IN SYSTEM PROGRAMMING AVR MENGGUNAKAN KONEKSI BLUETOOTH

Rezky Ardiansyah¹⁾ Andrew Joewono²⁾ Diana Lestariningsih²⁾ E-mail: rezky.ardiansyah@rocketmail.com

ABSTRAK

Salah satu produk ISP yang berada di pasaran antara lain: DT-HIQ AVR USB ISP, dan USB ASP masih menggunakan kabel sebagai transmisi datanya. Sehingga jika ingin men-download suatu program ke chip mikrokontroler harus berdekatan antara kompuer dan mikrokontroler target. Kondisi ini akan menjadi masalah jika mikrokontroler target bergerak, seperti halnya mikrokontroler target yang berada pada badan robot. Jika program pada robot itu masih bermasalah, maka robot tersebut harus didekatkan kembali ke komputer untuk diprogram ulang. Oleh karena itu dibutuhkan alat untuk men-download program tanpa melalui media kabel. Dengan demikian akan memudahkan programmer dalam memprogram suatu device dan dapat menghemat tenaga, karena jika ingin memprogram ulang suatu device tidak perlu lagi mendekatkan device ke komputer programmer.

Pada protokol STK500, data yang dikirimkan berupa paket. Sehingga alat ini mempunyai fungsi untuk memeriksa paket data yang diterima. Setelah paket data benar, alat ini akan mengklasifikasikan perintah yang diterima. Alat ini berfungsi untuk men-download program ke mikrokontroler target. Jalur yang digunakan ialah pin MOSI, MISO, dan SCK.

Alat ini dapat menghemat tenaga programmer karena koneksi yang digunakan ialah menggunakan koneksi bluetooth (tanpa kabel). Area coverage alat ini mencapai sekitar 16 meter dari jarak komputer pengguna.

Kata Kunci: in system programming AVR, bluetooth, mikrokontroler

PENDAHULUAN

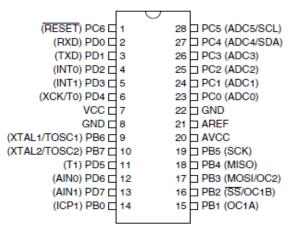
Salah satu produk downloader yang berada di pasaran antara lain DT-HIQ AVR USB ISP, dan USB ASP yang masih menggunakan kabel untuk mentransmisi data. Jika pengguna ingin men-download suatu program ke chip mikrokontroler harus berdekatan komputer dan mikrokontroler target karena keterbatasan panjang kabel. Kondisi ini akan menjadi masalah jika mikrokontroler target bergerak, salah satu contoh mikrokontroler target yang berada pada badan robot. Jika program pada robot masih terdapat masalah, maka robot tersebut harus didekatkan kembali ke komputer untuk diprogram ulang. Untuk mengatasi masalah tersebut dibutuhkan alat untuk men-download program tanpa melalui media kabel, sehingga akan memudahkan *programmer* dalam memprogram suatu chip mikrokontroler. Hal ini dapat menghemat waktu dan tenaga programmer jika membutuhkan untuk memprogram ulang suatu chip mikrokontroler. Programmer tidak perlu mendekatkan device ke komputer programmer.

Adapun permasalahan yang dihadapi penulis dalam pembuatan alat adalah sebagai berikut:

 Bagaimana modul bluetooth EB500 dapat tersinkronisasi terhadap bluetooth dongle pada komputer pengguna;

- 2. Bagaimana realisasi protokol STK500 pada komunikasi antara pengguna dan *downloader* ke dalam program mikrokontroler;
- 3. Waktu yang dibutuhkan *downloader* untuk men-*download* suatu program ke mikrokontroler target dengan berbagai *variabel* sebagai pembandingnya;
- 4. Bagaimana tingkat kesesuaian program yang di-download.

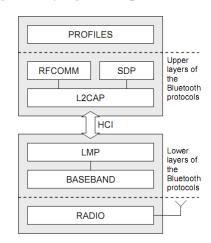
Metode yang digunakan dalam perealisasian alat ini meliputi: studi literatur, perencanaan alat, pembuatan alat, pengujian alat, menarik simpulan hasil perancangan dan pengujian sistem.


TINJAUAN PUSTAKA Mikrokontroler AVR AT Mega8^[2]

Mikrokontroler yang digunakan dalam penelitian ini adalah mikrokontroler *Alf and Vegard's Risc Processor (AVR) AT Mega8*, produk ini merupakan keluaran dari keluarga *ATMEL*. Mikrokontroler *AVR* sama halnya seperti keluaran *ATMEL* lainnya seperti 8051, yaitu memiliki 8 pin dalam 1 *port* yang dapat digunakan sebagai *input* atau *output* digital dan penggunaan pin (*MISO, MOSI, SCK, RESET*) untuk memasukkan *file* dalam bentuk heksadesimal dari komputer ke mikrokontroler. Mikrokontroler *AVR* memiliki arsitektur *RISC*

¹⁾ Mahasiswa di Fakultas Teknik Jurusan Teknik Elektro Universitas Katolik Widya Mandala Surabaya

²⁾ Staf Pengajar di Fakultas Teknik Jurusan Teknik Elektro Universitas Katolik Widya Mandala Surabaya


Reduce Instruction Set Computing (RISC) 8-bit, semua instuksi dikemas dalam kode 16-bit (16-bits word) dan sebagian besar dilakukan dalam 1 siklus *clock*. **Gambar 1** menunjukkan konfigurasi pin *AT Mega8*.

Gambar 1. Konfigurasi Pin AT Mega8

Komunikasi Data Bluetooth

Bluetooth didefinisikan sebagai sebuah arsitektur protokol ber-layer yang mengandung protokol inti, pengganti kabel dan protokol telepon serta protokol adaptasi. Pada bagian selanjutnya akan dibahas lebih lanjut mengenai masing—masing blok dari arsitektur protokol sebagaimana yang terlihat pada Gambar 2.

Gambar 2. Arsitektur Protokol Bluetooth

Layer paling dasar dari bluetooh adalah Bluetooth Radio. Bluetooth beroperasi pada Industrial Scientific and Medical (ISM) band antara 2,40 sampai dengan 2,48 GHz. Terdapat tiga kelas dari transmitter yang dibedakan dari output power dan jangkauan transmisi yang dimiliki. Bluetooth modulasi menggunakan radio Gaussian Frequency Shift Keying (GFSK)transmisinya. Baseband layer melakukan adalah lapisan fisik dan berada di atas Bluetooth

radio. Baseband layer menangani masalah channel.

