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B
ACKGROUND: Aging per se is a risk factor for 

reduced cardiac function and heart diseases, even 

when adjusted for aging-associated cardiovascular 

risk factors. Accordingly, aging-related biochemical 

and cell-biological changes lead to pathophysiological 

conditions, especially reduced heart function and heart 

disease.

CONTENT: Telomere dysfunction induces a profound 

p53-dependent repression of the master regulators of 

mitochondrial biogenesis and function, peroxisome 

proliferator-activated receptor gamma coactivator (PGC)-

1a  and PGC-1b  in the heart, which leads to bioenergetic 

compromise due to impaired oxidative phosphorylation and 

ATP generation. This telomere-p53-PGC mitochondrial/

metabolic axis integrates many factors linked to heart 

aging including increased DNA damage, p53 activation, 

mitochondrial, and metabolic dysfunction and provides 

a molecular basis of how dysfunctional telomeres can 

compromise cardiomyocytes and stem cell compartments in 

the heart to precipitate cardiac aging. 

SUMMARY: The aging myocardium with telomere 

shortening and accumulation of senescent cells restricts the 

tissue regenerative ability, which contributes to systolic or 

diastolic heart failure. Moreover, patients with ion-channel 

defects might have genetic imbalance caused by oxidative 

stress-related accelerated telomere shortening, which may 

subsequently cause sudden cardiac death. Telomere length 

can serve as a marker for the biological status of previous 

cell divisions and DNA damage with inflammation and 
oxidative stress. It can be integrated into current risk 

prediction and stratification models for cardiovascular 
diseases and can be used in precise personalized treatments.
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Abstract

Introduction

Besides resulting in continues functional and structural 

decrease of multiple organs, aging is also inventing some 

profound effects on heart and the arterial system. Age-

related cardiac and vascular changes include impaired 

endothelial function and intimal proliferation (1), increased 

arterial stiffness (2-7), left ventricular (LV) diastolic 

dysfunction (8-10), LV pathological hypertrophy (11), 

diminished LV systolic reverse capacity (9,10), decreased 

heart rate variability (12-14), and a reduction in maximal 

heart rate (15). Furthermore, as a consequence of aging, the 

interaction between the heart and arterial system is altered 

to preserve ventricle-arterial homeostasis.(16)

 As people grow older, the prevalence of cardiovascular 

disease (CVD) is increasing dramatically. More than 80% of 

cases of coronary artery disease (CAD) and 75% of cases 

of congestive heart failure (CHF) are found in geriatric 

patients. The incidence of CVD cases, which includes CAD, 

CHF, and also stroke, are found in 4 out of 1000 person/

years in adult aged 45-54 years old. The number of this 

incidence raise to 10 cases out of 1000 person/years in adult 

aged 65-75 years old. And it just grow worse as someone 

aged ≥ 85 years old, as the number of incidence found to be 
are 75 cases out of 1000 person/years.(17) 
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 Aging is a big risk factor for CVDs, which are a major 

cause of chronic disability and the leading cause of death 

worldwide. The morbidity and mortality rates which are 

associated with CVDs remain high and cause a dreadful 

burden on the healthcare system, even after the advanced 

prevention and treatment of CVDs over the last two 

decades. As mentioned before, the prevalence of CVDs is 

increasing in the older population. This shows that CVDs 

in older population are a major healthcare challenge that 

should be focused on. A good understanding of the complex 

interaction between the aging process and CVDs is needed 

to develop a novel therapeutic target for older patients.(18)

 The aging heart is indicated by a faulty responsiveness 

to  stress and by a reduced efficiency of endogenous  
protective mechanisms (e.g., ischemic pre-conditioning 

and post-conditioning), resulting in increased vulnerability 

to injury.(19) As for now, the detail mechanism which is 

involved in the cardiac senescence still has not been fully 

known. But, the progressive accrual of macromolecular 

oxidative harm over the  lifetime  is invoked as a major  

factor.(20) Reactive oxygen species (ROS) are steadily 

created within cells by several enzymatic reactions, including 

those catalyzed by cyclooxygenases, nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase, and xanthine 

oxidase; however, the bulk of ROS production occurs as 

a byproduct of mitochondrial oxidative phosphorylation 

(OXPHOS).(21)

