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Abstract. This study focused on a model for predicting debris flow mean 

velocity. A total of 50 debris flow events were investigated in the Jiangjia gully. 

A modified radial basis function (MRBF) neural network was developed for 

predicting the debris flow mean velocity in the Jiangjia gully. A three-

dimensional total error surface was used for establishing the predicting model. A 

back propagation (BP) neural network and the modified Manning formula 

(MMF) were used as benchmarks. Finally, the sensitivity degrees of five 

variables that influence debris flow velocity were analyzed. The results show 

that the mean error and the relative mean error of the 10 testing samples were 
only 0.31 m/s and 5.92%, respectively. This proves that the MRBF method 

performed very well in predicting debris flow mean velocity. Gradient of 

channel and unstable layer thickness have a greater impact on debris flow mean 

velocity than the other three influencing variables. This proves that the proposed 

MRBF neural network is reliable in predicting debris flow mean velocity. 

Keywords: debris flow; disaster risk reduction; mean velocity; radial basis function; 

sensitive variables sequence.  

1  Introduction 

Debris flow is a common geological disaster in mountainous areas [1]. It is a 

type of sudden, ferocious and destructive natural disaster [2-6]. The mean 

velocity of debris flow is a significant parameter in disaster reduction work. 
Thus, the accuracy of predicting debris flow mean velocity is crucial for the 

design of debris flow reduction constructions. 

Nowadays, there is still no widely accepted formula for calculating debris flow 

mean velocity [7]. Formulas used for calculating debris flow velocity include 
the dilatant fluid model, the Manning-Strickler formula and the Chezy formula. 

Studies on a constitutive model of debris flow dynamics started in the 1970s [8-

11]. Calculation methods for velocity can be divided into two types based on 
the debris flow properties, i.e. viscous calculation formulas and turbulent 

calculation formulas. The most popular approach is the use of a dynamic model, 

such as the Bingham viscous fluid model, the dilatant fluid model, the 
generalized viscoplastic model, the Voellmy model, or the friction model. All 
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these models have been used to predict the velocity of debris flow and all work 

successfully [12-14]. However, debris flow is a complex and open system that 

is influenced by many variables. There is a complicated nonlinear relationship 

between debris flow intensity, probability and impact variables [15]. It is 
difficult to establish an accurate and widely applicable physical mechanism 

model. 

Artificial intelligence (AI) machine language could provide many excellent 
methods for debris flow velocity prediction. Artificial neural networks (ANNs) 

have a strong ability for nonlinear fitting and can realize arbitrary complex 

nonlinear mapping. ANN learning rules are simple and can be implemented 

easily. Meanwhile, ANNs have very strong robustness, memory ability, 
nonlinear mapping ability and self-learning ability. Recently, ANNs have been 

applied to debris flow evaluation, risk assessment and damage range prediction 

[16,17]. Nevertheless, there are only few applications of neural networks in 
debris flow velocity prediction.  

The radial basis function (RBF) neural network is an excellent feed-forward 

neural network. The RBF neural network can get close to any nonlinear 
function with arbitrary longitude. In this paper, a modified RBF method is 

proposed to establish a model to predict debris flow mean velocity. By 

comparing the modified RBF with the results calculated by a back propagation 

(BP) neural network, the modified Manning formula (MMF) and the standard 
RBF prediction model, it was shown that MRBF could achieve satisfying 

results. Meanwhile, an analysis of debris flow variable sensitivity degree and 

ranking is also given. 

2 Data Resources 

2.1 Study Area 

The Jiangjia gully is located in Yunnan Province, Southwest China (Figure 1). 

This area is covered with alpine forge landforms. The attitude in the eastern area 

is higher than in the western area. The maximum relative elevation of the 
eastern and western area is 2200 m. The basin’s area is 48.5 km

2
. Mountains in 

the area are steep and high. The eastern gully is narrow, while the western gully 

is wide. Debris flow can easily occur [18,19]. 

The strata in the study area are mainly shallow metamorphic rock. Sinian 
dolomite and Permian limestone appear, as well as a striped purple slate. The 

joints and folds are strongly developed, which can easily lead to the rock 

weathering. Abundant loose materials are distributed, which can be a material 
source for debris flow. In the Jiangjia gully, debris flows occur often, with the 
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characteristics of high frequency and large scale. It is known as a natural 

museum of debris flow [20]. 