Untuk menghindari terjadinya interferensi dari sinyal lain yang berada pada band 2.4 GHz seperti WLAN, Bluetooth menggunakan prinsip frekuensi hopping. Setiap perangkat bluetooth mempunyai alamat hardware yang khusus dan sebuah bluetooth clock. Sebuah algoritma tertentu digunakan untuk menghitung frekuensi hopping yang digunakan berdasarkan pada hardware address dari perangkat yang menjadi master dan clock. Untuk komunikasi duplex, skema Time Division Duplex (TDD) digunakan sebagai sarana pengiriman dan penerimaan data. Di mana pada skema ini perangkat master melakukan transmisi pada *slot* waktu genap dan perangkat slave melakukan transmisi pada slot waktu ganjil. Link Manager berfungsi untuk menjalankan link setup, authentication, link configuration dan aspek lainnya dari hubungan radio antara master dan slave. Selain itu juga berfungsi untuk menemukan link manager lainnya dan melakukan komunikasi dengan menggunakan link manager protocol. Untuk memastikan hardware yang berbeda dapat saling mendukung, maka perangkat bluetooth menggunakan Host Controller Interface (HCI) sebagai tatap muka antara host bluetooth (contohnya komputer) dan Baseband dan Link Manager.

Logical Link Control and Adaption Protocol (L2CAP) adalah lapisan yang berada di atas baseband protocol dan melayani protokol yang di atasnya dengan kemampuan protocol multiplexing dan packet segmentation serta reassembly (SAR). Fungsi SAR diperlukan untuk mendukung protokol yang menggunakan paket data yang lebih besar daripada yang dapat didukung oleh baseband. Paket L2CAP yang besar dibagi ke dalam beberapa paket baseband yang lebih kecil sebelum dipancarkan dan paket-paket tersebut akan disusun kembali setelah diterima menjadi paket L2CAP. Service Discovery Protocol pada dasarnya berfungsi untuk menyediakan perangkat (tools) yang dibutuhkan oleh sebuah aplikasi untuk memperoleh informasi dari sebuah perangkat bluetooth, layanan bluetooth apa saja yang tersedia dan untuk menentukan karakteristik layanan yang tersedia. Port serial merupakan salah satu dari layanan komunikasi yang sering digunakan.

RFCOMM adalah pengganti protokol kabel yang termasuk di dalam spesifikasi bluetooth. *RFCOMM* melakukan emulasi port serial RS-232 ke dalam protokol *L2CAP* dan menggantikan fungsi kabel serial. *RFCOMM*

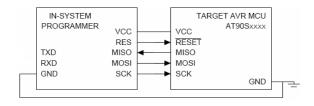
dapat menyediakan sampai dengan 60 port di antara dua perangkat bluetooth. Bluetooth profile digunakan untuk memberikan gambaran untuk implementasi dari sebuah fungsi yang dapat dilakukan. Bluetooth profile ditujukan untuk mengurangi masalah yang mungkin timbul dari perbedaan produk yang diproduksi oleh perusahaan yang berbeda. Profile yang dimiliki bluetooth sampai saat ini antara lain: imaging, basic printing, cordless telephony, dial-up networking, file transfer, handsfree, headset, serial port, dan scynchronization.

Embedded Blue 500^[3]

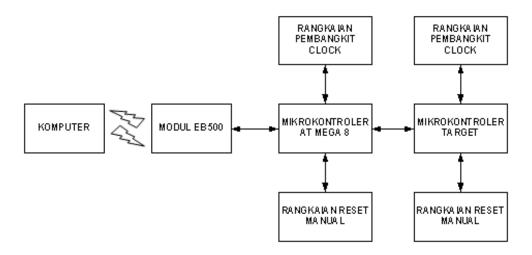
Embedded Blue 500 (EB500) adalah bluetooth yang digunakan menghubungkan mikrokontroler dengan PC. Embedded Blue 500 mempunyai 2 modus operasi yaitu command mode dan data mode. Pada command mode, EB500 akan menerima perintah serial yang diberikan, yang berkaitan dengan proses pengaturan pada EB500 (perintah serial tersebut tidak dikirimkan), sedangkan pada data mode, EB500 akan berfungsi sebagai jalur komunikasi data serial antara device bluetooth yang berbeda (meneruskan pengiriman maupun penerimaan data serial). Gambar EB500 dapat dilihat pada Gambar 3.

Protokol STK 500 digunakan untuk mengirimkan data dari *PC* ke mikrokontroler yang berkaitan dengan pemrograman suatu mikrokontroler. *Software compiler* seperti *CodeVisionAvr* telah menggunakan protokol STK 500. Protokol ini menggunakan *baud rate* 115200, 8 bit data, 1 bit stop, dan tidak menggunakan *parity* bit. STK 500 memiliki format pesan sebagai berikut: *MESSAGEE START*,

SEQUENCE NUUMBER, MESSAGE SIZE,


TOKEN, MESSAGE_BODY, CHECK_SUM. Penjelasan dari masing-masing format dari protokol STK 500 disajikan pada Tabel 1.

Tabel 1. Penjelasan Fungsi Format Dari Protokol STK 500


Name Parameter	Ukuran	Deskripsi
MESSAGE_ START	1 bit	Selalu bernilai 0x1B
SEQUENCE _NUMBER	1 bit	Nilainya akan bertambah satu setiap pengiriman pesan. Kembali ke 0 setelah 0xFF
MESSAGE_ SIZE	2 bit, MSB yang pertama	Ukuran dari message_body
TOKEN	1 bit	Selalu bernilai 0x0E
$MESSAGE_$	Message_	Bernilai dari 0
BODY	size bit	sampai 65535 byte
CHECKSUM	1 bit	Semua pesan di XOR kan

Protokol In System Programming^[5]

Protokol In System Programming ialah protokol yang digunakan memprogram atau memprogram ulang mikrokontroler. Jalur yang digunakan ialah jalur SPI yang terdiri dari Serial clock (SCK), Master In-Slave Out (MISO), dan Master Out-Slave In (MOSI). Ketika melakukan pemrograman mikrokontroler, suatu programmer harus dioperasikan sebagai master dan mikrokontroler target dioperasikan menjadi slave. Programmer menyediakan clock untuk keperluan komunikasi pada pin SCK. Setiap pulsa pada pin SCK mentransferkan 1 bit data dari programmer (Master) menuju target (slave) pada pin MOSI. Secara bersamaan, setiap pulsa pada pin SCK mentransfer 1 bit data dari target (Slave) menuju programmer (master) pada pin MISO. Gambar koneksi antara downloader dan mikrokontroler target dapat dilihat pada Gambar 4.

Gambar 4. Koneksi *Programmer* dan Mikrokontroler Target

Gambar 5. Diagram blok sistem secara keseluruhan

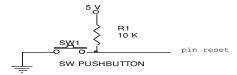
komunikasi antara Agar dan mikrokontroler target dapat berialan dengan Ground (GND)antara ISP mikrokontroler target harus bergabung menjadi satu. Untuk men-download suatu program, ISP akan men-setting pin RST mikrokontroler target menjadi Low (0 Volt). Setelah pin Reset bernilai 0, mikrokontroler target memasuki mode programming dan Serial Peripheral Interface (SPI) diaktifkan sehingga mikrokontroler target tersebut telah siap untuk menerima instruksi dari *programmer*.

