PENGARUH ION LOGAM (Fe, Na dan Ca) TERHADAP AKTIVITAS LIPASE KASAR DARI KENTOS KELAPA

EFFECT OF METAL ION (Fe, Na and Ca) TO ACTIVITIES OF CRUDE LIPASE OF OIL KENTOS

Moh. Su'i 1)

¹) Dosen Program Studi Teknologi Hasil Pertanian Universitas Widyagama Malang

ABSTRAC

This research learn about affect ion of Fe, Ca and Na to lipases activity Crude lipase isolated from coconut houstorium that has been grew for 30 days in the dark place and rate temperature. Activity lipases were measured by added various concentration ion of Fe, Ca and Na 0 to 10 mM to PNPL as substrat. Then, 0,1 ml of enzyme extract ware added to 0,9 ml of substrats and incubated 1 hour. The result showed that, 0,006 mM of FeCl₃ in hibite enzyme activity until 52,16 %. 0,005 mM of NaCl in hibite enzyme activity until 57,64 %. Therefore 0,1 mM of CaCl₂ increase enzyme activity until 180,98 %.

Key word: Bio chemystry, houstorium, coconut, Fe, Na, Ca.

ABSTRAK

Penelitian ini mempelajari pengaruh ion Fe, Ca dan Na terhadap aktivitas lipase. Ekstrak kasar lipase diambil dari kentos kelapa yang telah ditunaskan selama 45 hari di tempat gelap pada suhu ruang. Ion Fe, Ca atau Na ditambahkan dalam substrat PNPL (Para Nitro Phenil Laurat) pada pH optimal dengan konsentrasi 0 sampai 10 mM. Kemudian ditambah lipase 0,1 ml setiap 0,9 ml substrat dan diinkubasi pada suhu optimal selama 1 jam. Hasil penelitian menunjukkan bahwa, FeCl₃ pada konsentrasi 0,006 mM bersifat menghambat aktivitas enzim menjadi 52,16 % dari aktivitas maksimumnya. NaCl pada konsentrasi 0,005 mM juga bersifat menghambat aktivitas enzim menjadi 57,64 %. Sedangkan CaCl₂ pada konsentrasi 0,1 mM, meningkatkan aktivitas lipase menjadi 180,98 %.

Kata Kunci: Biokimia, Kentos Kelapa, Fe, Na, Ca

PENDAHULUAN

Lipase merupakan enzim yang mampu menghidrolisa ikatan ester terutama lemak netral seperti trigliserida. Pada trigliserida, lipase menghidrolisa ikatan asam lemak dengan gliserol pada posisi 1 atau posisi 2. telah Lipase banyak digunakan dalam industri susu, industri oleo kimia dan produksi lemak terstruktur (lemak termodifikasi). (Sana, et al., 2004).

Dalam beberapa tahun terakhir, terjadi peningkatan kebutuhan enzim lipolitik (lipase). Enzim tersebut sangat potensi digunakan dalam beberapa industri seperti industri detergen, industri makanan dan industri farmasi (Savendsen, 2000).

Lipase telah banyak diisolasi dari tanaman, hewan atau mikroorganisme (Sana, et al., 2004). Sumber lipase tanaman dari diantaranya biji Caesalpinia bonducella L (Pahoja, Dahot and Sethar, 2001), biji Brassica napus L. (Sana, et al., 2004), biji jagung (Lin, Wimer dan Huang, 1983), Castor bean (Muto dan Beevers, 1974) dan biji minyak kelapa sawit (Oo dan Stumpf, 1983).

Aktivitas lipase dalam bijibijian meningkat dengan cepat setelah perkecambahan (germinasi). Hasil penelitian Sui dan Chandra (2007) menunjukkan bahwa, buah kelapa yang telah ditunaskan selama 45 hari mengandung lipase pada daging buah, kentos, tunas maupun akarnya dengan aktivitas yang bervariasi. Aktivitas spesifik tertinggi terdapat pada tunas kemudian kentos, daging dan akar sebesar 0,226; 0.0182; 0.0048 dan 0.0043 mol/mg protein/jam. Aktivitas lipase kentos kelapa optimum pada pH 7, suhu 60 °C dan lama inkubasi 90 menit.

