understanding Requirements
Engineering (RE) and scoping it down
to agile RE and Goal-Oriented RE

3. Identifying ways for incorporating the
company vision in the requirements

4. Investigating the requirements
understanding and its importance

5. Pointing out applicable and suitable
techniques for the translation of
requirements from a business level to a
technical level

6. Identifying possible solutions for the
issues addressed by the sub-questions

In the last section of this paper, the
results found in the literature study will be
combined with the information from the
interviews to come up with suggestions for the
company that might be useful for tackling the
identified issues.

Jurnal Masyarakat Telematika dan Informasi

Volume: 7 No. 1 (Januari - September 2017) Hal.: 31-46

36

Literature Review

To support the source of the
misalignment and misunderstanding, firstly, a
justification of the current situation in Cegeka
based on research papers is provided.

The decision of the company to divide
the team members’ responsibilities based on
their location is supported by the literature,
since as Hashmi et al. (2013) mention the
“onsite team works closely with the client in
order to elicit their business requirements”
and “the requirements gathered and managed
by the onsite team are handed over to the
offsite team so that software development can
be carried out.” This requirements handover,
though, entails risks because of the
geographical distance and the communication
barriers (Hashmi et al.,2013).

Additionally, the fact that the company
relies its services on standard solutions and its
target is not to develop fully customizable
products that directly suit the wishes and needs
of a specific customer but of a market segment,
implies that the market-driven software product
development (MDPD) approach is followed.
According to Fogelström et al. (2010), in such
an approach of software development practice,
the development organization decides what
functionality should be delivered to a
market segment. Partially customer-specific
solutions cause a misalignment with the key
principle of agile development, which emerged
in order to achieve higher customer satisfaction
by fulfilling its needs. So, “application of agile
properties in an organization operating in
market-driven context places limitations on
product management activities, and may have a
detrimental effect on long-term product
development” (Fogelström et al., 2010).

Another factor of the agile practices that
is considered necessary in Cegeka is the
personal attributes of the members comprising
the development team as well as the supporting
management. In agile software development,
self-managing teams and a leadership-and-
collaboration style of management, where the
project manager is a facilitator (Hossain, 2008),

are main factors that influence the success of
the project.

In particular, soft skills as
communication capability and collaborative
spirit, and self- discipline are traits mentioned
by the Business Unit Manager during the
interview. Thus, the dependency on personal
traits and the necessity for continuous
collaboration may also influence the
communication and understanding of the
requirements, which is the central
communication medium between the
developers and the Business Analyst.

So, there are three areas in the way of
working that is applied by Cegeka which are
vulnerable to possible obstacles, the
requirements understanding and handover,
management activities during the software
development process and communication as a
top-layer covering the whole development
process.

Requirements Engineering

Requirement can be defined as a property
that a product must have in order to provide
value to the stakeholders (Wiegers, 2009).
Thus, in software engineering context, the
software requirements can be considered as the
foundation for software quality. Requirement
Engineering is a subfield of software
engineering dealing with identifying,
modelling, communicating and documenting
the requirements for a system (Paetsch,
Eberlein, & Maurer, 2003).

Within the process of requirement
engineering, there are several key activities
involved: Elicitation, Analysis and Negotiation,
Documentation, Validation, and Management
(Kotonya & Sommerville, 1998). The end goal
of requirement engineering is to make
complete, consistent and relevant requirements.
By implementing a high-quality requirement
engineering process, some benefits can be
achieved such as faster development time,
reduced development rework, lower costs,
fewer miscommunication and higher customer
satisfaction (Wiegers, 2009).

REQUIREMENTS ENGINEERING ISSUES IN AGILE DISTRIBUTED

SOFTWARE DEVELOPMENT

 Mohammad Anggasta Paramartha

37

Software system requirements are
generally classified into functional
requirements and non- functionalities that the
system should and should not provide, the
response of system for specific inputs and the
behaviour of the system in a specific situation.
By understanding the functional requirements,
developers will understand what they need to
build into the product to enable users to
achieve their goals. (Sommerville, 2007).