 Several epidemiologic surveys have reported an 

association of short telomere length (TL) with CVD (22-25) 

and cardiovascular mortality (26-27). The Cardiovascular 

Health Study showed that each shortened kb pair of TL 

correlated to a threefold increased risk of myocardial 

infarction (MI) and stroke.(22) It was reported in one of 

the latest systemic review and meta-analysis that there is 

a stable positive association of decreased leukocyte TL 

(LTL) with cardiometabolic outcomes, where one standard 

deviation (SD) decrease in LTL was significantly related to 
a 21%, 24%, and 37% increased risk of stroke, myocardial 

infaction (MI), and type 2 diabetes mellitus (T2DM), 

respectively (5). 

Telomeres and Telomerase

telomeric DNA is composed of noncoding double-stranded 

repeats of G-rich tandem DNA sequences (TTAGGG in 

vertebrates) that are extended several thousand base pairs 

(10 to 15 kb in humans and 25 to 40 kb in mice) and end in a 

150 to 300 nucleotide 3  single-stranded overhang (G-strand 

overhang) (Figure 1).(28,29,30) Several specific proteins 
are related to telomeric DNA, some of those are telomerase 

and the telomeric repeat binding factors (TRF)1 and TRF2 

which directly bind to the TTAGGG repeat and interact with 

other factors composing large protein complexes regulating 

TL and structure.(31)

 TL is greatly variable among individuals with the 

same age. Already at birth, noticeable differences in TL 

can be found. Several studies have suggested that TL 

can be predicted by the TL of the parents. Heritability of 

TL has been estimated to be as high as 82%.(32) Several 

environmental factors are also associated with telomere 

length and possible telomere attrition rate. Most important 

are oxidative stress (33) and factors related to oxidative 

stress such as smoking (34) and UV radiation (35).

 The human telomerase is responsible for maintaining 

and elongating TL and consists of the telomerase RNA 

component (TERC) and telomerase reverse transcriptase 

(TERT), the catalytic component. To maintain TL, TERT 

uses the TERC as a template to synthesize new telomeric 

DNA repeats at a single-stranded overhang. Several cells 

such as germ cells, stem cells, hematopoietic progenitor 

cells, activated lymphocytes, and most cancer cells, possess 

a high level of telomerase activity to overcome telomere 

shortening and control limitless cell division. However, 

somatic cells generally have a low or undetectable level 

of telomerase activity with limited longevity. The TL and 

integrity are regulated through the interplay between the 

telomerase and shelterin proteins.(36) Telomerase activity 

decreases with age but increases markedly in response to 

injury.(37) The telomerase expression in the mammalian’s 

heart is small, yet functionally significant. Telomerase has 
a role in regulating tissue repair and regenerative, this is 

shown by a substantial increase in telomerase expression 

which was found in cardiomyocytes, endothelial cells and 

fibroblasts of cryoinjured adult mice hearts.(38)
 During the shortening process of telomere to its 

crucial length, the cell enters cellular senescence, starting a 

series of changes in the gene expression of replicative cell-

cycle inhibitors and inhibits proliferation, then eventually 

into apoptosis (39) as known as replicative senescence. It 

is known that senescent cells change their morphology and 

secretary phenotype in autocrine and paracrine patterns. The 

pattern of this active altered secretion has has been named 

Telomeres are special chromatin structures located at the ends 

of eukaryotic chromosomes that prevent the recognition of 

chromosomal ends as double-stranded DNA breaks, thereby 

protecting these regions from recombination and degradation 

and avoiding a DNA damage cellular response. The 
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Aging is Functional Decline of Telomeres, 

Mitochondria and Stem Cells

Mitochondria play important roles in a myriad of cellular 

processes including ATP production via oxidative 

phosphorylation, biosynthetic pathways, cellular redox 

homeostasis, ion homeostasis, oxygen sensing, signaling, 

Figure 1. Telomere organization.

