JUMLAH EMISI GAS CO₂ DAN PEMILIHAN JENIS TANAMAN BERDAYA ROSOT SANGAT TINGGI: STUDI KASUS DI KOTA BOGOR

(The Amount of CO₂ Gasses Emission and Selection of Plant Species with Height Carbon Sink Capability: Case Study in Bogor Municipality)

ENDES N. DAHLAN

Bagian Hutan Kota dan Jasa Lingkungan, Departemen Konservasi Sumberdaya Hutan dan Ekowisata, Fakultas Kehutanan IPB, Kampus Darmaga Bogor 16680, Indonesia

Diterima 10 Desember 2007/Disetujui 15 Mei 2008

ABSTRACT

Activities in towns and cities require energy from fossil fuel which can cause increasing concentration of CO₂ ambient. One of the effort to minimize the increasing CO₂ concentration in the atmosphere, particularly in the urban area, is to develop urban forest. The objective of the research is to measure the concentration of CO₂ and to measure the ability of absorbing CO₂ gas by urban forest trees in Bogor Botanical Garden and Forest Research Station at Dramaga. The result of the study noticed that: CO₂ gas emission in 2015 is 452.486 ton, in 2095 will be 584.142 ton which can then induce increasing the concentration of CO₂ ambient. The other research noticed that classification of absorption ability of trees in urban forest area which consist of Bogor Botanical Garden and Forest Research Station at Dramaga are as follow: very high consist of: F. benjamina, T. verrucossum, D. excelsum, C. odoratum (average absorption ability was 643,77 kg/trees/year), high absorption ability are: L. speciosa, A. pavoniana, C. parthenoxylon, S. mahagoni, P. pinnata, F. decipiens, B. roxburghiana (average was 305,91 kg/trees/year), moderate class are: S. wallichii, A. muricata, K. senegalensis, S. macrophylla, C. grandis, A. heterophyllus, T. grandis (average was 102,07 kg/trees/year), low class are: P. indicus, P. affinis, A. mangium, S. indicum, I. bijuga, K. anthotheca, D. retusa, C. pulcherrima, C. guinensis (average was 28,00 kg/trees/year) and very low class are: C. excelsa, H. mengarawan, T. indica, N. lappaceum, H. odorata, E. cristagalli, M. grandiflora, P. dulce (average was 3,90 kg/trees/year).

 $\label{lem:keywords: CO2} \textit{Keywords: CO}_2, \textit{sequestration, urban forest, green open space}$

PENDAHULUAN

Kota merupakan pusat berbagai aktivitas manusia ekonomi, pendidikan, olahraga, seni, permukiman, transportasi, industri, dan lain-lain. Kota juga merupakan tempat tinggal atau aktivitas dari aneka sumber daya manusia penting seperti ekonom, mahasiswa dan dosen, seniman dan olah ragawan, guru dan pelajar, serta pejabat (Dahlan 1992). Mereka membutuhkan kualitas lingkungan yang baik, namun pada kenyataannya kualitas lingkungan kota semakin memburuk akibat adanya pencemaran udara (Dahlan 2004). Salah satu sumber polutan utama di kota adalah aktifitas pembakaran bahan bakar minyak dan gas. Pembakaran bahan bakar minyak dan gas selain menghasilkan polutan juga menghasilkan gas CO2 yang dapat menyebabkan meningkatnya konsentrasi CO2 ambien (Keeling dan Whorf 2005).

Gas CO_2 pada konsentrasi yang tinggi di udara ambien akan terhirup masuk ke dalam saluran pernapasan. Afinitas gas ini dengan hemoglobin (Hb) 20 kali lebih tinggi daripada afinitas Hb dengan oksigen (Anonymous, 2005a), sehingga dapat menurunkan kesehatan manusia. Meningkatnya kadar gas CO_2 juga akan mengancam kehidupan manusia dan rusaknya

lingkungan hidup (Anonymous 2005b) berupa pemanasan global melalui efek rumah kaca. Salah satu usaha untuk mengurangi peningkatan konsentrasi gas CO_2 di atmosfer, khususnya di daerah perkotaan adalah pengembangan hutan kota. Pohon dan hutan baik di dalam dan di sekitar kota dapat menurunkan CO_2 melalui fotosintesis. Gas ini akan diserap oleh daun melalui stomata menjadi oksigen dan karbohidrat.