Format perintah terdiri dari 4 bit, bit pertama terdiri dari kode perintah, pemilihan operasi dan target memori. Bit kedua dan ketiga terdiri dari alamat pada memori yang telah dipilih. Bit keempat terdiri dari data yang akan dikirimkan ke mikrokontroler target. Ada beberapa perintah pada protokol ISP ini antara lain, Enable Memory Access, Device Code, Flash Program Memory Access, EEPROM Data Memory Access, Lock Bits Access, dan Chip Erase Operation.

METODE PENELITIAN Perancangan dan Pembuatan Alat

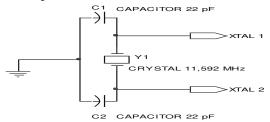
Adapun diagram blok dari alat ini dapat dilihat pada Gambar 5. Komputer digunakan sebagai media perantara antara pengguna dengan sistem dengan menggunakan bantuan software compiler di mana perintah dikirimkan /diterima dengan menggunakan komunikasi melalui bluetooth bluetooth adapter/dongle ataupun internal bluetooth yang terdapat pada PC. EB500 adalah modul bluetooth yang digunakan untuk menerima data dari PC untuk diteruskan ke mikrokontroler

maupun sebaliknya, mengirimkan dari mikrokontroler ke *PC*.

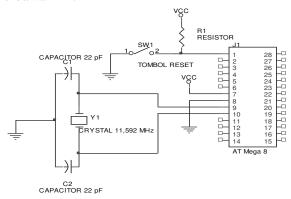

Mikrokontroler digunakan sebagai bagian utama sistem yang mengontrol kerja *In System Programming* untuk memprogram mikrokontroler target sesuai dengan perintah dari *PC*, dalam hal ini rangkaian mikrokontroler yang dimaksud ialah rangkaian minimum sistem *ATMega8*. Mikrokontroler target ialah mikrokontroler yang hendak di program dengan menggunakan protokol *In System Programming*.

Alat ini tidak membutuhkan *supply* 5 V, karena alat ini telah dirancang agar setelah terkoneksi dengan mikrokontroler target dapat mengambil *supply* dari rangkaian mikrokontroler target yang akan di *download* programnya.

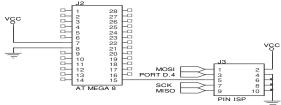
Perancangan elektronika pada alat ini sebagai berikut:


- 1. Rangkaian mikrokontroler ATMega8;
- 2. Rangkaian pembangkit *clock*;
- 3. Rangkaian reset manual.

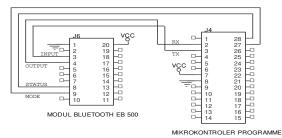
Rangkaian minimum sistem mikrokontroler *ATMega8* terdiri dari rangkaian pembangkit *clock* dan *reset* manual. Pada rangkaian *reset* manual terdapat beberapa komponen yaitu resistor 10 K yang berfungsi untuk *pull up* pin reset mikrokontroler dan tombol reset. Skematik rangkaian reset manual dapat dilihat pada Gambar 6.


Gambar 6. Rangkaian Reset Manual

Sedangkan pada rangkaian pembangkit clock terdapat beberapa komponen, antara lain: kristal 11,592 MHz dan 2 buah kapasitor 22 pF. Bekerjanya sebuah mikrokontroler tergantung pada besarnya frekuensi kristal yang digunakan, semakin tinggi frekuensi kristal digunakan, maka semakin cepat kerja dari mikrokontroler. Sedangkan pemilihan frekuensi 11,592 MHz dikarenakan clocksebesar mikrokontroler menggunakan baudrate sebesar 115200 bps. Rangkaian pembangkit *clock* dapat dilihat pada Gambar 7 di bawah ini.


Gambar 7. Rangkaian Pembangkit Clock

Sehingga keseluruhan rangkaian minimum sistem *ATMega8* dapat dilihat pada Gambar 8 dibawah ini.


Gambar 8. Rangkaian Minimum Sistem *ATMega8*

Fungsi dari alat ini untuk memprogram mikrokontroler target, sehingga *header programming* tersebut juga dikoneksikan ke mikrokontroler target tetapi yang berbeda *reset* mikrokontroler target harus dikontrol oleh suatu pin mikrokontroler *programmer*. Karena untuk memasuki mode programming, mikrokontroler target harus diatur bernilai 0 (*low*). Untuk melakukan hal tersebut dapat dikontrol oleh mikrokontroler *programmer*. Konfigurasi pin dapat dilihat pada Gambar 9 di bawah ini.

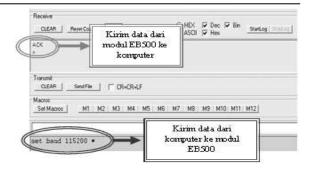
Gambar 9. Konfigurasi Pin *Header Programming*Untuk Mikrokontroler Target

Komunikasi *bluetooth* yang digunakan ialah menggunakan *profil bluetooth* sebagai *serial port*. Modul *EB 500* yang digunakan untuk alat ini telah menggunakan *profil serial port*. Sehingga dibutuhkan komunikasi serial antara modul *bluetooth* dengan mikrokontroler. Koneksi antar kedua bagian dapat dilihat pada Gambar 10.

Gambar 10. Koneksi Antara Bluetooth Dengan Mikrokontroler

Pada perancangan software digunakan software compiler WinAVR sebagai compilernya. Pada perancangan awal ialah mengatur register-register vang diperlukan komuniasi serial antara modul EB500 mikrokontroler ATMega8. ATMega8 memiliki fasilitas komunikasi serial yang terleak pada pin RX dan TX. Pin RX berfungsi untuk menerima data dari luar, sedangkan pin TX berfungsi untuk mengirimkan data dari mikrokontroler menuju keluar. Untuk menggunakan fasilitas komunikasi serial ini ada beberapa pengaturan register-register yang terkait. Pada penelitian ini komunikasi serial yang digunakan menggunakan baudrate 115200 bps dengan parameter 8 bit data, 1 stop bit, dan tidak menggunakan bit *parity*. Pemilihan *baudrate* ini disesuaikan dengan protokol STK 500 yang memerlukan komunikasi data dengan baudrate 115200 bps, sehingga komunikasi serial mikrokontroler menggunakan 115200 bps agar terjadi komunikasi antara 2 komponen tersebut. Register-register yang harus diatur ialah sebagai berikut:

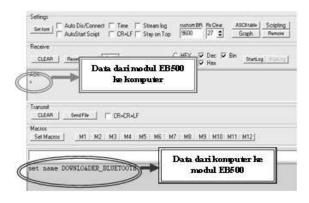
// Set baud rate
UBRRH=0x00;
UBRRL=0x05;
// Set frame format to 8 data bits, no parity, 1 stop
bit
UCSRC = 0x86;
// Enable receiver and transmitter
UCSRB = 0xD8;