 

Figure 1 Geographical position of Jiangjia Gully in China. 

2.2 Influencing Variables and Data 

The data were collected from Xu [21]. This study used 50 groups of measured 

debris flow velocities from the Jiangjia gully in 1974 as study samples. 40 

groups (80%) of measured data were randomly selected as training data, while 

the other 10 groups (20%) were used as testing data. Five debris flow velocity 
influencing variables were determined, i.e. x1 = flow depth (cm), x2 = gradient of 

channel (%), x3 = density of debris flow (t·m
-3

), x4 = grain size (cm) and x5 = 

unstable layer thickness (m). The specific data can be seen in Table 1. The flow 
depth data were acquired by measuring the mud depth of ancient debris flow in 

the field. The ratio between elevation difference and horizontal distance in the 

debris flow main channel is called the gradient of channel. The density of debris 
flow and grain size data were obtained by in situ sieving analysis and the 

laboratory method. When the head of the debris flow scours the mud bed, the 

scoured layer is called the unstable layer. The thickness of the unstable layer 

was measured in the field. 

3 Method 

3.1 Radial Basis Function Neural Network 

An artificial neural network (ANN) is created through interconnected artificial 

neurons. This artificial neural network is capable of learning and can be trained 

through a proper learning algorithm. There are many types of artificial neural 
networks, one of which is called the radial basis function (RBF) neural network. 

A radial basis function (RBF) neural network is a 3-layer feed-forward network 

with a structure similar to that of a multilayer forward network. The first layer is 
the input layer, which is composed of a signal source node. The second layer is 
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the hidden layer. The neuron number in the hidden unit is different when 

solving different problems. Radial basis functions are used as activation 

functions. The third layer is a linear output layer. The output layer in the higher 

dimension space can realize the linear weighted combination of the output. The 
structure of the RBF neural network is shown in Figure 2. The most commonly 

used basis function is the Gauss function in Eq. (1). For any input vector XR
n
:  
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i
R x e

 

  i = 1,2,…,p  (1) 

where Ri(x) is output of the ith hidden neuron, X is the n-dimension input 

vector, Ci is the center vector of the ith neuron, αi is the basis width vector, 

which can usually be determined experimentally. 

Table 1 Measured data of debris flow mean velocity and influencing variables 
in Jiangjia Gully in 1974. 

The RBF neural network learning process comprises unsupervised learning and 
supervised learning. The unsupervised learning stage employs K-means 

No y x1 x2 x3 x4 x5 No. y x1 x2 x3 x4 x5 

1 8.9 175 6.3 2.08 0.80 0.80 26 6.9 250 5.5 2.22 0.90 1.06 
2 8.8 150 6.3 2.20 1.10 0.72 27 6.6 226 5.5 2.13 1.10 0.92 
3 7.4 200 6.3 2.21 1.70 0.97 28 6 120 5.5 2.20 0.80 0.51 
4 7.9 200 6.3 2.25 1.40 0.99 29 7.4 145 5.5 2.25 1.10 0.62 
5 10 95 6.3 2.16 0.60 0.45 30 5 65 5.5 2.24 1.10 0.28 
6 7.4 55 6.3 2.25 0.90 0.27 31 6.9 122 5.5 2.21 1.00 0.52 
7 7.6 11 6.3 2.07 0.70 0.50 32 7.5 168 5.5 2.28 1.60 0.73 

8 7.6 100 6.3 2.19 0.90 0.48 33 9.2 372 6.6 2.21 1.20 1.88 
9 7.3 90 6.3 2.21 1.00 0.44 34 5.8 107 5.5 2.29 1.20 0.47 
10 6.6 70 6.3 2.19 1.20 0.34 35 3.6 52 5.8 1.70 0.10 0.18 
11 9.6 275 6.6 2.21 1.60 1.40 36 5.8 103 5.5 2.21 0.80 0.44 
12 7.5 170 6.6 2.19 1.10 0.85 37 5.6 70 5.5 1.92 0.30 0.26 
13 8.4 210 6.6 2.20 0.80 1.06 38 4.1 70 5.8 1.80 0.20 0.25 
14 8.1 160 6.6 2.22 1.20 0.82 39 3.5 50 5.8 1.76 0.20 0.18 
15 8.2 130 6.6 2.20 0.70 0.66 40 3.6 58 5.8 1.69 0.20 0.20 