On the other hand, non-functional
requirements define constraints on the services
or functions provided by the system
(Sommerville, 2007). Non-functional
requirements mostly apply to the whole
software system as global qualities such as
flexibility, maintainability, or usability
(Mylopoulos, Chung, & Yu, 1999). However,
non- functional requirements are often quite
hard to be implemented and validated. Failure
in meeting this type of requirement can lead
into unusable software system.

According to (Sommerville, 2007), non-
functional requirements can be further divided
into three types: product requirements,
organizational requirements and external
requirements. Accordingly, incorporating the
company goals along with the product goals
into the software being made falls into non-
functional requirements. This goal-oriented
requirement analysis (requirement engineering
and requirement analysis are used
interchangeably in RE literatures) puts
emphasis on the description and evaluation of
system design alternatives to capture their
relationship with the goals of organization in a
software development project. Using this
approach, it is expected that the software
requirements process will be more thorough,
complete, and consistent. (Mylopoulos, Chung,
& Yu, 1999)

The next part will elaborate more on the
relation between company and product vision
with software requirements in agile software
development context.

Visions and Requirements
According to (Qumer & Henderson-

Sellers, 2008), Agile methods are welcomed by
both managers and programmers as providing a
more needed release compared to traditional
software development approaches. Nonetheless
it could be inappropriate for companies to be
fully agile in all aspects of developments; they
should retain well-known and trusted elements
of a more traditional approach within an overall
agile project. Indeed the absence of a shared
vision between the business and the
development parts is one of the main factors of
software project failures (Qumer & Henderson-
Sellers, 2008) and the business-agile alignment
bridge is an issue that has not been investigated
in detail by the agile community.

For (Vähäniitty & Rautiainen, 2008)
three key words are linked together: Vision,
Product and Business Goal. For example
products are software that the company is
developing. They should contribute to a vision.
A vision describes the “grand plan” for one or
more Products, and is concretized as one or
more Business goals. The framework proposed
by (Vähäniitty & Rautiainen, 2008) is
illustrated in Figure 2

According to (Pichler, 2013) as shown by
figur 3, agile product planning is composed of
three levels: vision, product strategy and
tactics. The vision is the overall goal, the
product strategy the path for reaching the
vision, and the tactics the steps for achieving
this goal. Whereas the vision is caught by a
short statement, the strategy communicates
different aspects including the markets or
market segment targeted. The tactics go deeper
by describing the product details using user
stories, design sketches, scenarios and
storyboards.

.

Jurnal Masyarakat Telematika dan Informasi

Volume: 7 No. 1 (Januari - September 2017) Hal.: 31-46

38

Figure 2. Linking product and business planning
with agile development

Figure 3. Three levels of product planning

The Product Strategy

The product strategy is the bridge
between the business strategy and the product
development (Rautiainen, Lassenius, &
Sulonen, 2002). It incorporates a long-term
view to product and technology planning. The
overall strategic ambitions and goals of the
company should be taken into consideration.
The practical product manager serves as a hub
of market and product information, he or she
works closely with Development, Marketing,
Sales, and other departments (Pragmatic
Marketing & Enthyosis, 2012). The product

management team is a key executor of the
strategy. The team will translate corporate
strategy into product strategy and will create
roadmaps that drive the work of The
company’s employees (Thomson, 2012).

Figure 4. Product Strategy Diagram

As illustrated in figure 4, a product
strategy contains:

 Business objectives
 Descriptions of target markets, based on

results of market Research
 Results of research about potential

clients and their needs
 The way the product should be viewed

by clients
 Product features and benefits
 Selling strategis
 Comparison of the product features and

pricing with competitors ‘ones
 Product changes that might enable

better market positioning of the product

Product Management: Product Owner and

Product Manager

According to (Pragmatic Marketing &
Enthyosis, 2012) there is a common problem in
companies that could explain the lack of vision
of developers. Indeed by adopting agile
development methods, new planning methods
and new roles are created. This is the case for
the Product owner who is responsible for
providing customer and market information to
the team. Nonetheless product owner and

REQUIREMENTS ENGINEERING ISSUES IN AGILE DISTRIBUTED

SOFTWARE DEVELOPMENT

 Mohammad Anggasta Paramartha

39

product manager are not the same. In fact a
product owner’s responsibilities are just a small
part of product management. The role of the
product owner includes retaining and
prioritizing the product backlog including
specifying and collecting individual user
stories (Singh, 2008).