Kota-kota besar di Indonesia kini mulai terancam oleh gas CO_2 yang berasal dari pembakaran bahan bakar minyak dan gas. Demikian juga dengan Kota Bogor yang dikenal dengan sebutan "Kota Sejuta Angkot". Luasan hutan kota di Bogor hanya 144,75 ha (1.20%), terdiri dari Kebun Raya Bogor (KRB) dan hutan Penelitian Dramaga (HPD). Selain hutan kota ada juga beberapa bentuk ruang terbuka hijau (RTH) lainnya yang dapat menyerap gas CO_2 , namun pada kenyataannya luasan RTH terus menurun dari tahun ke tahun.

Dengan semakin bertambahnya emisi gas CO₂ di satu pihak dan di lain pihak luasan ruang terbuka hijau terus menurun sementara luasan hutan kota tidak bertambah, maka perlu dilakukan penambahan luasan hutan kota dengan tanaman berdaya rosot yang sangat tinggi untuk mengatasi kesenjangan tersebut. Jika yang ditanam dalam program penambahan luasan hutan kota

merupakan jenis berdaya rosot sangat tinggi, maka kebutuhan luasan hutan kota dapat ditekan serendah mungkin. Upaya antisipasi sejak dini perlu dilakukan, agar permasalahan yang dihadapi saat ini dan yang diperkirakan akan muncul di masa yang akan datang dapat dipecahkan dan ditangani secara efektif dan efisien, sehingga konsentrasi gas CO_2 dapat ditekan pertambahannya sementara lahan masih dapat tersedia untuk peruntukan pembangunan lainnya.

Tujuan dari penelitian ini adalah: (1) mengukur daya rosot gas CO2 oleh pohon di areal hutan kota di Kota Bogor yakni di Kebun Raya Bogor dan Hutan Penelitian Dramaga; (2) mengetahui jumlah emisi dan konsentrasi ambien gas CO2 di Kota Bogor yang merupakan faktor pendorong adanya kebutuhan hutan kota.

Hasil penelitian ini diharapkan dapat dijadikan sebagai dasar didalam menentukan pilihan jenis tanaman berdaya rosot tinggi untuk ditanam di Kota Bogor sehingga dapat berfungsi dalam menekan laju pertambahan gas CO_2 sekaligus meningkatkan kualitas lingkungan lainnya di Kota Bogor seperti kandungan air tanah, kandungan oksigen, habitat burung.

METODE PENELITIAN

Penelitian dilakukan pada Maret 2006 sampai Juni 2007. Pengukuran daya rosot gas CO_2 oleh pohon hutan kota dilakukan di Kebun Raya Bogor dan Hutan Penelitian Dramaga, masing-masing sebanyak 25 dan 21 jenis

Pemilihan jenis tanaman selain berdasarkan tanaman. penggunaannya yang telah banyak ditanam di Kota Bogor, juga letak pohonnya tidak terlalu berjauhan serta daun dan rantingnya masih dapat dijangkau oleh galah. Jenis eksotik tidak diukur kemampuan daya rosotnya, selain karena sangat tinggi, juga tidak banyak ditanam di Kota Bogor. Metode yang dipergunakan untuk menetapkan nilai kemampuan tanaman dalam menyerap gas CO2 dilakukan dengan metode pengukuran karbohidrat pada daun dan ranting pada pukul 05.00 dan 10.00 pagi. Daun contoh difiksasi dengan alkohol 70% dengan cara sampel daun dan alkohol dimasukkan ke dalam kantong plastik lalu dikocokkocok selama 15 menit. Setelah itu dijemur di panas matahari dan dioven dengan suhu 70-80 °C selama 3 hari sampai mencapai kering mutlak. Semua daun lalu dicacah dan digiling sampai menjadi serbuk halus. Kadar karbohidrat dari serbuk daun lalu diukur dengan menggunakan spektrofotometer dengan panjang gelombang 500 µm. Selisih kandungan karbohidrat dibagi dengan 4 (lama waktu fotosintesis) merupakan nilai laju fotosintesis per jam. Untuk menghitung lajunya dalam setahun dikalikan dengan 365 (hari) x 12 (jam dalam sehari) x 0,43 (rerata lama penyinaran per hari di Kota Bogor).