16 9.6 220 6.6 2.29 1.50 1.16 41 4.8 93 5.8 1.92 0.30 0.36 
17 9.4 210 6.6 2.21 1.20 1.07 42 4.9 60 5.5 1.99 0.60 0.23 
18 9.3 210 6.3 2.29 1.00 1.05 43 4.7 60 5.5 1.97 0.50 0.23 
19 8.5 200 6.3 2.30 1.50 1.01 44 7.7 161 5.5 2.25 1.00 0.69 
20 4 40 6.3 2.04 0.30 0.18 45 7.7 177 5.5 2.24 1.10 0.76 
21 7.8 140 6.3 1.95 0.60 0.60 46 3.9 60 5.5 1.83 0.10 0.21 
22 3.7 40 6.3 2.02 0.10 0.18 47 3.9 55 5.8 2.07 0.80 0.23 
23 3.8 40 6.3 1.85 0.10 0.16 48 6.4 109 5.5 2.25 1.10 0.47 
24 9.3 210 6.3 2.21 1.10 1.02 49 3.7 55 5.8 1.80 0.10 0.20 

25 6.9 202 5.5 2.27 1.70 0.88 50 7.6 125 6.3 2.10 0.60 0.57 
Note: y is the field investigated velocity of debris flow; x1 is flow depth (cm); x2 is gradient of channel (%); x3 

is density of debris flow (t·m
-3

); x4 is grain size (cm); x5 is unstable layer thickness (m) 
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clustering to cluster the training samples. After finding the cluster center Ci and 

αi, the supervised learning is conducted. When Ci and αi are determined, the 

RBF neural network becomes a linear function from input to output. The steps 

are as follows: 

  

Figure 2 Network structure of RBF. 

Step 1: Initialize the weights randomly 

Step 2: Calculate output vector Y by the following Eq. (2): 
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p
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  (2) 

where Wi is the weight of the ith hidden neuron to the output node. 

Step 3: Calculate error εi for each neuron in the output by the following Eq. 

(3): 

 'i i iy y    i = 1,2,…,p (3) 

where 'iy  is the desired output of the ith neuron in the output layer. 

Step 4: Based on the least squares method, determine the weights between the 
hidden neurons and the output nodes in Eq. (4). 
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where cmax is the maximum distance between the selected centers.  

Step 5: Update the weights until the error meets the requirement as shown in 

Eq. (5): 

 '
ij ij i j

W W R   i = 1,2,…,m, j = 1,2,…,p (5) 

where W’ij is the updated weight and μ is the learning rate.  
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3.2 Establishment of Modified Radial Basis Function Neural 

Network Model 

References [22,23] suggest that through changing the hidden neuron number 

and the width of the basis function, the testing results using RBF are different. 

The MATLAB software was used to write a program to search for the optimal 

results. In fact, the number of hidden neurons used in the original RBF method 
was not valid. It is not easy to find the optimal solution using the original RBF. 

Trial and error was used to find the optimal solution and determine the hidden 

neuron number. The MATLAB toolbox provides a RBF neural network 
constructor function, newrb (P, T, error-goal, spread). P and T represent the 

input and output vectors of the training samples, respectively. Error-goal is the 

target error. Spread is the width of the basis function. 

In the training stage, the program can adjust the parameters and the structure. It 
also adaptively increases the hidden layer neurons to reach the target error. This 

study adopted the function newrb to test the generalization ability of the RBF 

neural network and set the error-goal to 10
-4

. If the spread is set to 0.8, the total 
error is the minimum and the adaptive hidden neuron number is 38. The results 

change with the number of neurons. Thus, the MATLAB constructor function 

newrb (P, T, error-goal, spread, MN) was used, in which MN is the number of 
neurons in the hidden layer. The neuron number and spread have an impact on 

RBF neural network fitting and generalization. If the fitting degree is too low, 

there will be no inherent laws. If the fitting degree is too high, the generalization 

ability for the training samples will become weak.  