Product owners can fill in the gap
between a product manager’s role which is to
understand the needs of the marketplace, and
the development team’s need for product
direction (Pragmatic Marketing & Enthyosis,
2012). Nonetheless there are a few
characteristics that will differentiate a product
owner from an experienced product manager.
Good product managers look across the
product line for ways to make the overall
collection more valuable. But the product team
focuses on local optimization: what is the best
for the release plan with little consideration for
portfolio-level need. Without some strategies
present in every sprint-level prioritization, the
company loses many opportunities to profit
through product bundling.

Because the closest equivalent to product
owner in most companies is the product
manager, it seems natural to equate the two
(Pragmatic Marketing & Enthyosis, 2012)
which is a mistake because the product
manager has more knowledge about the
strategy of the company compared to the
product owner.

According to Gottesdiener (2009) three
levels of requirements can be identified:

 During product road mapping
workshops, The main goal is to probe
the “big view” of requirements to build
a strategy for the entire product.

 In release planning workshops, the time
horizon is smaller but is used to get a
“pre-view” of requirements for the next
release.

 In iteration planning workshops, the
“now- view” is explored. It is composed
of plans of small and concise set of
requirements for the instant sprint

A roadmap outlines what the team plans
to do. It is the vision of the project, but the
team can still make corrections to the plan. The
product roadmap is vital especially in large and
complex product (Gottesdiener, 2011). It is not
necessary to know each specific route, but the
overall way must be clear.

The key deliverables for the product
roadmap workshop, in term of requirements,
are the vision statement and the product
roadmap. The product vision statement is a
short summary for communicating in what way
the product is linked to the company's
strategies (Layton, 2012). The vision statement
must articulate the goals for the product.

According to (Turk, France, & Rumpe,
2002) ensuring that the distributed team
members all preserve the same vision is
possible with a good documentation of
requirements and designs. Products
management deliverables such as market
segments and competitive positioning can also
be integrated to harden the product strategy
(Gottesdiener, 2011). According to (Morrison,
2009), the roadmap should be used as a
communication tool. It is absolutely necessary
that product managers constantly communicate.
The roadmap can be used as a good
communication tool to communicate to:

 Developers, Test Analyst and the wider
technical team.

 The line manager and heads of
departments

 Managing Directors and Chief
Executives

Requirements Communication Between

Business Analyst and Scrum Master

Requirement engineering (RE) approach
in agile software development environment is
different with the traditional one. Agile RE
aims to convey the customer requirements to
the developers without making extensive
requirements documentation through formal
requirements analysis and design phases.
Instead, the requirements arise throughout the
development process based on feedback from
stakeholders. On the contrary with the

Jurnal Masyarakat Telematika dan Informasi

Volume: 7 No. 1 (Januari - September 2017) Hal.: 31-46

40

traditional RE approach in which the customer
is only involved at the beginning of the project,
in agile RE process the customer is involved
throughout the whole agile software
development project. (Cao & Ramesh, 2008)

 In practice, it might not be possible for
customer to interact directly to the developers,
especially if they are geographically separated
as in distributed software development
project. In that case, the customer will discuss
the business requirements with a Product
Owner (sometimes called Business Analyst or
Customer Proxy) who is located close to the
customer location. These business
requirements will be then translated into user
stories.

User Stories are short statements (one or
more sentences) which describe product
functionalities desired by the customer/user,
which also connect acceptance tests, help
planning and prioritizing, and enable
monitoring project health (Liskin & Schneider,
2012). Good User Stories should comply with
six criteria compiled into INVEST acronym
(Independent, Negotiable, Valuable, Estimable,
Small, Testable) as suggested by Bill Wake,
the author of Extreme Programming Explored
and Refactoring Workbook (Cohn, 2004).