Adanya ion calsium (Ca⁺) 5 mM meningkatkan aktivitas lipase Caesalpinia bonducella L sehingga aktivitasnya meningkat menjadi 106,40 %. Aktivitasnya paling rendah jika ada Na-deoxycholate sehingga aktivitas hanya 10,13 % (Pahoja, et. al.,2001). Hal yang sama terjadi pada lipase Brassica napus L. Adanya ion Calsium meningkatkan aktivitas lipase hingga mencapai 165,30 %. rendah Aktivitasnya jika paling

terdapat ion Hg⁺ yaitu 53,10 % (Sana, et al., 2004).

Ion Na (Na-deoxycholate) menghambat aktivitas lipase *Caesalpinia bonducella L* sehingga hanya menjadi 10,13 % (Pahoja *et. al.*, 2001). Begitu pula dengan ion Fe (FeCl₃) menghambat aktivitas lipase *Brassica napus L* menjadi 64,80 % (Sana, *et al.*, 2004).

Oleh karena itu, penelitian ini akan mempelajari bagaimana pengaruh ion Fe, Na dan Ca terhadap aktivitas lipase dari kentos buah kelapa.

BAHAN DAN METODE.

Penelitian ini dilaksanakan pada bulan Maret – Agustus 2007 di laboratorium Pengolahan Universitas Widya Gama Malang dan Laboratorium biokimia Universitas Brawijaya Malang.

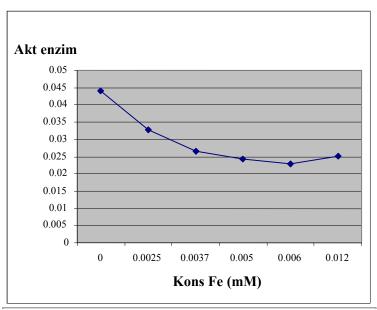
Alat yang digunakan dalam penelitian ini meliputi Mortar, sentrifuse dingin, lemari pendingin, pisau stailess steel, pemarut kelapa stailess steel, kain saring, beker glass, erlenmeyer, oven, spektrofotometer UV Vis, freezer, thermometer, pH meter dan stirer.

Bahan yang digunakan antara lain, buah kelapa varitas dalam dari Lawang Kabupaten Malang, aquades, para nitro phenil laurat, aseton, alkohol, buffer fosfat.

Pertunasan kelapa menggunakan metode Oo and Stumpf yang dimodifikasi. (1983)lipase dengan metode Sana, et al. dimodifikasi. Kelapa (2004) yang dibuang sabut dan tempurungnya dengan hati-hati dan kentos dipisahkan kemudian disimpan pada suhu 4 °C. Sampel (5 gram) ditambahkan larutan buffer fosfat 5 mM 12,5 ml yang sudah didinginkan kemudian dihancurkan dengan mortar. Suspensi disentrifuse pada 8000 gram 20 menit pada 4 °C. Supernatan diambil dan beker dimasukkan dalam glass. Endapan ditambah lagi buffer fosfat sama 12,5 ml kemudian yang seperti disentrifuse lagi di atas. Supernatan digabung dengan sebelumnya. Supernatan yang diperoleh merupakan enzim kasar yang siap diuji aktivitas lipase.

Pengaruh ion terhadap aktivitas lipase dilakukan dengan cara, membuat substrat PNPL 16,1 mg ditambah triton 4% 10 ml, aquades bebas ion 8 ml. Kemudian ditambah buffer fosfat 1 M 1 ml sehingga mencapai pH optimum (pH 7). Selanjutnya ditambahkan ion FeCl₃, CaCl₂ atau NaCl sehingga konsentrasinya menjadi 0 – 10 mM (konsentrasi ion terhadap substrat). Kemudian lipase kasar 100 dimasukkan dalam substrat 900 ul dan diinkubasi pada suhu optimal (60 °C) selama 1 jam. Selanjutnya diuji aktivitas enzimnya.