(30) (Adapted with permission 

from American Heart Association).

as the senescence-associated secretory phenotype (SASP). 

They secrete interleukin (IL)-6 and IL-8, intercellular 

adhesion molecule 1 (ICAM-1), metalloproteases, monocyte 

attractants, plasminogen activator inhibitor 1 (PAI-1) 

and vascular endothelial growth factor (VEGF).(40,41) 

Senescent cells are partly responsible for inflammation and 
also promoting apoptosis, tissue remodeling, and repair 

through their SASP. Thus, chronic inflammation initiates 
a vicious cycle which enhances telomere dysfunction 

and the accumulation of senescent cells. Cell senescence 

provokes chronic inflammation and accelerates aging and 
the development of aging-associated diseases.(41)

 After each cell division, the length of the telomere 

shortens, and when a critical shortening is reached, the 

cell enters senescence or apoptosis.(42,43) Thus, TL is 

considered a marker of cell senescence and replicative 

capacity.(42,44) LTL represents the average TL across 

a heterogeneous population of leukocytes including 

monocytes, granulocytes and lymphocytes, and can serve as 

a biological marker of aging.(45)

and regulation of programmed cell death. Mitochondrial 

dysfunction is central to theories of aging, because age-

related changes of mitochondria are likely to impair a host 

of cellular physiological functions in parallel and contribute 

to the development of all common age-related diseases.(46)

 The original formulation of the mitochondrial theory 

of aging postulates that raised production of mitochondria-

derived ROS could effects in a several macromolecular 

oxidative modifications, which are a primary causal factor in 
the aging process and also in the development of age-related 

diseases.(47,48) Mitochondrial retrograde signaling is a 

pathway of communication from mitochondria to nucleus, 

which involves multiple factors that sense and transmit 

mitochondrial signals to alter nuclear gene expression. This 

cross-talk between mitochondria and the nucleus affects 

many cellular functions and is assumed to have a critical 

role in the aging process. There are multiple signaling 

cascades that involve the mitochondria, including release of 

ROS from the mitochondria, Ca2+ signaling, which activate 

downstream effectors pathways and transcription factors and 

the nutrient sensing mechanistic target of rapamycin (mTOR) 

pathway that regulates growth and cellular metabolism. 

Recent studies suggest that longevity is regulated by both 

cell-autonomous and non-autonomous mitochondrial stress 

pathways triggered by mild mitochondrial impairment.(49) 

According to this model, adaptive mitochondrial retrograde 

pathways relay mitochondrial stress signals to nucleus, 

activating genes involved in maintenance of mitochondrial 

integrity and cellular function.(46)
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 Human body has a great ability for extensive and 

sustained tissue renewal throughout a lifetime. Reservoirs 

of somatic tissue stem cells are responsible in maintaining 

this continuous self-renewal ability.(50,51) These tissue 

stem cells have garnered increasing attention in ageing 

and regenerative research given accumulating evidence 

that age-associated physiological decline, particularly in 

highly proliferative organs, parallels blunted proliferative 

responses and misdirected differentiation of resident tissue 

stem cells. Tissues have largely different levels of baseline 

proliferative activity and regenerative potential. In the high-

turnover tissues, it is known that the resident stem cells 

have the ability to generate great numbers of specialized 

cell progeny and thereby sustaining tissue cellularity and 

functionality over a lifetime. Intuitively, it would seem 

reasonable to posit that preserving an adequate pool of 

tissue stem cells with robust potential for renewal would 

be vital to maintaining organ function with advancing age. 