Communication about user stories is
highly important to make sure the team
understands the direction of the project in order
to ensure project success. To facilitate
collaboration and communication in a
collocated agile development team, the use of
physical artefact is encouraged. Generally, two
kinds of artefacts are used: the story card and
the Wall. The story card is a relatively small
index card in which the user stories will be
written, while the Wall is an area of vertical
space such as filing cabinets, flip chart, or a
wall, where active story cards (which will be
tackled in an iteration) are displayed according
to a certain layout convention. (Sharp,
Robinson, & Petre, 2009)

In the case that the agile team is
distributed in remote locations, the
geographical distance makes it harder for the
team to collaborate and communicate the user

stories. The physical artefacts used in
collocated environment mentioned previously
might not be useful anymore. To cope with this
situation, some web- based tools and software
have been developed such as Sourceforge issue
tracker, Whiteboard Photo, DotStories or
MasePlanner to name a few (Rees, 2002;
Morgan & Maurer, 2006). By using these tools,
the creation and organization of the story card
can be facilitated in similar way with
collocated team.

After finishing the user stories, the
Product Owner will then transfer the user
stories to the Scrum Master who is responsible
for managing the software developers.
However, even though user stories are suitable
in defining the needs of the user, they do not
specify how the system should response to
specific inputs from the user within different
contexts. This leaves room for different
interpretations from the development team
which might also lead to misinterpretation of
the requirements. In addition, because the user
stories are written in business/natural language
while the scrum master and the development
team are basically technical people,
misunderstanding might occur because
business people and the technical people do not
generally talk with the same “language”. This
issue about understanding of the requirements
will be elaborated in the next section.

Understanding of Requirements

According to (Christel & Kang, 1992) the
problems of requirements understanding can be
separated into three issues:

 The communities involved in
elicitation possess a variety of
backgrounds and experience levels, so
that which is common knowledge to
one group may be completely foreign to
another. This makes it difficult for a
requirements analyst to interpret and
Integrate information gathered from
these diverse communities.

 The language used to express
the requirements back to these
stakeholder communities may be too

REQUIREMENTS ENGINEERING ISSUES IN AGILE DISTRIBUTED

SOFTWARE DEVELOPMENT

 Mohammad Anggasta Paramartha

41

formal or too informal to meet the
needs of each of the groups, again
because of the diversity of the
communities.

 The large amount of information
gathered during elicitation necessitates
that it be structured in some way. The
understanding of this structure is
dependent on the characteristics of the
stakeholder communities.

Considering the proximity of this
research and constraint with respect to the
information provided by the organization, this
section of the research would be focused on the
first and second issues. In order to comprehend
requirements, according to (Paetsch, Eberlein,
& Maurer, 2003) the documentation, validation
and management of these requirements should
be done appropriately such that the purpose of
the documentation is to communicate the
requirements between stakeholders and the
developer.

Meanwhile, the management of the
requirements is to capture, store, disseminate,
and manage information. In the context of this
research the tier on requirements validation
(fulfilled at developers level) is not analyzed as
this inquisition is focused on the
communication of requirements from the
Business Analyst to the developers via the
Scrum Master.

The apprehension of total excellence and
understanding in requirements specifications is
so far understood poorly. Software metrics
according to (Fenton, 1991) have mostly
focused on the output of the final design or
production phases, or on detailed process
versification. Whereas, these accomplishments
have focused more on the issue of 'building the
product right' than 'building the right product',
whereas both focused should be covered
extensively to ensure quality from the user's
point of view (Boehm, 1984).

In addition to the ensuring quality from
the user's point of view, the context in which
requirements understanding takes places is
usually a human activity such as the

programmer or developers. Therefore,
requirements organization and apprehension
needs to be sensitive to how people recognize
and understand the setting around them, how
they collaborate and how the sociology at the
place of work affects their behavior.

Moreover, according to (Nuseibeh &
Easterbrook, 2000) there is an important
philosophical element in understanding
requirements. Requirement is concerned with
the interpretation and understanding of
stakeholder's terms, definitions, concepts, goals
and viewpoints. Hence, understanding
requirements must therefore regard itself with
an understanding of judgments of stakeholders,
the question of what is apparent in the world,
and the question of what can be acknowledged
on as equitably right.

Issues as elaborated above become
important whenever one wishes to discuss
about certifying requirements, especially where
stakeholders or leaders may have unequal
missions and incompatible belief systems. The
same issues being discussed also become
important when selecting a preferred modeling
approach, because the choice of the selected
approach affects the set of phantasm that can
be modeled, and may even hamper what the
developer is capable of observing.