Aktvitas lipase diukur dengan menggunakan para nitrofenil laurat (PNPL) sebagai substrat. Para nitrofenol yang dilbebaskan dari hirolisa PNPL oleh lipase diukur dengan spektofotometer pada panjang gelombang 410 nm (Bhardwaj, Raju dan Rajasekharan, 2001). Kadar protein enzim diukur dengan metode Lowry *et al.*


HASIL DAN PEMBAHASAN. Pengaruh FeCl₃ terhadap aktivitas enzim.

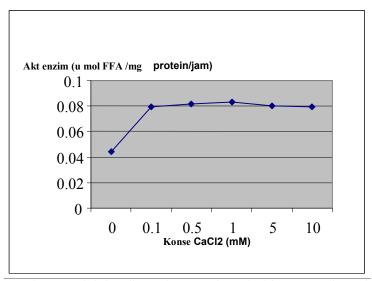
FeCl₃ sampai konsentrasi 0,012 mM menghambat aktivitas lipase menjadi 57,06 % dibandingkan tanpa FeCl₃. Dengan konsentrasi yang rendah sekalipun yaitu 0,0025 mM, FeCl₃ sudah menghambat aktivitas lipase menjadi 74,5%. Hasil ini didukung oleh penelitian Sana, *et al.* (2004) bahwa ion Fe⁺³ menghambat aktivitas lipase dari *Brassica napus L* menjadi 64,80 %.

Tabel 1. Aktivitas lipase kasar pada variasi konsentrasi FeCl₃

Kons FeCl ₃	Aktivitas	Aktivitas
(mM)	(u mol/ml/jam)	(%)
0	0.04400	100
0.0025	0.03278	74.51
0.0037	0.02654	60.33
0.005	0.02431	55.24
0.006	0.02295	52.16
0.012	0.02511	57.06

Moh. Su'i, Pengaruh Ion Logam (Fe, Na, dan Ca) Terhadap

Gambar 1. Aktivitas lipase kasar pada variasi konsentrasi FeCl₃

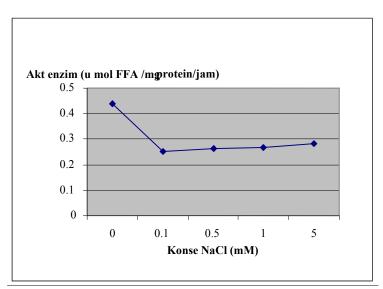

Tabel 2. Aktivitas lipase kasar pada variasi konsentrasi CaCl₂

Kons CaCl ₂	Aktivitas	Aktivitas
(mM)	(u mol/ml/jam)	(%)
0	0.04389	100
0.1	0.07944	180.98
0.5	0.08201	186.83
1	0.08304	189.17
5	0.07996	182.15
10	0.07944	180.98

Pengaruh CaCl₂ terhadap aktivitas enzim

Ion CaCl₂ menghambat lipase dari kentos kelapa. Pada konentrasi 0,1 mM aktivitas meningkat menjadi 180,98 %. Aktivitas meningkat menjadi 186,83 % jika konsentrasi CaCl₂ dalam substrat ditingkatkan menjadi 0,5 mM. Tetapi meskipun CaCl₂ ditingkatkan sampai 10 mM

aktivitas tidak jauh berbeda yaitu 180,98 %. Hasil ini didukung hasil penelitian Sana, *et al.* (2004) bahwa ion Ca⁺² dapat meningkatkan aktivitas enzim lipase dari *Brassica napus L* menjadii 165,30 %. Begitu pula pada lipase dari *Caesalpinia bonducella L*, Calsium mengaktifkan aktivitas enzim menjadi 106,40 % (Pahoja *et. al.*,2001)


Gambar 2. Aktivitas lipase kasar pada variasi konsentrasi CaCl₂

Pengaruh NaCl terhadap aktivitas enzim

NaCl bersifat inhibitor terhadap lipase dari kentos kelapa. Pada konsentrasi 0,005 mM, aktivitas lipase turun menjadi 57,64 %. Meskipin NaCl ditingkatkan hingga 5 mM, aktivitas lipase juga tidak jauh berbeda yaitu menjadi 64,26%. Kondisi ini sama dengan lipase dari *Caesalpinia bonducella L*, bahwa Na menghambat aktivitas enzim menjadi 10,13 % (Pahoja *et. al.*, 2001).