That kind of thought is supported by the premature ageing 

phenotypes observed in mice with conditional deletion of 

the genes encoding ataxia telangiectasia and Rad3-related 

(ATR), forkhead box O (FOXO) transcription factors, or 

ataxia telangiectasia mutated (ATM). These mice exhibit 

tissue stem-cell defects or diminished oxidative defense and 

ROS-induced stem-cell depletion.(52)

 The failure of stem/progenitor cell failure due to p53-

mediated cellular checkpoints may underlie compromise of 

highly proliferative organs. But this mechanism seems not 

enough to describe the profound physiological decrease in 

more quiescent tissues, for example, heart (cardiomyopathy) 

and liver (reduced detoxification capacity, glucose 
intolerance). These pathologies indicate that telomere 

dysfunction elicits a degenerative state via additional 

mechanisms beyond the classical senescence and apoptosis 

checkpoints.(53,54)

 Telomere-dysfunction-induced repression of the PGC 

network is associated with mitochondrial dysfunction as 

evidenced by compromised OXPHOS and respiration, 

decreased ATP generation capacity, and increased oxidative 

stress. Importantly, given evidence of non-telomere-related 

functions of TERT (55,56), this also demonstrated that, 

with onset of telomere dysfunction, TERC-/- mice (normal 

TERT expression) experience degenerative phenotypes 

indistinguishable of those in the TERT-/- model.(57,58) 

The indistinguishable mitochondrial and energy profiles of 
TERT and TERC models indicate that telomere dysfunction 

per se is the principal factor driving these phenotypes.(53) 

Multiple levels of evidence establish telomere dysfunction-

induced p53 represses PGC-1a and PGC-1b, thereby 

linking telomeres to mitochondrial biology, oxidative 

defense, and metabolism. This telomere-p53-PGC pathway 

expands our understanding of how telomere dysfunction 

may compromise organ function and contribute to age-

related disorders.(53)

 Figure 2 shows that the core telomere-p53 axis 

integrates well with almost all genetic elements proven 

to be important in the aging process of genotoxic stress 

model of ageing.(52) First, it accounts for the premature 

aging phenotypes common to both telomere-dysfunctional 

mice and those with germline p53 hyperactivation.(59,60) 

Secondly, it explains why mice lacking sirtuin (SIRT)1 or 

SIRT6, which are proteins that attenuate p53 activity, tend 

to develop premature aging (61). Third, it could account 

for the observed connections between mitochondria and 

key aging factors such as PGC-1α, PGC-1β and FOXO 
proteins. Mice null for each of the genes encoding these 

proteins experience accelerated tissue degeneration and 

Figure 2. A model of interaction between DNA damage, p53 

activation and mitochondrial dysfunction.(50) (Adapted with 

permission Nature Publishing Group, 2010). UV: ultraviolet; IR: 

infrared; BMI1: B lymphoma Mo-MLV insertion region 1.
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mitochondrial dysfunction. Integration of mitochondria into 

this core ‘axis of aging’ is supported by the premature aging 

conditions shared by telomere-dysfunctional or hyper-p53 

mice, as well as mice that have excessive mitochondrial 

DNA mutation or are deficient in PGC-1α or PGC-1β, 
which are the master regulators of mitochondrial biogenesis 

and metabolism (62-64), although the precise molecular 

basis for this commonality in premature ageing phenotypes 

remains to be elucidated.(52)

Cardiovascular Aging

With aging, cardiac function declines. Cardiac reserve, i.e., 

the difference between the peak cardiac pumping level and 

the normal baseline resting level, is reduced. Cardiomyocyte 

loss, left-ventricular hypertrophy, changes in ventricle 

chamber diameter, and an accumulation of extracellular 

matrix lead to reduced cardiac output, decreased left-

ventricular end-systolic pressure, fractional shortening, and 

decreased heart rate.(65-67) These facts clearly stress that 

the heart ages, indicating that the maintenance and repair 

potential of the heart is limited.

 Cardiac aging is a complex process which includes 

aging and deposition of extracellular matrix, aging of the 

coronary vasculature, aging of cardiac fibroblasts, and aging 
of the contractile apparatus of the heart.(68-70) Constituting 

the core of cardiac function and the contractile apparatus, 

cardiomyocytes display a number of physiological and 

morphological features, which are affected by the aging 

process, and these changes are thought to give rise to 

reduced cardiac function and heart disease.(71)