Pengaturan register-register tersebut harus diesuaikan dengan protokol pengiriman yaitu protokol STK500. Pada protokol STK500 komuniksasi serial yang digunakan harus menggunakan *baudrate* 115200 bps dengan parameter 8 bit data, 1 stop bit, dan tidak menggunakan bit *parity*. Setelah mengatur register-register yang akan dipakai untuk komunikasi serial, untuk mengambil data dan mengirim data menggunakan fungsi sebagai berikut:

```
void USART_vSendByte(uint8_t u8Data)
{
// Wait if a byte is being transmitted
while((UCSRA&(1<<UDRE)) == 0);
// Transmit data
UDR = u8Data;
}
uint8_t USART_vReceiveByte(void)
{
// Wait until a byte has been received
while((UCSRA&(1<<RXC)) == 0);
// Return received data
return UDR;
}</pre>
```

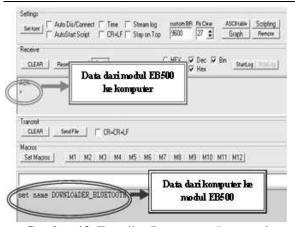
Setelah pengaturan register-resgiter pada mikrokontroler telah selesai, kemudian atur modul EB500 agar dapat sinkron pada saat komunikasi serial dilakukan. Pada pertama modul ini dibeli, setting-an berbagai parameter seperti: baud rate, nama bluetooth, dan password telah ditentukan oleh pabrik. Sehingga dibutuhkan pengaturan agar modul ini sesuai dengan perancangan sistem yang akan dibuat. Pada alat ini parameter yang harus ialah baudrate, nama bluetooth, diganti password yang akan digunakan. Baudrate yang akan digunakan ialah 115200 bps sesuai dengan kebutuhan protokol STK 500, nama bluetooth yang akan digunakan DOWNLOADER BLUETOOTH (pemilihan nama ini bertujuan untuk mempermudah pengguna), dan password yang digunakan ialah 090305. Dalam pengaturan proses menggunakan software terminal.exe karena komunikasi yang digunakan ialah serial. Proses pengaturan ini menggunakan port serial komputer.

♥ Pengaturan Baudrate


Pada *software terminal.exe* pada kolom *transmitter* (mengirim data dari komputer ke modul *EB500*), mengirimkan karakter set *baud* 115200 * [*enter*]. Setelah dikirim karakter di atas, maka modul *EB500* akan mengirim karakter *ACK* (*acknowledge*). Pada Gambar 11 disajikan tampilan *window* untuk pengaturan *baudrate*.

Gambar 11. Tampilan Pengaturan Baudrate

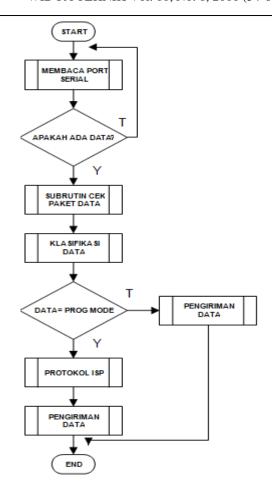
♥ Pengaturan Nama Bluetooth


Pada software terminal.exe pada kolom transmitter (mengirim data dari komputer ke modul EB500), mengirimkan karakter set name DOWNLOADER_BLUETOOTH * [enter]. Setelah dikirim karakter di atas, maka modul EB500 akan mengirim karakter ACK (acknowledge). Pada Gambar 12 disajikan tampilan window untuk pengaturan nama bluetooth.

Gambar 12. Tampilan Pengaturan Nama Bluetooth

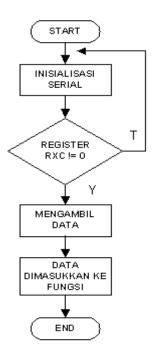
♥ Pengaturan *Password*

Pada *software terminal.exe* pada kolom *transmitter* (mengirim data dari komputer ke modul *EB500*), mengirimkan karakter set *passkey* 090305 * [*enter*]. Setelah karakter di atas dikirim, maka modul *EB500* akan mengirim karakter *ACK* (*acknowledge*). Pada Gambar 13 merupakan tampilan *window* untuk pengaturan nama *bluetooth*.



Gambar 13. Tampilan Pengaturan Password

Setelah pengaturan modul EB500 selesai dilakukan selanjutnya menuju ke proses software mikrokontroler perancangan ATMega8. Mikrokontroler ATMega8 digunakan untuk melakukan komunikasi data dengan komputer melalui transceiver Bluetooth dan juga untuk mengontrol mikrokontroler target yang akan di-download. Untuk lebih jelasnya akan dibahas diagram alir software ATMega8 yang terbagi menjadi diagram alir utama, diagram alir membaca port serial, diagram alir pemisahan data, diagram alir klasifikasi data, diagram alir pengiriman ke komputer dan diagram alir protokol ISP.

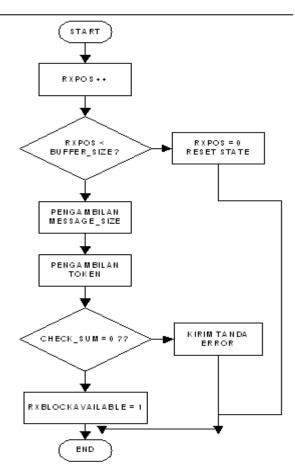

♥ Diagram Alir Utama

Pada Gambar 14 mikrokontroler ATMega8 memeriksa port serial apakah ada data atau tidak. Jika tidak ada data serial, maka mikrokontroler akan memeriksa kembali port serial. Jika ada data, maka data tersebut akan disimpan ke dalam suatu variabel. Variabel tersebut akan dipisahkan data yang ada di dalamnya, karena data tersebut mengandung message start. seauence number. message body, message size, token, check_sum. Setelah data dipisahkan, data message_body diambil dan mikrokontroler melakukan klasifikasi data tersebut. Jika data tersebut membutuhkan parameter mikrokontroler target, maka mikrokontroler akan memerintahkan mikrokontroler target masuk ke mode serial programming.

Gambar 14. Diagram Alir Utama

♥ Subrutin Membaca *Port* Serial

Gambar 15. Diagram Alir Pengambilan Data


Realisasi program pada Gambar 15. di atas adalah sebagai berikut:

((UCSRA&(1<<RXC)) != 0) jika nilainya tidak sama dengan 0, maka memanggil fungsi menerima data dari *port* serial dan data tersebut dimasukkan ke fungsi stkSetRxChar.