RESULTS AND DISCUSSIONS

After investigating a wide range of

relevant areas concerning the requirements in
software development and their understanding,
refinement and handing over, a variety of
propositions for improving the requirements
communication has been identified. Based on
them, suggestions tailored to the situation faced
by Cegeka are presented:

R1. Parallel SPM and Development sprints

An agile Software Product Management
(SPM) method which follows the Scrum
methodology is proposed by Vlaanderen et al.
(2011) as a way of improving and aligning
requirements with the product vision. The main

Jurnal Masyarakat Telematika dan Informasi

Volume: 7 No. 1 (Januari - September 2017) Hal.: 31-46

42

idea of the method is to refine the requirements
of the software product through a Product
Management Sprint Backlog, for which both
the Business Analyst and the Scrum Master of
Cegeka should be responsible. The SPM sprint

and the Development sprint are conducted
simultaneously with a small phase difference
(Figure 5).

Figure 5. Alternating SPM and Development sprints

A more detailed description and

explanation of the method is provided in
Appendix A. So, a close cooperation of the two
key stakeholders engaged in the requirements
communication in Cegeka is mandatory for
producing well-specified requirements in the
end of the SPM sprint. Following this
methodology, which combines the
collaboration of the Business Analyst and
the Scrum Master with the developers and the
incorporation of the product vision in the
requirements by enhancing their quality, can
achieve a higher understanding by the
developers and substantial improvement in the
requirements handover process. In addition,
from customer perspective, it can bring
advantages to be more adaptable and
responsive on business changes.

R2. Informal communication via formal

channels

In order to improve the communication
between the business analyst in The
Netherlands and the scrum master situated in
Romania, a project lead should be designated
as the primary point of contact for each
location and these leads should be responsible
for facilitating communication across the
teams. By improving communication can be
also reduce and avoid gaps between

requirement and development/implementation
which may caused high effort in next phases.

R3. Balanced Coordination

In a typical agile development arena
teams usually rely on minimal coordination of
the team’s activities by project managers.
Consequently these project managers’
coordination roles should become highly
significant and important. In addition to the
preceding recommendation on communication,
in balanced coordination the project leads
should coordinate the teams’ activities going
on in Romania and The Netherlands to help
achieve project goals and organization visions.

R4. Constant Communications

Cegeka can implement a variety of
mechanisms to maintain constant
communication between the scrum master and
business analyst. Short meetings can be
scheduled each workday to identify issues,
track project status and invite ideas and
critiques. Also teams situated in Netherlands
and Romania can engage in online chat
extensively and the project leads (Business
Analyst and Scrum Master) can be on call
almost round-the-clock via any method. While
this instant availability has proved to be
beneficial there can at least be certain burdens.

REQUIREMENTS ENGINEERING ISSUES IN AGILE DISTRIBUTED

SOFTWARE DEVELOPMENT

 Mohammad Anggasta Paramartha

43

Senior managers can use conferencing to
initiate new development cycles and assess
progress at the end of each cycle and discuss
critical issues.

R5. Roadmap sharing

The roadmap should be used as a
communication tool to communicate with
directors, managers but also with developers,
testers and the rest of the technical team. It is
absolutely necessary that the Business Analyst
and the Scrum Master constantly communicate.
The product strategy should be also transferred
to the whole team by the Scrum Master
because there is a direct link with the business
objectives and the target markets. Thus
developers will have a good understanding of

the product strategy and the goals of the
company.

R6. Web-based User stories tools

Cegeka could make use of web-based
tools to facilitate collaboration and
communication of the geographically separated
development team in creating and organizing
the user stories. As a result, understanding
about user stories can be enhanced, especially
about the vision of the company and the
product incorporated in the user stories.

A mapping of the recommendations (R)
with the research questions (RQ) of this study
is provided in Table 2 for assessing the value
of the recommendations with regard to the
issue faced by Cegeka as it is decomposed in
the three research questions.