 In old cardiomyocytes, there is a general tendency 

towards: 1) a reduced ability to cope with stress, e.g., via 

reduced expression of heat shock proteins (HSP70) and 

anti-oxidative enzymes (hemeoxygenase-1), 2) reduced 

and altered function of the mitochondrial respiratory chain 

(e.g., reduced expression of cytochrome c oxidase), which 

causes electron leakage and oxidative damage, 3) increased 

stiffness and reduced contractility/decelerated relaxation, 

related  to  downregulation  of  sarcoplasmatic  reticulum 

Ca2+-ATPase, increased expression of cytoskeletal proteins, 

and a transcriptional switch (caused by de-differentiation) of 

contractile protein isoforms, e.g., from fast (type V1) to slow 

(type V3) myosin (72,73), and 4) a shift from proliferation 

and survival signaling towards cell death signaling (reduced 

expression of survivin, modulation of the Bcl2 rheostat 

towards a pro-apoptotic state).(74,75) Figure 3 shows the 

age-dependent changes to cardiovascular tissues. Both the 

heart and vasculature undergo numerous alterations during 

Figure 3. Age-dependent changes to cardiovascular tissues.(74) (Adapted with permission from American Heart Association).
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aging as a result of deregulation of molecular longevity 

pathways, leading to compromised function.(76)

 The molecular mechanisms involved allow time for 

accumulated damage to occur and include free radicals, 

advance glycation end-products, apoptosis and senescence. 

The accumulation of DNA damage and telomere attrition 

may increase cells’ senescence in tissues and organs, and 

decreasing their functions, providing an explanation for 

the lower threshold to express the clinical manifestation of 

heart failure.(77)

 The shortening of telomeres and telomere attrition has 

been shown to contribute crucially to a number of factors 

associated with cardiac aging like oxidative stress, and 

the finding of different telomeric lengths in old and young 
cardiomyocytes suggests that cell division and consequent 

telomeric shortening may play a role. As a matter of fact, 

old cardiomyocytes show a reduction in TL from 30 to 

15 kb.(31,78) The paradigm that all cardiomyocytes are 

terminally differentiated has been challenged. Recent 

experiments using human left ventricular myocardial cells 

and carbon-dating techniques have established that DNA 

of cardiomyocytes continues to be synthesized many years 

after birth, indicating that cells in the human heart do renew 

well into adulthood.(79) Nevertheless, cardiomyocyte DNA 

synthesis decreases with age. At the age of 25, a mathematical 

modeling predicts that cardiomyocyte renewal rate is around 

1%. Meanwhile at the age of 75, the cardiomyocyte renewal 

rate is 0.45%. Considering this turnover rate, at the age of 

50 years, 55% of the cardiomyocytes stay from the time 

around birth.(77)

 Therefore, some therapeutic strategies to boost 

myocardial function and outcome in CHF are crucially 

needed, and novel medicines are rapidly being introduced 

lately.(80-82) Telomere biology might be involved in the 

biology of aging and age-associated pathology. Telomeres 

are connected to the basic biology of aging and trigger 

cellular senescence.(77)

Telomeres, Mitochondria and Stem Cells 

in The Aging Heart

Morbidity and mortality rates associated with CVD continue 

to be high and remain a tremendous burden for the national 

health care system. In 2015 alone, CVD-related costs were 

estimated to be $155 billions.(83) A long-term solution 

to this social and health care crisis will require a better 

understanding of how aging per se drives cardiovascular 

decline. This solution would help to develop the effective 

preventive and therapeutic strategies. Telomeres, repetitive 

TTAGGG sequences at the ends of chromosomes, have 

been significantly involved in the aging process. It is 
known that short telomeres precipitate functional decline in 

different tissues, which includes the cardiovascular system. 