♥ Subrutin Pemisahan Data

Data yang dikirimkan dari komputer mengandung banyak data yang menyusun protokol STK 500. Data tersebut terdiri dari message_start (1B), sequence_number (00 – FF), message_size (data 2 bit), token (0E), message_body, dan check_sum. Diagram alir pemrogramannya dapat dilihat pada Gambar 16.

Subrutin ini berfungsi untuk memeriksa kelengkapan paket data yang dikirimkan komputer pengguna. Keseluruhan paket data yang dikirimkan diakhiri oleh *Check_Sum*. *Check_Sum* bernilai *XOR* dari keseluruhan data yang diterima. Jika *Check_Sum* benar, maka variabel *RXBLOCKAVAILABLE* = 1 (masuk *state* selanjutnya), jika salah mikrokontroler akan mengirimkan tanda *error* ke komputer pengguna. Realisasi program sebagai berikut:

Gambar 16. Diagram Alir Cek Paket Data

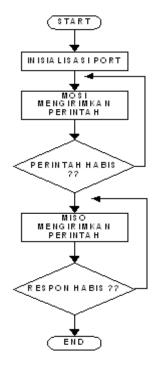
```
rxBuffer[rxPos++] = c; //rxpos sekarang + 1 (untuk)
selanjutnya)
} //rxBuffer[] = data serial yang masuk
else{
if(rxPos < BUFFER SIZE){
if(rxPos == 4){ /* do we have length byte? */
rxLen.bytes[0] = rxBuffer[3];
rxLen.bytes[1] = rxBuffer[2];
rxLen.word += 6;
if(rxLen.word > BUFFER_SIZE){ /* illegal length */
rxPos = 0; /* reset state */
else if(rxPos == 5)
if(c != STK\_TOKEN){
rxPos = 0: /* reset state */
}else if(rxPos > 4 && rxPos == rxLen.word){ //
complete
uchar sum = 0;
uchar *p = rxBuffer;
while(rxPos){ /* decrement rxPos down to 0 -> reset
state */
sum ^= *p++;
rxPos--:
if(sum == 0)
                /* check sum is correct, evaluate rx
message */
rxBlockAvailable = 1;
}else{
           /* checksum error */
txBuffer[STK_TXMSG_START]=STK_ANSWER_C
KSUM_ERROR; //kirim pos ke 5 dan 6
```

```
txBuffer[STK_TXMSG_START + 1]
=STK_ANSWER_CKSUM_ERROR; //kirim pos ke 6
stkSetTxMessage(2);
}
}
}else{ /* overflow */
rxPos = 0; /* reset state */
}
}
```

♥ Subrutin Klasifikasi Data

Perintah yang dikirimkan oleh komputer pengguna harus direspon oleh mikrokontroler. Oleh karena itu perintah tersebut harus di klasifikasikan terlebih dahulu. Perintah-perintah tersebut dibaca oleh mikrokontroler, sehingga mikrokontroler dapat menentukan respon atas perintah yang dikirimkan oleh komputer. Realisasi program sebagai berikut:

```
void stkEvaluateRxMessage(void) /* not static to
prevent inlining */
uchar
        i. cmd:
utilWord t len = \{2\}; /* defaults to cmd + error code
        cmd = rxBuffer[STK_TXMSG_START];
txBuffer[STK_TXMSG_START] = cmd;
txBuffer[STK_TXMSG_START+1]=
STK_STATUS_CMD_OK;
param = &rxBuffer[STK_TXMSG_START + 1];
       if(cmd==STK_CMD_SIGN_ON){
static PROGMEM uchar string[] = {8, 'S', 'T', 'K', '5',
'0', '0', '_', '2', 0};
uchar *p = &txBuffer[STK TXMSG START + 2];
strcpy_P(p, string);
len.bytes[0] = 11;
}
       else
if(cmd==STK CMD SET PARAMETER){
setParameter(rxBuffer[STK\_TXMSG\_START+1],
rxBuffer[STK_TXMSG_START + 2]);
else if(cmd==STK CMD GET PARAMETER){
txBuffer[STK TXMSG START+2]=getParameter(rxB
uffer[STK_TXMSG_START + 1]);
len.bytes[0] = 3;
else if(cmd==STK CMD OSCCAL){
txBuffer[STK TXMSG START
                                      11
STK STATUS CMD FAILED;
if(cmd==STK CMD LOAD ADDRESS){
for(i=0;i<4;i++){
stkAddress.bytes[3-i]
rxBuffer[STK TXMSG START + 1 + i];
}
       else
if(cmd==STK CMD ENTER PROGMODE ISP){
txBuffer[STK TXMSG START
                                      1]
ispEnterProgmode(param);
```


```
}
else
if(cmd==STK CMD LEAVE PROGMODE ISP){
ispLeaveProgmode(param);
else if(cmd==STK_CMD_CHIP_ERASE_ISP){
txBuffer[STK_TXMSG_START
                                    1]
ispChipErase(param);
else if(cmd==STK CMD PROGRAM FLASH ISP){
txBuffer[STK_TXMSG_START
                                    1]
ispProgramMemory(param, 0);
if(cmd==STK_CMD_READ_FLASH_ISP){
len.word=1+ispReadMemory(param,(void*)&txBuffer[
STK_TXMSG_START + 1], 0);
       else
if(cmd==STK CMD PROGRAM EEPROM ISP){
txBuffer[STK_TXMSG_START
                                    1]
ispProgramMemory(param, 1);
}
if(cmd==STK_CMD_READ_EEPROM_ISP){
len.word=1+ispReadMemory(param,(void*)&txBuffer[
STK_TXMSG_START + 1], 1);
       else
if(cmd==STK CMD PROGRAM FUSE ISP){
txBuffer[STK TXMSG START
                                    1]
ispProgramFuse(param);
}
       else
if((cmd==STK_CMD_READ_FUSE_ISP)||(cmd==ST
K_CMD_READ_LOCK_ISP)||(cmd==STK_CMD_RE
AD_SIGNATURE_ISP) || (cmd==STK_CMD_READ_
OSCCAL_ISP)){
txBuffer[STK_TXMSG_START
                                    21
ispReadFuse(param);
txBuffer[STK_TXMSG_START
                                    31
STK_STATUS_CMD_OK;
len.bytes[0] = 4;
       else
if(cmd==STK_CMD_PROGRAM_LOCK_ISP){
txBuffer[STK_TXMSG_START
ispProgramFuse(param);
}
       else if(cmd==STK CMD SPI MULTI){
                      ispMulti(param,
                                        (void
*)&txBuffer[STK_TXMSG_START + 1]);
```

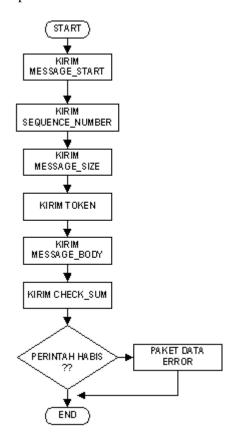
Dari potongan program atas, mikrokontroler membaca perintah yang dikirimkan dan merespon atas perintah dari komputer sesuai ketentuan protokol STK500. Misal, perintah yang dikirimkan ialah STK_CMD_SIGN_ON, maka mikrokontroler mengirimkan karakter STK500_2 komputer melalui port serial.