HASIL DAN PEMBAHASAN

Penggunaan BBMG di kota Bogor yang datanya diperoleh dari Pertamina Unit III Jakarta dan Bapeda Kota Bogor dapat dilihat pada Tabel 1.

Tabel 1. Penggunaan bahan bakar minyak dan gas Tahun 2003 - 2004

Tahun	Bensin (kl)	Solar (kl)	Minyak Tanah (kl)	Minyak Diesel (kl)	LPG (ton)	Gas *) (m³)
2003	107.568	29.175	69.540	5.052	2.075	222.068
2004	114.152	26.257	69.530	5.264	6.421	238.545
Kons/jiwa/th	134,19	33,55	84,17	6,24	5,14	0,28

Sumber: PT Pertamina Unit III, Jakarta.

Mengingat penggunaan dan emisi gas negara kurang dari 1%, maka untuk selanjutnya gas negara tidak dimasukkan dalam sistem. Dari data pada Tabel 1

diprediksikan jumlah bahan bakar minyak dan gas yang akan digunakan di kota Bogor di masa yang akan datang seperti terlihat pada Tabel 2.

^{*)} Bapeda Kota Bogor, 2005.

Tabel 2.	Prediksi	penggunaan	bahan	bakar	minvak	c dan	gas di	Kota Bogor
I doct 2.	1 I Cullion	ponissunani	Ountin	Ountui	mining wi	Luuii	Sub ui	IXOM DOSOI

Tahun	Bensin (kl)	Solar (kl)	Minyak Tanah (kl)	Minyak Diesel (kl)	LPG (ton)
2015	123.535	30.886	77.487	5.745	4.732
2025	132.578	33.147	83.159	6.165	5.078
2035	141.134	35.286	88.525	6.563	5.406
2045	148.318	37.082	93.031	6.897	5.681
2055	153.592	38.401	96.340	7.142	5.883
2065	156.757	39.192	98.325	7.289	6.004
2075	157.910	39.481	99.049	7.343	6.049
2085	157.371	39.346	98.710	7.318	6.028
2095	155.597	38.902	97.598	7.235	5.960

Dari tabel di atas dapat dinyatakan bahwa penggunaan bahan bakar bensin mendominasi penggunaan bahan bakar lainnya. Dari Tabel 2 kemudian dihitung dan diprediksi jumlah emisi gas ${\rm CO_2}$ di Kota Bogor tahun 2015-2095 seperti terlihat pada Tabel 3.

Tabel 3. Jumlah Emisi Gas CO₂ di Kota Bogor tahun 2015 - 2095

Tahun	Emisi CO ₂ (kg)
2015	648.468.972
2025	716.098.714
2035	761.875.033
2045	792.859.497
2055	813.831.848
2065	828.027.333
2075	837.635.784
2085	844.139.424
2095	848.541.521

Dari Tabel di atas dapat dikemukakan bahwa emisi gas CO_2 terus meningkat dari tahun ke tahun. Hal ini akan mengakibatkan konsentrasi ambien gas ini dari tahun ke tahun akan terus meningkat. Dengan adanya kekhawatiran bahwa gas CO_2 yang terus meningkat akan mengakibatkan pemanasan global dan kerugian lainnya, maka laju pertambahan gas ini perlu dikendalikan. Salah satu upaya yang dapat dilakukan adalah dengan penambahan luasan hutan kota. Agar kebutuhan luasan dapat ditekan maka jenis tanaman yang ditanam harus dengan jenis tanaman yang berdaya rosot sangat tinggi.