This is showed by many studies in humans with telomere 

maintenance disorders and telomerase knock-out mice have 

that have been done.(52) 

 The numbers of telomere lost during each cell division 

are different among people. Prior evidence showed that 

increased oxidative stress and chronic inflammation are 
related to higher telomere loss and accelerated telomere 

shortening.(33) Several common risk factors for CVD 

(84) such as smoking (34), diabetes mellitus (85), 

hypercholesterolemia (86), hypertension (87), obesity 

(88), physical inactivity (89), alcohol consumption (90) 

and psychosocial problems (91) have been associated with 

short TL. Telomere shortening process is associated with 

these risk factors through increased tissue inflammation and 
oxidative stress.(92-94) 

 Mechanistically, telomere dysfunction-driven tissue 

compromise is thought to be secondary to the activation 

of DNA damage signaling pathways that converge on 

p53, a central executor of the DNA damage response 

pathway.(95) The activation of p53 induces senescent 

and apoptosis pathways, particularly in stem cell and 

progenitor compartments of highly regenerative organs. The 

elimination of stem and progenitor cells is assumed to be the 

leading force in the development of tissue defects.(96) 

 Cardiovascular stem cells and cardiovascular 

progenitor cells are known to be insufficient to protect 
against cardiovascular disease in older individuals. Since 

new evidence suggests that cardiovascular stem cells and 

cardiovascular progenitor cells are subject to age-associated 

changes which impair their function, these changes may 

contribute to the dysregulation of endogenous cardiovascular 

repair mechanisms in the aging heart and vasculature.(97)

 Human endothelial cells and vascular smooth 

muscle cells (VSMC) express telomerase activity, which 

is drastically activated by mitogenic stimuli via a protein 

kinase C-dependent pathway (98), yet its activity declined 

with in vitro aging because of a decrease in expression of 

TERT, which cause the telomere shortening and cellular 

senescence.(99,100) Introduction of telomerase extends the 

lifespan of both endothelial cells and VSMCs (100-102), 

suggesting a critical role of telomere and telomerase in 

vascular cell senescence.(103)

 Atherosclerosis is a complex inflammatory process 
involving adaptive and innate immune mechanisms.(104-
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109) Some researches also associating short telomeres with 

atherosclerosis.(110) Endothelial cell dysfunction triggered 

by atherogenic stimuli (e.g., elevated plasma cholesterol 

level, hypertension, diabetes, and smoking) is of central 

importance in the pathogenesis of atherosclerosis. These in 

vitro studies resulting in the implication of telomeres and 

telomerase in endothelial cell function. In vivo, age-dependent 

telomere shortening has been reported in endothelial 

cells from iliac, thoracic, and coronary arteries.(102,111-

113) Once fatty streaks are formed, activated neointimal 

leukocytes produce a plethora of inflammatory mediators 
that contribute to atheroma growth by provoking excessive 

VSMC proliferation and migration.(104,105,113-115) 

Telomerase has been implicated as an important regulator 

of VSMC proliferation in vitro, because TERT activation 

extends the lifespan of cultured VSMCs and, conversely, 

telomerase inhibition abrogates VSMC proliferation in a 

dose-dependent manner.(98,99,116) Regulation of VSMC 

proliferation by targeting telomerase activity appears to 

be independent of telomere length, because VSMC growth 

arrest occurs early after telomerase inhibition (98,117) 

and telomerase expression alone is capable of rescuing 

Figure 4. Model of how telomere dysfunction and other pathways cause cardiac aging through either cellular or metabolic 

compromise.(94) (Adapted with permission from American Heart Association).

the senescent phenotype of human plaque VSMCs despite 

short telomeres.(118) A role of telomerase on the control of 

VSMC growth has been also proposed in vivo. Telomerase 

activation and telomere maintenance appear to be critical 

for increased VSMC hyperplastic growth in hypertensive 

rats.(119)

 A deficiency of mitochondrial energetics has been 
documented in human and experimental animals with 

heart failure (Figure 4).(120) Mechanisms may include 

mitochondrial biogenesis that does not keep up with 

the increasing demand (121), mitochondrial uncoupling 

and decreased substrate availability,(122) and increased 

mitochondrial DNA deletions.(123)