♥ Subrutin Protokol *ISP*

Subrutin ini berfungsi untuk mengontrol mikrokontroler target agar mikrokontroler target masuk pada mode serial *programming*. Setelah masuk ke serial *programming*, maka mikrokontroler *downloader* akan bertindak sebagai master dan mikrokontroler target akan bertindak menjadi *slave*.

Diagram alir pemrogramannya dapat dilihat pada Gambar 17.

Gambar 17. Diagram Alir Protokol ISP


Realisasi program sebagai berikut:

Port MOSI akan mengirim suatu parameter sesuai perintah yang dikirimkan komputer sampai data habis, setelah itu port MISO akan menerima data hasil respon perintah

yang dikirimkan. Data yang dikirimkan sesuai aturan protokol *In System Programming*.

♥ Subrutin Kirim Data Ke Komputer

Fungsi ini digunakan untuk mengirim data ke komputer melalui *port* serial mikrokontroler. Pada protokol STK 500 mengharuskan mikrokontroler *downloader* mengirim respon perintah yang diterima dari komputer. Diagram alir pemrogramannya dapat dilihat pada Gambar 18.

Gambar 18. Diagram Alir Pengiriman Data Ke Komputer

Implementasi ke dalam program sebagai berikut:

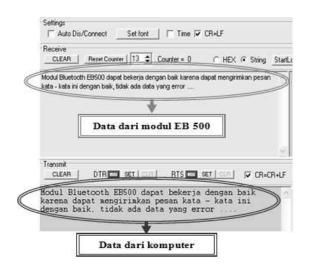
```
static void stkSetTxMessage(uint len)
uchar *p = txBuffer, sum = 0;
         *p++ = STK STX;
                                    //message start
*p++ = rxBuffer[1]; /* sequence number */
*p++ = utilHi8(len); //message size msb
*p++ = len;
                  //message size lsb
*p++ = STK_TOKEN; //token
txPos = 0;
len += 6;
txLen = len--;
p = txBuffer;
while(len--){
sum ^= *p++;}
*p = sum;
         for (a=0;a<txLen;a++) {
```

```
USART_vSendByte(txBuffer[a]);
}
```

USART_vSendByte(txBuffer[a]); ialah fungsi untuk mengirimkan data ke komputer dari *port* serial mikrokontroler *downloader*.

Alat ini digunakan untuk men-download program ke mikrokontroler target dengan menggunakan koneksi *bluetooth*. Prosedur yang dilakukan pengguna sebagai berikut:

- 1. Komputer atau laptop yang akan digunakan telah terpasang *bluetooth dongle* dan *driver*nya telah terinstal;
- 2. Catu daya mikrokontroler target yang akan di program dinyalakan;
- 3. Pasangkan alat ini ke mikrokontroler target;
- Koneksikan bluetooth dongle dengan alat ini, setelah terkoneksi, maka alat ini akan memberikan alamat com port untuk jalur komunikasinya;
- 5. Pada *software compiler CodeVisionAVR* atur penggunaan *com port* dan protokol yang akan digunakan. Atur protokol yang digunakan ialah *Atmel STK500/AVRISP* dan *com port* yang digunakan harus sesuai dengan *com port* yang telah diberikan oleh modul *EB500*;
- 6. Untuk meng-compile dan men-download program tekan shift + F9.


HASIL PENELITIAN DAN PEMBAHASAN

Pada bagian selanjutnya akan dilakukan pengukuran dan pengujian alat yang meliputi pengujian modul *Bluetooth EB500*, pembuktian program, pengujian waktu yang dibutuhkan untuk men-download program dengan jarak sebagai variabel pembandingnya, pengujian waktu yang dibutuhkan untuk men-download program dengan besar program sebagai variabel pembandingnya, dan pengukuran dan pengujian alat secara keseluruhan. Hasil dari pengujian diharapkan dapat mengetahui seberapa besar tingkat keberhasilan dan kesalahannya. Alat yang digunakan untuk melakukan pengujian meliputi:

- **♥** *Stopwatch*;
- **♥** *Software Free Port Serial Monitor*;
- **♥** *Software* Terminal;
- Meteran.

Pengujian dilakukan terhadap Modul Bluetooth EB500 dengan menggunakan software terminal.exe yang sering dipakai untuk mengecek konektivitas Port Serial. Adapun hubungan antara PC, EB500 serta mikrokontroler dapat dilihat pada Gambar 19

di bawah ini. Pengukuran dilakukan dengan mengirimkan beragam karakter kode dari *PC* yang telah ditentukan sebelumnya serta melihat karakter yang dikirimkan kembali ke *PC* oleh mikrokontroler melalui Modul *Bluetooth EB500* tersebut dalam jarak 5 m, jarak tersebut dipilih karena ruangan presentasi tempat alat tersebut nantinya berada tidak terlalu besar, sehingga jarak antara pengguna dan alat tersebut juga tidak telalu jauh. Komunikasi *Bluetooth* yang akan diuji ini menggunakan *Port* komunikasi *COM4*.

Gambar 19. Hasil Pengujian Sinkronisasi Antara Modul *EB500* Dengan *Bluetooth Dongle*

Dari hasil pengujian sinkronisasi modul *EB500* dengan komputer dapat dilihat pada Gambar 19. Data yang dikirimkan dari komputer dapat diterima dan dikirimkan kembali ke komputer sesuai dengan data yang di-*input*-kan oleh komputer. Hal tersebut dapat tercapai karena modul *EB500* dan komputer pengguna telah tersinkronisasi dengan baik. Karena parameter antara lain: *baudrate*, ukuran data, *stop* bit kedua *device* ini telah sama.

Aplikasi dari sinkronisasi antara komputer dan modul ini terletak pada respon alat ini atas data yang dikirimkan oleh komputer pengguna. Jika tidak sinkron, maka alat ini tidak akan merespon *request* dari komputer pengguna, karena data yang diterima oleh alat ini tidak sesuai dengan data yang dikirimkan oleh komputer pengguna.

Pembuktian program yang digunakan alat ini dengan menggunakan software Free Port Serial Monitor yang berfungsi untuk memonitor port serial dari komputer. Pada sisi pengguna terdapat komputer yang telah terpasang bluetooth dongle, dan terdapat didalamnya software compiler CodeVisionAVR. Sebelum menggunakan alat ini, pada software compiler

di-setting terlebih dahulu jenis programmer yang digunakan dan pada com yang telah ditentukan. Pada pembuktian program yang dilakukan menggunakan perintah read_chip_signature, yaitu perintah untuk membaca jenis chip pada mikrokontroler target. Pada compiler CodeVisionAVR pilih tools → Chip Programmer → read → Chip Signature.