Table 2. Mapping Recommendations to Research Questions

Recommendations
Research Questions

RQ1 RQ2 RQ3

R1. Parallel SPM and Development sprints √ √
R2. Informal communication via formal
channels

√

R3. Balanced Coordination √ √

R4. Constant Communications √
R5. Roadmap sharing √ √

R6. Web-based user stories tools √ √

Limitations
This paper consists of an analysis on a

case study in the Dutch branch of a software
company that works in an agile distributed
manner for the development of the software
products with its subsidiary in Romania. The
analysis of its collaboration and
communications issues was conducted in the
context of the course “Global Software
Management” in the University of Twente for
the fourth quartile (April-June 2013). Thus,
there was a limited time of eight weeks for the
research and analysis on the topic.

Additionally, a milestone for the research
was the information provided by the Director
of Shared Software Factory and the Business
Unit Manager during our meeting in the offices
of Cegeka. The discussion was very
informative and eye-opening for clarifying

issues concerning the topic, but a more
enhanced, complete and in depth
understanding of the situation as well as a
different perspective could have been gained
by contacting directly the Business Analyst in
the Netherlands and the Scrum Master in
Romania. After considering and reviewing the
initial data from the interviews, we tried to
have further discussions with the Business
Analyst and the Scrum Master to verify our
assumptions and to clarify the actual way of
collaborating and the characteristics of their
communication, but we did not have the
opportunity.

Whereas the information from the
interviews were very useful, for understanding
and gaining a more complete idea on the part of
the communication between the Business
Analyst and the Scrum Master concerning the

Jurnal Masyarakat Telematika dan Informasi

Volume: 7 No. 1 (Januari - September 2017) Hal.: 31-46

44

requirements, the (Cegeka's Agile Software
Factory) document was used. In this document,
a detailed explanation on the agile way of
working in Cegeka is provided. The fact that
the methodology described in the document
was not verified by the actual implementers of
it, raises a doubt regarding the assumption that
all steps are followed in the distributed
development process.

In total, there are three main limitations
of this research. Firstly, the time boundaries as
imposed by the context in which the research
was developed and, secondly, the restricted
amount of detailed information concerning the
actual communication between the Business
Analyst and the Scrum Master, which increased
the level of our assumptions and the doubt for
those assumptions because of the
inability of communicating with the Business
Analyst and the Scrum Master.

CONCLUSIONS

We began this research with one main
question:

”How to improve the requirements
communication between the Business

Analyst and the Scrum Master so that the

developers have a better understanding of

the company and product vision?”

For understanding and answering the
problem better we subdivided this issue in
three parts: a) How to incorporate company and
product vision into the software requirements
or through the whole agile process?; b) How
to make communication between Business
Analyst and Scrum Master better?; c) How to
make developers more aware of the company
and product vision?

Answers to these issues are based on both
interviews with Mr. Gerard Murre (Director of
the Shared Software Factory-Netherlands) and
Mr. Laurentiu Oprea (Business Unit Manager-
Romania) and on academic research. It appears
that communication is not a simple problem in
companies. Indeed the good comprehension of
requirements depends on the person who gives

the requirements (the stakeholders) and the one
who receives them (the developers).

Recommendations

Requirements organization needs to be
sensitive to how people collaborate or are
influenced by their way of working. Of course
communication can be improved with web-
based user story tools or good documentation
which will help to incorporate vision and
strategy such as roadmaps. Emphasis on the
coordination of the communication can also
enhance the collaboration of the distributed
team. Additionally, applying scrum sprints for
the requirements refinery can address the issues
of the requirements clarification.

Due to the limited information we have
on how the Scrum Master and the Business
Analyst from Cegeka communicate, we
cannnot give a very specific answer but just a
general solution and best practices.
Nonetheless it should be a good starting point
for improving requirements communication
within the distributed software development
process between the Romanian and the Dutch
sites of Cegeka.

REFERENCES

Boehm, B. W. (1984). Verifying and Validating

Software Requirments and Design
Specifications. IEEE, 75-88.

Burg, J. F. (1997). Linguistic Instruments in

Requirements Engineering. Amsterdam: IOS
Press.

Cao, L., & Ramesh, B. (2008). Agile Requirements
Engineering Practices: An Empirical Study.
IEEE Software, 61-67.

Carmel, E., & Agarwal, R. (2001). Tactical
approaches for alleviating distance in global
software development. Software, IEEE,

18(2), 22-29.