 Studies have demonstrated that telomere dysfunction-

activated p53 directly leads to mitochondrial and metabolic 

compromise through the repression of the master regulators 

of mitochondrial biogenesis and function, peroxisome 

proliferator-activated receptor gamma coactivator (PGC)-

1a and PGC-1b.(53) PGC repression is associated with 

a profound compromise in mitochondrial biogenesis 

and function and subsequent decline in ATP generation, 

indicating that a fundamental problem of energy maintenance 
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drives the aging process.(96) Another potentially important 

link between mitochondrial oxidative stress and vascular 

aging is the induction of apoptosis.(124) Oxidative stress 

in aging is associated with an increased rate of endothelial 

apoptosis (125,126), which may contribute to microvascular 

rarefaction impairing the blood supply of the heart (127) 

and the brain (128). Cerebrovascular endothelial cells are 

rich in mitochondria, and normal mitochondrial function 

is essential for  maintaining  the  integrity of the blood-

brain barrier.  On  the basis of the available data with 

mitochondrial inhibitors (129), we posit that age-related 

mitochondrial dysfunction may contribute to breakdown 

of the blood-brain barrier, promoting neuroinflammation in 
aging.(130)

 Lately, there has been an experimental evidence that 

associate the mitochondrial free radical and telomere-

shortening theories of aging.(53) These abnormalities are 

associated with p53-mediated repression of PGC-1a and 

PGC-1b, and their downstream targets, nuclear respiratory 

factor-1 (NRF-1) and mitochondrial transcription factor A 

(TFAM). Thus, age-related telomerase dysfunction might 

represent a primary instigator of mitochondrial decay, which 

in turn would cause the decrease of bioenergetic efficiency 
and increase of ROS production via sustained p53 activation 

and further repression of PGC signaling.(131)

 Optimal regulation of mitochondrial autophagy is 

crucial for the maintenance of cell homeostasis. This is 

especially true for cardiomyocytes because of their post-

mitotic nature and their high reliance on mitochondrial 

oxidative metabolism for energy supply. Over their lifespan, 

cardiac cells are exposed to a high burden of mitochondria-

derived oxidative damage, which cannot be diluted through 

cell proliferation. This shows that the maintenance of a 

healthy pool of mitochondria and the removal of damaged 

organelles are important to preserve cardiomyocyte 

function and viability. Autophagy supplies this essential 

homeostatic function. This suggests that optimization of the 

housekeeping function of autophagy may be harnessed as a 

therapeutic means against heart senescence.(21)

 Some dietary and lifestyle factors such as marine 

omega-3 fatty acid (132), antioxidants (133), vitamin intake 

(134), physical activity (90), and healthy lifestyle (135) were 

reported to decrease rates of LTL shortening. These factors 

might have roles in reducing ROS, inhibiting inflammation, 
increasing the activity of endothelial nitric oxide synthase 

(eNOS), and increasing telomerase activity. A human study 

also reported that alterations in comprehensive lifestyle 

significantly increased telomerase activity and consequently 
telomere maintenance ability in human immune system 

cells.(135) Consequently, telomere shortening can be 

used as a reflection of cellular aging and a marker of the 
health status of the aging population.(136) Absolute TL at 

birth is determined by genetic materials from both parents. 

During the process of aging, the mean TL declines with cell 

replication and turnover. The process of telomere shortening 

is accelerated by the exposure to disease-promoting 

factors, such as smoking, obesity, and psychosocial stress. 

Furthermore, the activation of telomerase has been assumed 

as a possible target for reversing the telomere shortening.

(18) Figure 5 shows the relation of telomere length to CVD.

 In patients with CAD, LTL can be used as a prognostic 

tool. A prospective cohort study with 780 patients were 

conducted for a follow-up period of 4.4 years reported an 

association of decreased LTL with all-cause mortality, with 

an adjusted hazard ratio of 1.8 in the lowest TL quartile 

compared with the highest TL quartile.(137) Moreover, 

LTL has been observed to be shorter in patients with 

premature acute MI (aged <50 years) than in healthy, age-

matched controls.(23) In a clinical study of 803 patients, 

LTL was decreased by approximately 40% in patients with 

heart failure, and TL in the patients with heart failure was 

associated to the disease severity.(138) There was a study 

investigating the association of a lower left ventricular 

ejection fraction with decreased TL, which reported the 

association of one SD decrease in TL with a 5% lower 

ejection fraction.(139) Moreover, LTL was significantly 
associated with cardiovascular outcomes in patients with 

ischemic heart failure (140).