Dari hasil pembuktian di atas dapat dilihat bahwa protokol yang digunakan telah sesuai dengan dasar teori protokol STK 500. Pembuktian di atas dibagi menjadi 2 bagian, yaitu dari sisi mikrokontroler dan sisi komputer. Pada sisi komputer terlihat bahwa setiap melakukan perintah (misal: *CMD SIGN ON*) selalu dibungkus oleh suatu aturan pengiriman. Pada sisi mikrokontroler terdapat data 1B 01 00 0B 0E 01 08 53 54 4B 35 30 30 5F 32 02. Data tersebut ialah pengiriman respon mikrokontroler terhadap perintah dari komputer dengan perintah CMD SIGN ON dengan cara pengiriman karakter STK500 2. Pengiriman data tersebut selalu dibungkus dengan protokol STK 500 dengan melalui MESSAGE_START (0x1B), SEQUENCE NUMBER (0x00 - 0xFF), MESSAGE_SIZE (data 2 bit), TOKEN (0x0E), MESSAGE_BODY (0 sampai 65535 bit), dan CHECK SUM (data 1 bit).

Pengujian waktu yang dibutuhkan untuk proses download alat ini menggunakan software compiler CodeVisionAVR dengan memory flash 7,2 % dari memory flash dari mikrokontroler ATMega32. Pengukuran menggunakan bantuan stopwatch digital untuk mengukur waktu yang dibutuhkan untuk mendownload program sebesar 7,2 % dari memori flash ATMega32. Setelah program telah dituliskan, tekan shift + F9 untuk memulai men-download program ke mikrokontroler target. Bersamaan dengan stopwatch memulai berjalan sampai program telah selesai didownload. Hasil dari pengukuran dapat dilihat pada Tabel 2. Prosedur pengukuran dilakukan berulang-ulang dengan mengubah jarak antara pengguna dan downloader.

Dari pengukuran waktu yang dibutuhkan proses download dengan metode line of sight (tanpa halangan) terlihat bahwa pada jarak 17 meter bluetooth tidak dapat terdeteksi oleh pengguna. Area coverage dari modul EB500 adalah 10 meter karena pada modul ini kelas bluetooth yang terpasang ialah kelas 2. Area coverage modul EB500 terlihat bahwa modul ini mampu mencakup area sampai dengan jarak 16 meter. Waktu yang dibutuhkan untuk download program dengan ukuran 7,2 % dari

Tabel 2. Hasil Pengukuran Waktu Yang Dibutuhkan Proses *Download* Mikrokontroler Target Dengan Metode *Line of Sight*

Jarak (m)	Waktu (detik)
1	14,53
2	16,78
3	16,13
4	15,9
5	14,53
6	17,66
7	17,28
8	17,97
9	16,67
10	16,16
11	17,01
12	16,48
13	15,96
14	17,26
15	19,24
16	17,11
17	Tidak Terdeteksi
18	Tidak Terdeteksi
19	Tidak Terdeteksi
20	Tidak Terdeteksi

memory flash dari mikrokontroler ATMega32 membutuhkan waktu 14-20 detik. Dari pengukuran di atas terlihat bahwa waktu yang dibutuhkan tidak konstan selalu berubah-ubah, hal ini dikarenakan media perantara berupa udara yang mengandung banyak partikelpartikel, sehingga komunikasi antara pengguna dan alat sedikit terganggu.

Setelah program telah dituliskan, tekan shift + F9 untuk memulai men-download program ke mikrokontroler target. Bersamaan dengan stopwatch memulai berjalan sampai program telah selesai di download. Hasil dari pengukuran dapat dilihat pada Tabel 3. Prosedur pengukuran dilakukan berulang-ulang dengan mengubah jarak antara pengguna dan downloader.

Penghalang yang terpasang pada alat dipasang secara keseluruhan menutupi alat ini, melainkan masih terdapat celah udara yang masuk. Material penghalang antara lain: triplek, alumunium, plastik, dan kardus. Pada pengujian waktu yang dibutuhkan untuk proses download dengan menggunakan penghalang dengan berbagai macam material terlihat bahwa penghalang dapat mempengaruhi download. Waktu yang dibutuhkan sangat bervariatif karena media perantara komunikasi menggunakan udara yang mengandung banyak sehingga komunikasinya partikel-partikel, terganggu. Dan juga dengan penghalang, maka akan semakin menambah lama waktu download.

Tabel 3. Hasil Pengukuran Kecepatan Proses Download Mikrokontroler Target Dengan Menggunakan Halangan

	Waktu	Waktu	Waktu	Waktu
Jarak	dengan	dengan	dengan	dengan
	halangan	halangan	halangan	halangan
(m)	triplek	alumunium	plastik	kardus
	(detik)	(detik)	(detik)	(detik)
1	14,37	16,96	16,32	14,47
2	15,81	16,18	16,34	14,97
3	16,59	16,28	16,29	16,22
4	16,82	15,47	16,06	14,82
5	14,25	16,78	14	14,94
6	14,03	22,28	15,16	14,6
7	14,28	25,72	19,91	16,22
8	19,29	18,45	19,03	15,67
9	18,87	21,23	15,28	15,11
10	19,74	21,25	16,86	16,22
1.1	10.6	Tidak	15,75	16,68
11	18,6	Terdeteksi		
12	18,77	Tidak	19,59	17,49
12	10,77	Terdeteksi	19,39	
13	17,31	Tidak	22,51 1	16,92
13	17,31	Terdeteksi		10,72
14	19,26	Tidak	16,15	19,02
14		Terdeteksi	10,13	17,02
15	16,2	Tidak	16,36	19,29
13		Terdeteksi		17,47
16	16,26	Tidak	37,34	45,51
		Terdeteksi		
17	Tidak	Tidak	Tidak T	Tidak
1 /	Terdeteksi	Terdeteksi	Terdeteksi	Terdeteksi
10	Tidak	Tidak	Tidak	Tidak
18	Terdeteksi	Terdeteksi	Terdeteksi	Terdeteksi

Pengujian waktu yang dibutuhkan untuk proses download alat dengan ukuran program sebagai variabel pembandingnya menggunakan software compiler CodeVisionAVR dan stopwatch. Setelah program telah dituliskan, tekan shift + F9 untuk memulai men-download program ke mikrokontroler target. Bersamaan dengan stopwatch memulai berjalan sampai program telah selesai di download. Hasil dari pengukuran dapat dilihat pada Tabel 4. Prosedur pengukuran dilakukan berulang-ulang dengan mengubah jarak antara pengguna dan downloader.

Dari hasil pengujian di atas terlihat bahwa besar ukuran program yang akan di-download ke mikrokontroler target sangat berpengaruh terhadap waktu yang dibutuhkan untuk proses download dari alat ini. Semakin besar ukuran program yang akan di-download, maka waktu download akan semakin lama, dan sebaliknya.

