Potensi Material Sampah Combustible pada Zona Pasif TPA Jatibarang Semarang sebagai Bahan Baku RDF (Refuse Derived Fuel)

Irma Natasya Hutabarat¹, Ika Bagus Priyambada¹, Ganjar Samudro², Baskoro Lokahita², Syafrudin¹, Irawan Wisnu Wardhana¹, Mochtar Hadiwidodo¹

¹Departemen Teknik Lingkungan, Fakultas Teknik, Universitas Diponegoro Semarang
²School Of Environment And Society, Tokyo Institute Of Technology, Japan

E-mail: irmanatasya1221@gmail.com

Abstrak--Peningkatan jumlah timbunan sampah menyebabkan meningkatnya kebutuhan lahan pada TPA Jatibarang. Untuk menghindari terjadinya kekurangan lahan perlu dilakukan penanganan pada sampah yakni dengan mengubah sampah menjadi sumber energi seperti bahan baku RDF (Refused Derived Fuel). RDF merupakan salah satu teknik penanganan sampah dengan mengubah sampah menjadi sesuatu yang bermanfaat yaitu bahan bakar. Sampah tersebut dapat dimanfaatkan menjadi bahan baku RDF dengan cara menganalisis nilai klor yang dihasilkan. Untuk menganalisis nilai klor pada sampah combustible zona pasif TPA Jatibarang dapat dilakukan dengan cara pengujian sampel sebanyak 100 gram dengan alat bom calorimeter. Sampel tersebut diambil pada kedalaman 0-3 m dan metode random sampling. Kemudian akan didapat nilai klor tinggi yang dihasilkan sampel tersebut. Nilai Klor Tinggi yang dihasilkan sampel tersebut sebesar 5,25 kcal/ton pada kedalaman 0-1 m, 5,76 kcal/ton pada kedalaman 1-2 m dan 6,31 kcal/ton pada kedalaman 2-3 m. Nilai klor tinggi yang dihasilkan sampah combustible tersebut menunjukkan bahwa semakin rendah kedalaman sampah maka akan semakin tinggi nilai klor yang dihasilkan dan sampah tersebut berpotensi sebagai bahan baku RDF.

Kata kunci: RDF (Refused Derived Fuel), material sampah combustible, bom calorimeter, Nilai Klor Tinggi

Abstract--The increase of waste dump also causes the need of landfill in Jatibarang Landfill. In order to avoid land deficiency, the waste dump needs to be handled by converting waste into energy sources such as RDF (Refused Derived Fuel). RDF is one of waste handling technique by converting waste into something useful called fuel. The waste could be utilized into RDF raw material by analyzing the result of calorific value. Analyzing the calorific value on material combustible waste in passive zone Jatibarang landfill, could be done by sample examination as much as 100 gram with bomb calorimeter. The sample was taken in 0-3 m depth with random sampling method. The high calorific value that generated by the method will be obtained. The result of high calorific value from that sample were 5.25 kcal/ton in 0-1 m depth, 5.76 kcal/ton in 1-2 m depth and 6.31 kcal/ton in 2-3 m depth. The high calorific value that generated by combustible waste indicated that the lower of waste depth, the higher calorific value that would be generated and the waste had a potential as a RDF raw material.

Keywords: RDF (Refused Derived Fuel), combustible waste material, bomb calorimeter, High Heating Value

1. PENDAHULUAN

Menurut Undang – Undang RI Nomor 18 Tahun 2008 Tentang Pengolahan Sampah, Tempat Pemrosesan Akhir (TPA) adalah tempat untuk memproses dan mengembalikan sampah ke media lingkungan secara aman bagi manusia dan. TPA Jatibarang terletak di Kota Semarang yang merupakan Ibukota Propinsi Jawa Tengah. TPA Jatibarang terdiri atas tiga zona yaitu zona aktif 1, zona aktif 2 dan zona pasif. Zona aktif dan zona pasif TPA Jatibarang memiliki perbedaan pada umur landfill dan komposisi sampah pada landfill.

Peningkatan timbunan sampah akan menyebabkan meningkatnya kebutuhan lahan pada TPA Jatibarang untuk menampung sampah tersebut. Pada keadaan ini perlu dilakukan upaya pengurangan timbunan sampah sehingga kebutuhan lahan TPA Jatibarang tidak meningkat. Pemanfaatan sampah sebagai bahan bakar selain dapat berfungsi untuk mengurangi jumlah timbulan
sampah di TPA dapat juga sebagai alternatif dalam pengolahan sampah yang meningkatkan nilai ekonomis sampah.