Tabel 3. Aktivitas lipase kasar pada variasi konsentrasi NaCl

Kons NaCl (mM)	Aktivitas	Aktivitas
	(u mol/ml/jam)	(%)
0	0.44012	100
0.005	0.253661	57.64
0.05	0.263808	59.94
0.5	0.268882	61.09
5	0.282835	64.26

Gambar 3. Aktivitas lipase kasar pada variasi konsentrasi NaCl

KESIMPULAN DAN SARAN

Kesimpulan

FeCl₃ pada konsentrasi 0,006 mM bersifat menghambat aktivitas enzim menjadi 52,16 % dari aktivitas maksimumnya. NaCl pada konsentrasi 0,005 mM juga bersifat menghambat aktivitas enzim menjadi 57,64 %. Sedangkan CaCl₂ pada konsentrasi 0,1 mM, meningkatkan aktivitas lipase menjadi 180,98 %.

Saran

Untuk penelitian lebih lanjut perlu dilakukan penemtuan nilai Km dan Vmax lipase dari kentos kelapa.

DAFTAR PUSTAKA

Akhtar, M.W., Parveen, H., Kausar S. and Chughtai M.I.D., 1975, Lipase activity in plant seeds, Pak. J. of Biochem., 8:77 – 82.

Bhardwaj K., Raju A. and Raja sekharan R., 2001. Identification, Purification and Characterization of a Thermally Stable Lipase from Rice Bran. A New Menber of the (Phospho) Lipase Family, Plant Physiology, December 2001, Vol. 127: 1728-1738.

Galliard, T., 1971, Enzymic deacylation of lipids in plants. The effects of free fatty acids on the hydrolysis of phospholipids by the

- lipolytic acyl hydrolase of potato tubers, Eur. J. Biochem., 21: 90-98.
- Kausar S and Akhtar, M..W, 1978, Isolation and characterization of Hibiscus canabinus (kenaf) seed lipase, Pak. J. Biochem., 12:58-64.
- Khan M.Y., Dahot M.U. and Noomrio M.H., 1991, Investigation of lipase activity from Cajanus cajan L. seed, Pak. J. Sci. Ind. Res., 34: 384 386.
- Lin Y. H., Wimer L. T. and Huang A. H. C., 1983, Lipase in the Lipid Bodies of Corn Scutella During Seedling Growth, Plant Physiol. 1983, 73, 460 463.
- Mala V. and Dahot M.U., 1995, Lipase activity of Carissa carandas fruit, Sci. Int. (Lahore), 7: Biological Sciences 1 (8), 775-778.
- Sana, Hossin I., Haque E.M. and Shaha R.K., 2004, Identification, Purification and Characterization of Lipase from Germination Oil Seed (Brassica napus L.), Pakistan Journal of Biological Sciences 7 (2): 246 252.
- Savendsen A., 2000, Lipase protein engineering, Biochemica et Biophysica Acta., 1543:223-238.
- Sonoki S and Ikezawa H., 1975, Studies on phospholipase C.

- 161-164. Muto S. and Beevers H., 1974, Lipase Activities in Castor Bean Endosperm during Germination, Plant Physiol, 1974, 23-28.
- Oo K. C. and Stumpf P. K, 1983, The metabolisme of the Germinating Oil Palm (Elaeis guineensis) Seedling, Plant Physiol (1983), 73, 1033-1037.
- Oo K. C. and Stumpf P. K, 1983, Some Enzymic Activities in The Germinating Oil Palm (Elaeis guineensis) Seedling, Plant Physiol (1983), 73, 1028-1032.
- Pahoja V. M., Dahot M. U. and Sethar M. A., 2001, Characteristic Properties of Lipase Crude Extract of Caesalpinia bounducella L. Seeds, J. of from Pseudomonas aureofaciens, Purification some properties of and phospholipase C. Biochemica et Biophysica Acta., 403:412-424.