Tabel 4. Hasil Pengukuran Kecepatan Proses Download Mikrokontroler Target Jarak

Jarak (m)	Ukuran (bit)	Waktu (detik)
5	606	7,73
5	1690	12,54
5	2370	15,33
5	3372	19,23
5	3918	21,47
5	4532	23,25
5	4918	25,33
5	5402	28,81
5	5896	30,79
5	6574	32,78
5	7034	34,36

Hal ini dikarenakan karena semakin besar program maka semakin banyak data yang harus dikirimkan ke mikrokontroler target, sehingga dibutuhkan waktu yang panjang untuk ukuran program yang besar. Alat ini bertujuan untuk mengurangi penggunaan tenaga programmer untuk memprogram suatu mikrokontroler yang akan diprogram khususnya mikrokontroler bergerak. Pada disajikan perbedaan penggunaan tenaga programmer antara downloader kabel dan downloader bluetooth.

Tabel 5. Tabel Perbedaan Penggunaa Tenaga Antara *Downloader* Kabel dan *Downloader* Bluetooth

No.	Downloader Kabel	Downloader Bluetooth	
1	lika ingin men-download ulang robot, robot harus angkat dan didekatkan ke komputer pengguna.	Jika ingin men- download ulang robot, robot tidak perlu di angkat mendekati komputer pengguna.	
2	Kabel down-loader (USB) harus di koneksikan ke komputer pengguna setiap kali programmer ingin men-download ulang.	Tidak perlu mengkoneksikan kabel apapun ke komputer pengguna, karena menggunakan koneksi bluetooth.	

Dari Tabel 5 di atas dapat diambil kesimpulan bahwa dengan menggunakan alat ini (downloader bluetooth) para pengguna dapat menghemat penggunaan tenaga mereka, karena tidak perlu lagi mengangkat kembali mikrokontroler bergerak (robot) mendekati pengguna.

Manfaat alat ini sangat besar, karena mampu mengurangi penggunaan tenaga programmer secara signifikan. Untuk menggunakan alat ini para pengguna harus membeli alat ini sekitar Rp. 500.000,00. Daftar komponen yang menyusun alat ini dapat dilihat pada Tabel 6.

Tabel 6. Daftar Komponen Alat

No.	Komponen	Harga, Rp.
1	Rangkaian Minimum Sistem ATMega8	70.000
2	Modul EB 500	300.000
3	Kabel + Casing	30.000
4	Bluetooth Dongle	20.000
5	CD + Kertas + Plastik	5.000
	Total	420.000

Pembeli yang akan membeli alat ini akan mendapat 1 paket pembelian yang terdiri dari downloader AVR bluetooth, CD + Manual book, bluetooth dongle, dan kemasan berupa plastik. Harga jual Rp. 500.000,00 dan harga produksi sebesar Rp. 420.000,00, jika laku terjual maka akan mendapatkan keuntungan Rp. 80.000,00. Pangsa penjualan alat ini ialah toko elektronik (digi-ware, delta-electronic, el-tech, dan lain-lainnya) yang akan membeli partai (grosir), dan publik terkait.

Pada pengukuran alat ini akan diuji dengan men-download program menuju suatu robot. Pengguna akan men-download program dengan berbagai algoritma jalan yang berbeda. Setelah program telah dituliskan, tekan shift + F9 untuk memulai men-download program ke mikrokontroler target. Bersamaan dengan stopwatch memulai berjalan sampai program telah selesai di-download. Mikrokontroler target yang berada pada badan robot bertipe AT Mega32. Hasil dari pengukuran dapat dilihat pada Tabel 7. Prosedur pengukuran dilakukan berulang-ulang dengan mengubah algoritma jalan robot.

Tabel 7. Hasil Pengujian Alat Dengan Menggunakan Robot Sebagai Mikrokontroler Target

Algoritma jalan robot	Keterangan
Maju sampai ada halangan didepan robot dan berhenti	Sesuai
Maju sampai ada halangan didepan robot dan hadap kanan	Sesuai
Maju sampai ada halangan didepan robot dan hadap kiri	Sesuai
Maju sampai sisi kanan robot kosong dan berhenti	Sesuai
Maju sampai sisi kiri robot kosong dan berhenti	Sesuai

Dari hasil pengujian di atas, dapat disimpulkan bahwa program yang di-download oleh pengguna sesuai dengan program yang telah direncanakan.

KESIMPULAN

Dari hasil penelitian dan pembahasan yang meliputi hasil perancangan, pembuatan dan pengujian alat, maka dapat ditarik beberapa kesimpulan antara lain:

- 1. Alat ini dapat menghemat tenaga *programmer* dengan sangat signifikan;
- 2. Alat ini memiliki nilai jual yang tinggi karena memiliki manfaat yang tinggi, harga jual alat ini Rp. 500.000,00 dengan biaya produksi Rp. 420.000,00 sehingga keuntungan sebesar Rp. 80.000,00;
- 3. Jangkauan *area coverage* dari modul *EB500* ini sampai 10 meter, tetapi setelah dilakukan pengujian *area coverage* menjadi 16 meter;
- 4. Waktu yang dibutuhkan dengan menggunakan metode *line of sight* (tanpa halangan) dengan jarak antara pengguna dan alat antara 1-16 meter dan besar program 7,2 % dari memori *flash* mikrokontroler AT Mega 32 antara 14 20 detik.
- Waktu yang dibutuhkan dengan menggunakan halangan berbagai material dengan jarak
- 6. antara pengguna dan alat antara 1 16 meter besar program 7,2 % dari *memory flash* mikrokontroler *ATMega32* berkisar antara 14-45 detik;
- 7. Waktu yang dibutuhkan dengan menggunakan metode *line of sight* pada jarak 5 meter dengan ukuran program antara 606 sampai 7034, sebesar 7-34 detik.

DAFTAR PUSTAKA

- [1] Mazidi, M. A., dan Kawan-kawan, *The* 8051 Microcontroller and Embedded Systems Using Assembly and C, Hlm. 28, Pearson Education, New Jersey, 2006
- [2] Atmel Corporation, *ATMega8 Datasheet*, *Atmel 8-bit AVR Microcontroller with 8K Bytes in-system Programmable Flash*, Atmel Corporation, San Jose:2008
- [3] Court, D., *EB500*, www.parallax.com/dl/docs/prod/comm/ eb500.pdf., Diakses 5 Januari 2011
- [4] Atmel Corporation, STK500
 Communication Protocol,
 www.atmel.com/dyn/resources/prod_docu
 ments/doc2591.pdf., Diakses 5 Januari
 2011
- [5] Atmel Corporation, *In-System Programming*, ww.atmel.com/dyn/
 resources/prod_documents/doc0943.pdf,
 Diakses 5 Januari 2011