RDF (Refuse Derived Fuel) adalah sampah yang mudah terbakar dan terpisahkan dari bagian yang sulit terbakar melalui proses pencacahan, pengayakan dan klasifikasi udara [9]. RDF (Refuse Derived Fuel) merupakan salah satu teknik penanganan sampah dengan mengubah sampah menjadi sesuatu yang bermanfaat yaitu bahan bakar. RDF dihasilkan dari pemisahan fraksi yang mudah terbakar (combustible fraction) dan fraksi sampah yang sulit dibakar (non combustible fraction) dari sampah secara mekanik [12]. Sampah yang ada pada zona pasif TPA Jatibarang dapat dimanfaatkan menjadi bahan bakar dengan cara menganalisis nilai kalori yang dihasilkan dari material sampah combustible yang berada pada TPA Jatibarang. Terdapat 2 terminologi nilai kalori yang biasa digunakan yaitu Nilai Kalor Tinggi dan Nilai Kalor Rendah. Nilai Kalor Tinggi, dimana keberadaan air dan hidrogen setelah pembakaran terjadi adalah pada keadaan terkonsentrasi pada produk. Sementara Nilai Kalor Rendah adalah nilai kalor dimana diasumsikan air dan hidrogen berada dalam fasaa uap [4]. Untuk menganalisis nilai kalori yang terdapat pada material sampah combustible pada zona pasif dapat dilakukan dengan menggunakan analisis proksimat, uji analisis ulitmat, dan uji dengan alat bom kalorimeter. Potensi energi sampah di TPA Jatibarang perlu untuk ditinjau sehingga dapat digunakan sebagai salah satu strategi pengolahan sampah saat ini. Kajian ini bertujuan untuk mengetahui nilai kalori yang terkandung pada material sampah combustible pada setiap kedalaman di Zona Pasif TPA Jatibarang dan mengetahui potensi material sampah combustible sebagai bahan baku RDF (Refuse Derived Fuel).

2. METODOLOGI PENELITIAN

2.1 Tahap Persiapan

2.2 Tahap Pelaksanaan
Pengambilan sampel dilakukan di Zona Pasif TPA Jatibarang. Tahap pelaksanaan penelitian ialah pengambilan sampel. Sampel yang diambil merupakan sampah yang berada pada Zona Pasif TPA Jatibarang dengan kedalaman 0-3 meter. Pengambilan sampel dilakukan dengan metode random sampling. Dengan cara random, bias

pemilihan dapat diperkecil, secekin mungkin. Ini merupakan salah satu usaha untuk mendapatkan sampel yang representatif [13]. Metode random sampling ialah metode pengambilan sampel yang dilakukan secara acak (random) karena setiap anggota populasi berkesempatan sama untuk menjadi sampel [3]. Sampel yang diambil tersebut di 3 titik pada Zona Pasif TPA Jatibarang, Semarang. Pengambilan sampel pada 2 titik dilakukan dengan menggunakan alat berat excavator yang memiliki berat kurang lebih 100 kg pada 3 kedalaman yaitu kedalaman 0 – 1 m, 1 – 2 m, dan 2 – 3 m. Sementara pada 1 titik lainnya dilakukan di pinggir zona pada 1 kedalaman saja yaitu 0 – 1 m dengan menggunakan sekop sebanyak kurang lebih 10 sekopan. Kordinat ketiga titik tersebut kemudian ditandai dengan menggunakan aplikasi GPS yang ada pada smartphone. Berikut merupakan kordinat ketiga titik pengambilan sampel yang ditandai dengan menggunakan GPS:

- Titik 1 : -7°12’9.10”S 110°21’40.04”T
- Titik 2 : -7°13’0.45”S 110°21’40.34”T
- Titik 3 : -7°12’28.97”S 110°21’38.88”T

Letak titik pengambilan sampel ditunjukkan seperti pada Gambar 2.1

Gambar 2.1 Letak titik pengambilan sampel
(Sumber: Google earth, 2017)

Pengambilan sampel dengan alat berat excavator dioperasikan oleh pihak TPA Jatibarang. Awalnya titik pengambilan sampel ditentukan terlebih dahulu, lalu kordinat titik tersebut akan dicatat sesuai dengan GPS. Lalu sampel akan diambil dengan alat berat excavator dengan berat kurang lebih 100 kg berdasarkan kedalammannya masing – masing. Lalu sampel akan diletekkan diatas terpal secara terpisah dengan sampel dari kedalaman yang lainnya. Sampah tersebut dicampur kemudian dibagi menjadi empat (metode kuadrat). Kemudian kuadrat I, II dan III dikembalikan ke lahan urug.

Pada kuadrat IV sampel diambil ±500 gram untuk organik dan ±500 gram untuk plastik. Sampah dikeringkan menggunakan oven di
Laboratorium Teknik Lingkungan Undip Semarang pada suhu 105° C, sampah tersebut kemudian dicacah dan diambil sebanyak 100 gram untuk uji bom kalorimeter. Pengujian nilai kalor dengan alat bom kalorimeter dilakukan di Laboratorium Limbah Padat dan B3 ITS Surabaya.