Thus, it is key to choose the best available neuron number MN and spread 

value. Changing both these parameter values is a general way to get the optimal 

value. However, it is not easy to obtain the optimal value because RBF has a 
great blindness. When determining the neuron number and the spread value, it 

is necessary to test a large number of parameters. In this study, a three-

dimensional total error surface was established. The x axis represents the 
neurons number, the y axis represents the spread value and z represents the total 

error of the ten testing data. The steps of generating the total error surface are as 

follows:  

Step 1: Initialize the neuron number MN as 1, the step is 1; 
Step 2: Initialize the width of the basis function spread as 0.1, the step is 0.1; 

Step 3: Calculate the total errors of ten testing data using RBF; 

Step 4: When the spread value is 20, set MN as 2, repeat Step 2 and Step 3 
until MN is 50; 

Step 5: Establish a three-dimensional surface with the produced 200×50 

points. 
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The three-dimensional surface is shown in Figure 3. It determines the neuron 

number in the hidden layer and the width of the basis function. 

Yu, et al. [24] selected a 3-layer BP neural network and used S function f(x) = 

1/(1+e
-x

) as the transfer function. They established a BP prediction model with 
MATLAB and used the training samples’ mean error as the judgment standard. 

Finally, a 5:9:1 network was established. In this study, the BP method was 

chosen as the benchmark.  

 

Figure 3 Impact of spread and neuron number in the hidden layer on the 

prediction total error. 

Table 2 Comparison of predicted mean velocities of debris flow. 

Sample 

No. 

Real 

value 

(m/s) 

BP MMF RBF MRBF 

Pred. 

value 

(m/s) 

Fractional 

error 

(%) 

Pred. 

value 

(m/s) 

Fractional 

error 

(%) 

Pred. 

value 

(m/s) 

Fractio

nal 

error 

(%) 

Pred. 

value 

(m/s) 

Fract-

ional 

error 

(%) 

41 4.8 9.15 90.63 6.42 33.85 6.12 27.58 5.55 15.66 
42 4.9 6.03 23.04 4.34 11.48 5.29 7.96 4.82 -1.61 
43 4.7 6.05 28.73 4.34 7.71 5.28 12.25 4.70 0 
44 7.7 7.56 -1.83 8.38 8.78 7.90 2.57 7.05 -8.47 
45 7.7 7.58 -1.56 8.92 15.87 8.14 5.65 7.19 -6.67 
46 3.9 3.84 -1.53 4.34 11.22 5.03 29.06 3.60 -7.72 
47 3.9 7.97 104.36 4.37 11.92 4.89 25.50 4.49 15.23 
48 6.4 6.01 -6.09 6.95 8.67 6.17 -3.66 6.44 0.64 

49 3.7 3.62 -2.22 4.37 17.97 3.84 3.74 3.75 1.35 
50 7.6 8.85 16.47 5.83 23.35 9.93 30.72 7.73 1.72 

Mean error (%) 

Maximum error (%) 

27.65 27.65 15.08  14.87  5.92 

104.36 104.36 33.85  30.72  15.66 

Neurons number 

Total error (m/s) 

\ 

Spread 

\ 
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4 Results and Discussions 

4.1 BP, RBF and MRBF Results and Their Comparisons  

Figure 4(a) shows that both the BP and the RBF training results are acceptable, 

which means that they both have good learning ability. However, the total 

training error of RBF was only 0.46 m/s, while that of BP was 3.5 m/s. 

Therefore, the RBF generalization ability is better than that of BP. Figure 4(b) 
shows that the RBF testing curve floats around the measured value curve, the 

fitting result is good. In contrast, the BP testing curve fluctuates around the 

measured value, which has a poor ability in predicting debris flow mean 
velocity.      

 
(a) Training samples (b) Testing samples 

Figure 4 Results of training and testing mean velocities with BP and RBF. 