Hasil penelitian yang dilakukan untuk mengukur daya rosot gas CO₂ pada areal hutan kota yakni di Kebun Raya Bogor dan Hutan Penelitian Dramaga secara keseluruhan dapat dilihat pada Tabel 4.

Tabel 4. Daya rosot gas CO₂ dan klasifikasi daya rosot tanaman di Kebun Raya Bogor dan di Hutan Penelitian Dramaga

No	Nama Jenis	Rosot CO ₂ (kg pohon ⁻¹ tahun ⁻¹)	Klasifikasi Daya Rosot
1.	Coompasia excelsa 1)	0,20	SR
2.	Hopea mengarawan ²⁾	0,42	SR
3.	Tamarindus indica ¹⁾	1,49	SR
4.	Nephelium lappaceum ¹⁾	2,19	SR
5.	Hopea odorata ²⁾	4,23	SR
6.	Erythrina cristagalli ¹⁾	4,55	SR
7.	Maniltoa grandiflora ¹⁾	8,26	SR
8.	Pithecelobium dulce ¹⁾	8,48	SR
9.	Pterocarpus indicus ¹⁾	11,12	Rd
10.	Pachira affinis ²⁾	12,63	Rd
11.	Acacia mangium ²⁾	15,19	Rd
12.	Sapium indicum ²⁾	16,50	Rd
13.	Intsia bijuga ¹⁾	19,25	Rd
14.	Khaya anthotheca ¹⁾	21,90	Rd
15.	Dipterocarpus retusa ²⁾	24,24	Rd
16.	Caesalpinia pulcherrima ¹⁾	30,95	Rd
17.	Carapa guinensis ²⁾	34,15	Rd
18.	Mimusops elengi ¹⁾	34,29	Rd
19.	Pterygota alata ²⁾	36,19	Rd
20.	Manilkara kauki ¹⁾	41,78	Rd
21.	Delonix regia ¹⁾	42,20	Rd
22.	Acacia	48,68	Rd

No	Nama Jenis	Rosot CO ₂ (kg pohon ⁻¹ tahun ⁻¹)	Klasifikasi Daya Rosot
	auriculiformis ²⁾		
23.	Schima wallichii ²⁾	63,31	Sd
24.	Anona muricata ¹⁾	75,29	Sd
25.	Khaya senegalensis ²⁾	83,86	Sd
26.	Swietenia macrophylla ¹⁾	114,03	Sd
27.	Cassia grandis ¹⁾	116,25	Sd
28.	Artocarpus heterophyllus ¹⁾	126,51	Sd
29.	Tectona grandis ²⁾	135,27	Sd
30.	Lagerstroemia speciosa ²⁾	160,14	Tg
31.	Adenanthera pavoniana ¹⁾	221,18	Tg
32.	Cinnamomum parthenoxylon ²⁾	227,21	Tg
33.	Swietenia mahagoni ²⁾	295,73	Tg
34.	Pometia pinnata ¹⁾	329,76	Tg
35.	Felicium decipiens ¹⁾	404,83	Tg
36.	Beilschmiedia roxburghiana ²⁾	442,63	Tg
37.	Ficus benjamina ¹⁾	535,90	ST
38.	Trachylobium verrucossum ²⁾	562,09	ST
39.	Dysoxylum excelsum ¹⁾	720,49	ST
40.	Canangium odoratum ¹⁾	756,59	ST
41.	Strombosia zeylanica ²⁾	1603,20	ET
42.	Cassia sp. 1)	5.295,47	ET
43.	Samanea saman ¹⁾	28.488,39	ET

Keterangan:

Klasifikasi (satuan dalam kg pohon⁻¹ tahun ⁻¹)