Telomerase as A Therapeutic Target in 

Cardiovascular Disease

From the implications of current understanding of telomere 

biology, potential therapeutic interventions, such as the 

maintenance of TL and modulation of telomerase activity 

to reverse telomere attrition and cellular senescence, is 

emerging as a new strategy for treating atherosclerosis and 

CVD.(140) 

 Experimental studies have reported that the 

manipulation of telomerase activity and TL enhances or 

reverses senescence and aging-associated phenotypes.(141-

143) For example, the incidence of ischemic heart failure 

in mice can successfully be prevented by the telomerase 

activation therapy after MI. The treatment of adeno-

associated viruses with the cardiac-specific telomerase 
expression resulted in elongated telomeres, attenuated 

cardiac dilation, improved ventricular function, and smaller 
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Figure 5. Schematic overview of telomere length and cardiovascular diseases.(18) (Adapted with permission from Molecular Diversity 

Preservation International)

infarct scars as well as improved the survival by 17% 

compared to the controls.(144)

 The effect of TA-65®, a natural product-derived 

telomerase activator, on metabolic markers and 

cardiovascular health. In addition to apparent positive 

immune remodeling in these patients, TA-65® treatment 

has shown an improvement of metabolic markers with 

a decrease in the fasting glucose, insulin levels, total 

cholesterol and low-density lipoprotein cholesterol. In 

parallel, the systolic and diastolic blood pressures of these 

patients were significantly ameliorated after treatment. These 
results suggest that telomerase activation is a rejuvenation 

strategy for age-associated diseases such as cardiovascular 

diseases and might prove a therapeutic adjunct or alternative 

in this setting.(145) The use of thiazolinediones (TZD) 

may hold real promise for a solution to the differential 

role of telomerase in the intimal and medial layers through 

activation of telomerase in ECs and inhibition of telomerase 

in VSMCs. In the past 15 years, peroxisome proliferator-

activated receptor gamma (PPAR-g), a member of the 

nuclear receptor superfamily, has emerged as an important 

player in vascular protection. PPAR-g is expressed in both 

vascular endothelial and smooth muscle cells, and shown 

to be critically involved in the development of vascular 

complications and inflammation and hypertension.(146-
149) In fact, the anti-proliferative, anti-atherosclerosis 

properties of PPAR-g  have been shown to suppress VSMC 

proliferation, which could be at least in part mediated by 

its effects on suppression of telomerase activity (pro-

proliferation). This is supported by the findings that PPAR-g  
activation suppresses telomerase in cultured VSMC (117).

 Other reports showed that resveratrol, a type of 

natural phenol present in some fruits, activates the catalytic 

subunit of telomerase in human aortic SMC and pulmonary 
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microvascular endothelial cells. Similar observations were 

obtained in resveratrol treated C57BL/6J mouse heart and 

liver tissues.(149) Resveratrol has been shown to produce 

changes associated with longer lifespan, including increased 

insulin sensitivity, PGC-1a activity and mitochondrial 

number.(150) Interestingly, elderly mice fed with resveratrol 

showed a marked reduction in signs of aging with decreased 

inflammation and vascular endothelium senescence, and 
increased aortic elasticity.(126) Despite the facts that the 

exact mechanism by which resveratrol induces TA remains 

unknown, these findings suggest a strong link with its 
beneficial effect in anti-aging processes in cardiovascular 
cells affected by disease.

 In the last few years, another chemical compound, 

AGS-499, has been started to show its neuroprotective 

effects in the amyotrophic lateral sclerosis (ALS) disease 

animal model via increased TA. In vivo treatment with 

AGS-499 has increased significantly TA in these animals 
and improved their life-span.(151) Furthermore, AGS-499 

treatment, without altering their functionality, protected 

stem cells from apoptosis and DNA damage produced 

by long-term exposure to oxidative stress (152). Many 

studies  have  also  demonstrated  that  acute  activation  of 

telomerase using AGS-499 restored NO bioavailability and 

limited ROS production in micro-vessels from subjects with 

CAD.(153)

Conclusion
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