The modified Manning formula (MMF) is an empirical formula, which is 

applicable for the Jiangjia area. Xu, et al. [25] has already introduced this 

formula in detail. In the present study, this method was used to calculate the 
mean velocities of the testing data. In Table 2, it can be seen that the mean 

velocity errors predicted by BP, MMF and RBF were 1.29 m/s, 0.84 m/s and 

0.75 m/s, respectively. The BP maximum relative error was 104.36% and the 

mean error was 27.65%. The MMF results are given in Table 2, which shows 
that the maximum error and the mean error were 33.85% and 15.08%, 

respectively. The RBF maximum relative error was 30.72% and the mean 

relative error was 14.87%. The results of MMF and RBF are very close. 
However, in MMF, the debris flow velocity is only influenced by two variables: 

flow depth and gradient of channel. In this study, five variables were taken into 

consideration using the modified RBF. The mean velocity of debris flow does 
not depend only on grain size but also on several other variables at the same 

time. In a later study, more variables influencing the debris flow mean velocity 

need to be taken into consideration. Thus, the nonlinear method will become 

more important, which would be a good implement for calculating the mean 
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velocity of debris flow using an empirical formula. Therefore, the accuracy 

using the RBF is further better than using BP and an empirical formula. 

Yu, et al. [24] used the BP to train and predict the data. He found that the BP 

has poor prediction ability for testing data. In Table 1 of their paper, the 
maximum relative error is 101.22% and the average relative error is 27.64%. In 

our paper, the maximum relative error is 104.36% (using the same samples as 

Yu et al.), the average relative error is 27.65%, which is also the same as that of 
Yu et al.  

40 groups of data were used as training data, while Xu, et al. [25] used 45 

groups of data as training data. The remaining 10 groups were used as testing 

data. Xu, et al. selected five groups as testing data, which were different from 
the ones we selected. Meanwhile, we chose five variables, while Xu, et al. only 

chose four variables. Because we used different training data and different 

testing data, our relative average errors are different from those reported by Xu, 
et al.  

Generally, RBF is superior to BP. BP is limited partly by its slow training 

performance, so the RBF neural network was developed instead. Theoretically, 
Both RBF and BP can be close to any nonlinear function with arbitrary 

precision. However, their approximation properties are not the same. An RBF 

neural network is different from a BP neural network in that it uses sigmoid 

activation functions utilizing basis functions in the hidden layer, which are 
locally responsive to input stimulus [26]. These hidden nodes are usually 

implemented with a Gaussian kernel. Also, Poggio and Girosi [27] have proved 

that the RBF neural network provides a better approximation method for 
continuous functions than BP. Furthermore, Zhi [28] found that the function 

approximation capability of RBF is superior to that of BP. 

The hidden neuron number is generally determined by the complexity of the 

problem. Although more neurons make the network more accurate, this will 
lead to over-fitting. In the training phase, when the spread value was set to 0.8 

and the neuron number was set to 38, the mean error of the training samples was 

only 0.012 m/s. However, the mean error of the testing samples was 0.75m/s. 
This means that RBF was already over-fitting in the training stage. Hence, 38 

neurons in the hidden layer is too many. Meanwhile, in spite of the mean error 

of the testing samples using RBF being less than that of BP, the results were not 
satisfactory. The testing error should be controlled to be within 0.5 m/s. Thus, 

the neuron number in the hidden layer as well as the spread value needed to be 

reset. 
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It can be seen from Figure 3 that when the spread value is 6.8 and the neuron 

number is 14 (the location of the red oval), there appears a concave in the three-

dimensional surface. In this case, the total error is minimum. In Figure 3, two 

regular patterns can be found: a) if the neuron number is fixed, with an increase 
of the spread value, the total error slightly decreases first and then increases; b) 

if the spread value is fixed, with an increase of the neuron number, the total 

error first increases slowly. Until the neuron number reaches a specific value, 
the total error increases sharply and is convergent at the maximum value.  

In Figure 5, it can be seen that the MRBF testing values and the measured 

velocity values were almost the same. The total error was only 3.12 m/s. In the 

testing phase, the MRBF and RBF mean errors were 0.31 m/s and 0.75 m/s, 
respectively. The mean error using MRBF accounts for 41.33% of that using 

RBF. In Table 2, the maximum relative error of MRBF is only 15.66%. The 

mean error of the testing samples was only 5.92%. It can be seen that debris 
flow mean velocity is predicted better using MRBF than using RBF or BP.  