Cegeka vision and mission: ICT in close

cooperation. (n.d.). Retrieved from Cegeka -
In close cooperation:
http://www.cegeka.be/EN/Information/Abou
tCegeka/Visionmission

http://www.cegeka.be/EN/Information
http://www.cegeka.be/EN/Information

REQUIREMENTS ENGINEERING ISSUES IN AGILE DISTRIBUTED

SOFTWARE DEVELOPMENT

 Mohammad Anggasta Paramartha

45

Cegeka's Agile Software Factory. (n.d.). Agile @

Cegeka. Retrieved from Cegeka - In close
cooperation:
http://www.cegeka.be/portals/118/Ag
ileCegeka_EN.pdf

Christel, M. G., & Kang, C. K. (1992). Issues in

Requirements Elicitation. Pennslyvania:
CMU Press.

Cohn, M. (2004). User Stories Applied for Agile

Software Development. Pearson Education.

Cornford, T., & Smithson, S. (2006). Project

research in information systems: a student's

guide. (Second ed.). New York, USA:
Macmillan, Palgrave.

Dorairaj, Siva., Noble, James.,& Malik, Petra
(2011). Effective Communication in
Distributed Agile Software Development
Teams. XP 2011 LNBIP 77 (pp 102 – 116).
Springer-Verlag Berlin Heidelberg .

Fenton, N. E. (1991). Software Metric: A Rigorous
Approach. London: Chapman & Hall.

Fogelström, N. D., Gorschek, T., Svahnberg, M., &
Olsson, P. (2010). The impact of agile
principles on market‐ driven software
product development. Journal of Software

Maintenance and Evolution: Research and

Practice, 22(1), 53-80.

Goguen, J., & Jirotka, M. (2004). Requirements

Engineering: Social and Technical lssues.

London: Academic Press.

Goguen, J., & Linde, C. (2003). Techniques for
Requirements Elicitation. 1st IEEE

International Symposium on Requirements

Engineering, (pp. 152-164). San Diego.

Gottesdiener, E. (2009). Agile Requirements by

collaboration.

Gottesdiener, E. (2011). Agile Requirements: Not

an Oxymore.

Hashmi, S. I., Ishikawa, F., & Richardson, I.
(2013). A Communication Process for
Global Requirements Engineering.
Proceedings of the 2013 International

Conference on Software and System Process

(pp. 136-140). San Francisco, USA: ACM.

Herbsleb, J. D., & Mockus, A. (2003). An
empirical study of speed and communication

in globally distributed software
development. Software Engineering, IEEE

Transactions, 29(6), 481-494.

Holmström, H., Fitzgerald, B., Ågerfalk, P. J., &
Conchúir, E. Ó. (2006). Agile practices
reduce distance in global software
development. Information Systems

Management, 23(3), 7-18.

Holtzblatt, K., & Beyer, H. R. (2005).
Requirements Gathering: The Human
Factor. Communications of the ACM, 31- 32.

Hossain, E. (2008). Coordinating mechanisms for
Agile Global Software Development. IEEE

International Conference on Global

Software Engineering (ICGSE 2008)

(pp.257-263). IEEE.

ICT Outsourcing Services. (n.d.). Retrieved 2013,
from Cegeka - In close cooperation:
http://www.cegeka.be/EN/Productsan
dservices/Outsourcing/Workplace

Kotonya, G., & Sommerville, I. (1998).
Requirements Engineering: Processes and

Techniques. Wiley.

Layman, L., Williams, L., Damian, D., & Bures, H.
(2006). Essential communication practices
for Extreme Programming in a global
software development team. Information and

Software Technology, 48(9), 781-794.

Layton, M. C. (2012). Agile Project Management

for Dummies.

Lehman, M. M. (1980). Programs, Life Cycles, and
Laws of Software Evolution. Proceedings of

IEEE, 1060-1076.

Liskin, O., & Schneider, K. (2012). Improving
Project Communication with Virtual Team
Boards. IEEE Seventh International

Conference on Global Software Engineering

Workshops, (pp.35-36). Rio Grande do Sul,
Brazil.

Morgan, R., & Maurer, F. (2006). MasePlanner: A
Card-Based Distributed Planning Tool for
Agile Teams. IEEE International

Conference on Global Software Engineering

(ICGSE'06) (pp. 1-5). Florianopolis, Brazil:
IEEE Computer Society.