 SR (Sangat Rendah)
 < 9,99</td>

 Tg (Tinggi)
 150-500

 Rd (Rendah)
 10 - 49,9

 ST (Sangat Tinggi)
 500-1000

 Sd (Sedang)
 150 - 500

 ET (Ekstra Tinggi)
 >1000

Dari hasil penelitian ini dapat dinyatakan bahwa klasifikasi daya rosot gas CO₂ oleh berbagai jenis pohon yang tumbuh di kawasan hutan kota di Kebun Raya Bogor dan Hutan Penelitian Dramaga adalah : (1) Daya rosot sangat rendah dengan rerata 3,90 kg/pohon/tahun, (2) Rendah 28,00 kg/pohon/tahun, (3) Sedang 102,07 kg/pohon/tahun, (4) Tinggi 305,91 kg/pohon/tahun dan (5) Sangat tinggi sebesar 643,77 kg/pohon/tahun. Jenis tanaman yang berdaya rosot sangat tinggi adalah F. benjamina, T. verrucossum, D. excelsum, C. odoratum. Keempat jenis tanaman ini dapat diusulkan ke Pemerintah Daerah Kota Bogor untuk ditanam dalam program pengembangan hutan kota di masa yang akan datang.

KESIMPULAN

Jumlah emisi gas CO₂ pada tahun 2015 diperkirakan mencapai 452.486 ton dan pada tahun 2095 akan meningkat menjadi 584.142 ton. Untuk mengatasi terus meningkatnya konsentrasi gas CO₂, maka perlu dibangun hutan kota dengan jenis berdaya rosot yang sangat tinggi, agar luasan hutan kota yang diperlukan dapat ditekan serendah mungkin.

Jenis tanaman yang memiliki daya rosot yang sangat tinggi dengan rerata sebesar 643,77 kg gas CO₂/pohon/ tahun adalah: F. benjamina, T. verrucossum, D. excelsum, C. odoratum, jenis berdaya rosot tinggi (rerata 305,91 kg gas CO₂/pohon/tahun) adalah: L. speciosa, A. pavoniana, C. parthenoxylon, S. mahagoni, P. pinnata, F. decipiens, B. roxburghiana, jenis berdaya rosot sedang dengan rerata sebesar 102,07 kg gas CO₂/pohon/tahun adalah: S. wallichii, A. muricata, K. senegalensis, S. macrophylla, C. grandis, A. heterophyllus, T. grandis, jenis berdaya rosot rendah dengan rerata sebesar 28,00 kg CO₂/pohon/tahun adalah: *P*. indicus, P. affinis, A. mangium, S. indicum, I. bijuga, K. anthotheca, D. retusa, C. pulcherrima, C. guinensis dan jenis berdaya rosot sangat rendah dengan rerata sebesar 3,90 kg gas CO₂/pohon/tahun adalah: C. excelsa, H. mengarawan, T. indica, N. lappaceum, H. odorata, E. cristagalli, M. grandiflora, P. dulce.

DAFTAR PUSTAKA

Anonymous. 2005a. Alterations in the respiratory system. Unit Five Chapter 19: Structure and Functions of Respiratory System. Http://www/msnencarta/respiratory system.mh1. [September 2005].

_______, 2005b. Global warming. Http://www.ace.mmu.ac.uk/Resources/Fact_Sheets/Key_Stage_3/Global_Warming/08.html. Global Warming. [September 2005].

¹⁾ Tanaman di Kebun Raya Bogor

²⁾ Tanaman di Hutan Penelitian Dramaga

- Bapeda Kota Bogor. 2005. Data pokok pembangunan Kota Bogor.
- Dahlan, E.N., 1992. Hutan kota untuk pengelolaan dan peningkatan kualitas lingkungan hidup. IPB-APHI.
- ______, 2004. Membangun kota kebun bernuansa hutan kota. Sekolah Pascasarjana IPB IPB Press.
- Keeling, C.D., and T.P. Whorf, 2005. Atmospheric carbon dioxide Record from Mauna Loa. Http://www.cdiac.esd.ornl.gov/ftp/maunaloa-co2/maunaloa.co2. [Januari, 2005).
- PT Pertamina Unit III. 2004. Lampiran penggunaan bahan bakar minyak dan gas Kota Bogor Tahun 2003-2004.