 
(a) Training samples (b) Testing samples 

Figure 5 Results of training and testing mean velocities with RBF and MRBF. 

Comparing RBF with MRBF (Figures 4(b) and 5), it was found that the greater 

the training error, the smaller the testing error. However, acting well in the 

training stage does not mean that it has better predicting ability. What should be 
focused on is the precision in the testing phase. BP ignores the essential 

regulation of the data, which leads to low prediction precision. If the neuron 

number is sufficient, the RBF neural network can approximate any nonlinear 

function with arbitrary precision and also has the ability of optimal 
generalization. In view of analysis of the mean error, the RBF neural network 

works well, but it is necessary to try different parameters values to get the 

optimal value. The higher the spread value, the smoother the fitting function. 
Meanwhile, using MRBF for predicting debris flow mean velocity is more 

accurate than using RBF or BP. The MRBF model can obtain better prediction 
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results. However, the proposed MRBF model is only applicable to the study 

area. The variables that influence the mean velocity of different debris flow 

gullies are very different. Thus, if people want to predict debris flow velocity in 

other gullies, it is necessary to establish specific models using this method.  

4.2 Analysis of Debris Flow Mean Velocity Sensitivity Variables  

In order to figure out which variable has greater impact on debris flow mean 

velocity, this study tried to calculate the sensitivity of different variables. 
Variable sensitivity was calculated by reducing the variables one by one and 

comparing the 4-variable minimum mean prediction error with the 5-variable 

minimum mean prediction error. The formula used for calculating the 
influencing variable sensitive degree was as follows: 

  /i iS E E                       (7) 

where Si is the sensitive index, Ei is the mean prediction error of the default 

sensitive variable, E is the mean prediction error of the 5 variables. If Si  � Sj, 

it means that factor j is more sensitive than factor i. The results are shown in 

Table 3. 

Table 3 Default variable test results of MRBF model for mean velocity of 

debris flow. 

Table 3 shows that all 4 variable sensitive degrees are larger than 1. This means 
that if any one of them is left out, it will have an impact on the prediction 

results. The sensitivity index of the gradient and the unstable layer thickness are 

2.26 and 1.97, respectively. This means that they have a greater influence on 
debris flow velocity than the other three variables. Thus, topography and 

sources have a larger contribution to the intensity and scale of debris flow. The 

importance ranking of the remaining three influencing variables is: grain size � 

depth � density. 

5 Conclusions 

This study selected five influencing variables, i.e. flow depth, gradient of 

channel, density of debris flow, grain size and unstable layer thickness. The 

 
5 

variables 
Depth Gradient Density 

Grain 

size 

Unstable layer 

thickness 

Mean error(m/s) 0.31 0.47 0.70 0.46 0.49 0.61 

S - 1.52 2.26 1.48 1.58 1.97 

Sensitivity 

ranking 

- 4 1 5 3 2 

Note: S is the sensitivity index 



572 Yang Wenmin 

  

RBF mean testing error obtained was 0.75 m/s, which is much better than using 

BP (mean testing error was 1.29 m/s). It was also slightly better compared to 

using the empirical modified Manning formula (mean testing error was 1.29 

m/s). The MRBF method was proposed, in which the parameters are changed to 
find the optimal value. Based on the minimum total error of the 10 testing 

samples, the relevant spread values and neuron numbers, a 3-dimensional 

surface was established.  

By using the MRBF method, the minimum mean prediction error was 0.31 m/s 

(smaller than 0.5 m/s), which is satisfactory. The mean and maximum relative 

errors were 5.92% and 15.66%, respectively. The testing debris flow mean 

velocities were very close to the measured values. Thus, the accuracy using the 
MRBF model is reliable and the model can be used as an adequate method to 

simulate the variation regularity of debris flow velocity. The MRBF model also 

has the ability to deal with nonlinear data, especially for the complex study of 
changing debris flow dynamics.  

It was also found that topography and sources are the main sensitive variables 

influencing debris flow velocity. The importance ranking of the five influencing 

variables is as follows: gradient � unstable layer thickness � grain size �

depth � density. For later studies it is suggested that researchers should focus 

more on the following variables: gradient of channel and thickness of unstable 

layer. 
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