Morrison, D. (2009). Agile Product Management

Framework. Retrieved from All about

http://www.cegeka.be/portals/118/Ag
http://www.cegeka.be/EN/Productsan
http://www.cegeka.be/EN/Productsan

Jurnal Masyarakat Telematika dan Informasi

Volume: 7 No. 1 (Januari - September 2017) Hal.: 31-46

46

Product Management:
http://allaboutproductmanagement.blo
gspot.nl/2009/03/agile-product-
management-framework.html

Mylopoulos, J., Chung, L., & Yu, E. (1999). From
Object-Oriented to Goal-Oriented
Requirement Analysis. Communications of

the ACM, 42(1), 31-37.

Nuseibeh, B., & Easterbrook, S. (2000).
Requirements Engineering: A Roadmap.
Limerick: ACM Press.

Paetsch, F., Eberlein, A., & Maurer, F. (2003).
Requirements Engineering and Agile
Software Development. IEEE International

Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises

(pp. 1-6). New Jersey: IEEE.

Pichler, R. (2013). Agile Product Planning: Vision,

Strategy, and Tactics. Retrieved from
http://www.romanpichler.com/blog/p
roduct-planning/agile-product-planning-
vision-strategy-tactics/

Posner, M. I. (1993). Foundations of Cognitive
Science. Massachusettes: MIT Press.

Pragmatic Marketing & Enthyosis. (2012). Living

in a Agile World:The Strategic Role of

Product Management WheN Development

Goes Agile.

Qumer, A., & Henderson-Sellers, B. (2008). A
framework to support the evaluation,
adoption and improvement of agile methods
in practice. Journal of Systems and Software,

81(11), 1899-1919.

Ramesh, B., Cao, L., Mohan, K., & Xu, P. (2006).
Can distributed software development be
agile? Communications of the ACM, 49(10),
41-46.

Rautiainen, K., Lassenius, C., & Sulonen, R.
(2002). 4CC: A Framework for Managing
Software Product Development. Engineering

Management Journal, 14(2), 27-32.

Rees, M. J. (2002). A Feasible User Story Tool for
Agile Software Development? Proceedings

of the Ninth Asia-Pacific Software

Engineering Conference (APSEC’02).

Queensland, Australia: IEEE Computer
Society.

Royce, W. (2009). Improving Software
Economics. IBM Corporation Software

Group, 1-40.

Sharp, H., Robinson, H., & Petre, M. (2009). The
role of physical artefacts in agile software
development: Two complementary
perspectives. Interacting with Computers,

21, 108- 116.

Singh, M. (2008). U-Scrum: An Agile
Methodologyfor Promoting Usability. Agile,

2008. AGILE'08. Conference (pp. 555-560).
IEEE.

Sommerville, I. (2007). Software Engineering (8
ed.). Pearson Education.

Thomson, B. (2012). Creating a Strategic Product

Plan. Retrieved from Pragmatic Marketing -
Practical Training. Proven Results.:
http://www.pragmaticmarketing.com/
resources/creating-a-strategic-product- plan

Turk, D., France, R., & Rumpe, B. (2002).
Limitations of Agile Software Processes.
Third International Conference on eXtreme

Programming and Agile Processes in

Software Engineering (XP 2002), (pp. 43-
46).

Vähäniitty, J., & Rautiainen, K. T. (2008).
Towards a Conceptual Framework and Tool
Support for Linking Long-term Product and
Business Planning. Proceedings of the 1st

International workshop on Software

development governance (pp. 25-28). ACM.

Vlaanderen, K., Jansen, S., Brinkkemper, S.,
Jaspers, E. (2011). The agile requirements
refinery: Applying SCRUM principles to
software products management. Information

and Software Technology, 53(1), 58-70.

Wiegers, K. E. (2009). Software Requirements (2
ed.). O'Reilly.

http://allaboutproductmanagement.blo/
http://allaboutproductmanagement.blo/
http://www.romanpichler.com/blog/p
http://www.romanpichler.com/blog/p
http://www.pragmaticmarketing.com/
http://www.pragmaticmarketing.com/