2.3 Tahap Analisis Data

Data yang didapatkan dari pengujian di laboratorium, selanjutnya akan dianalisis menggunakan Program Microsoft Office Word, sehingga diperoleh analisis deskriptif, grafik, dan tabel yang menggambarkan keseluruhan hasil perlakuan selama penelitian. Setelah diketahui nilai kalor dengan menggunakan alat bom kalorimeter, kemudian dilakukan Koreksi terhadap komponen yang akan mengurangi nilai kalor yang sebenarnya, yaitu perhitungan Nilai Kalor Rendah. Perhitungan Nilai Kalor Rendah dapat dilakukan dengan memasukkan faktor kadar air, dengan mengabaikan keberadaan air hidrogen sebagai sumber air yang lain, yaitu melalui persamaan yang telah digunakan oleh [15]:

\[NKR = NKT (1 - W) - 548,85 W \]
(2.1)

<table>
<thead>
<tr>
<th>No. Sampel</th>
<th>Nilai Kalor Tinggi (kcal/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kedalam. 0 – 1 m</td>
<td>5,25</td>
</tr>
<tr>
<td>2. Kedalam. 1 – 2 m</td>
<td>5,76</td>
</tr>
<tr>
<td>3. Kedalam. 2 – 3 m</td>
<td>6,31</td>
</tr>
</tbody>
</table>

Sumber: Laboratorium Limbah Padat dan B3 ITS Surabaya, 2017

\[NKR = NKT (1 - W) - 584,85 W \]
(3.1)

Standar pengujian untuk nilai kalori Bom kalorimeter adalah ASTM D 5865-7a.

3. HASIL DAN PEMBAHASAN

3.1 Pengujian Nilai Kalor Sampah

<table>
<thead>
<tr>
<th>No. Sampel</th>
<th>W = 30%</th>
<th>W = 45%</th>
<th>W = 60%</th>
</tr>
</thead>
</table>
| 1. Kedalam
0 – 1 m | 3,49 | 2,62 | 1,74 |
| 2. Kedalam
1 – 2 m | 3,85 | 2,90 | 1,95 |
| 3. Kedalam
2 – 3 m | 4,24 | 3,21 | 2,17 |

Gambar 3.1 Diagram perbandingan nilai kalor tinggi dan nilai kalor rendah sampel

3.2 Analisis Potensi Sampah Sebagai Bahan Baku RDF

RDF dikenal sebagai bahan bakar alternatif yang dihasilkan dari sampah mudah terbakar, seperti sampah plastik, karet dan kutil, tekstil, kayu, kertas, resin sintesis, lumpur pengolahan air limbah dan lumpur olahan [2]. Pengolahan sampah perkotaan dengan energi panas meliputi insinerasi, pirolisis, dan gasifikasi [7].

Insinerasi dilakukan dengan menggunakan sebuah sistem recovery energi [8]. Energi yang ditimbulkan dihubungkan bersamaan energi kalor/panas sampah yang lebih rendah (Lower Heating Value\(LHV\)) yang diasumsikan untuk efisiensi energi dan penggunaan energi internal adalah 18% dan 15% dari energi listrik yang dihasilkan. Teknologi RDF telah diterapkan oleh bangsa Eropa, Amerika dan begitu juga Jepang [6].

Kalor minimal untuk menjadikan suatu bahan menjadi bahan bakar atau sebagai sumber panas, maka bahan tersebut harus memiliki nilai kalor minimal 2 – 2,5 kkal/ton, sehingga cuplikan sampah tersebut dapat memenuhi nilai kalor minimal untuk menjadikan suatu bahan menjadi bahan bakar atau sebagai sumber panas (Damanhuri, 2016). Dari data hasil pengujian nilai kalor sampel sampah combustible Zona Pasif TPA Jatibarang Semarang pada Tabel 3.1 menunjukkan bahwa sampel tersebut memiliki potensi untuk dijadikan sebagai bahan baku RDF karena telah melewati batas nilai kalor minimal untuk dijadikan bahan baku RDF. Tetapi tidak untuk Nilai Kalor Rendah pada nilai kadar air dengan 60% pada kedalaman 0 – 1 m dan 1 – 2 m tidak memenuhi nilai kalor minimal untuk dijadikan sebagai bahan baku RDF. Sedangkan sampel pada kedalaman 2 – 3 m memenuhi nilai kalor minimal untuk dijadikan sebagai bahan baku RDF. Untuk meningkatkan nilai kalor sampah tersebut dapat dilakukan dengan upaya pengeringan sehingga kandungan air yang terdapat pada sampel menjadi berkurang.

RDF berkualitas baik adalah RDF yang memiliki nilai kalor yang tinggi dan konsentrasi senyawa toxic yang rendah, dalam hal ini logam berat dan klorin. Aspek kualitas tersebut dipengaruhi oleh beberapa pihak, seperti; produsen RDF, pengguna RDF, dan peraturan terkait. Akibat dari perbedaan pendapat satu sama lain, kualitas RDF yang diminta berbeda satu sama lain [10].

4. KESIMPULAN

Dari penelitian ini dapat diambil beberapa kesimpulan antara lain:

b. Berdasarkan hasil pengujian Nilai Kalor Tinggi sampel sampah combustible Zona Pasif TPA Jatibarang Semarang menunjukkan bahwa nilai kalor tersebut berpotensi dijadikan sebagai bahan baku RDF.

DAFTAR PUSTAKA

ISSN 2549 - 2888

