RESEARCH ARTICLE # Trauma and Injury Severity Score in Predicting Mortality of Polytrauma Patients # Bambang Gunawan, Risa Dumastoro, Achmad Fauzi Kamal* # Department of Orthopaedic and Traumatology FM Universitas Indonesia-Dr. Cipto Mangunkusumo Hospital *Corresponding author: fauzikamal@yahoo.com Received 15 August 2017; Accepted 26 October 2017 DOI: 10.23886/ejki.5.8148. #### **Abstract** TRISS (Trauma and Injury Severity Score) is one of the most commonly used trauma score. Currently, there is no data about using TRISS in the care of polytrauma patients at emergency department of dr. Cipto Mangunkusumo Hospital (CMH). This research was intended to evaluate whether TRISS can predict the mortality of polytrauma patients at CMH. This was an analytic descriptive study with retrospective cohort design. Data was collected from medical records of polytrauma patients who were admitted to emergency department of CMH from 2011-201 4 then we analyzed the relationship between TRISS and patient's prognosis. Furthermore, we conducted bivariate and multivariate analysis by SPSS 20 software. Seventy medical records were included in this study. The majority of patients were male (65%) in young age. There were 69 patients who experienced blunt trauma, with the majority (94.3%) were caused by motor vehicle accident. After receiving trauma care, there were 26 deaths, while other 44 patients survived. From bivariate and multivariate analysis, we found a significant difference between TRISS and patient's prognosis. TRISS strongly predicts polytrauma patient's mortality (AUC 0,899; IK95% 0,824-0,975). TRISS has 84,6% sensitivity and 81.8% specificity with optimal intersection point ≤ 90,5. TRISS is able to predict the mortality of polytrauma patients at CMH. Key words: polytrauma; TRISS; prognosis. ### TRISS untuk Memprediksi Mortalitas Pasien Politrauma ### Abstrak TRISS merupakan salah satu penilaian trauma yang paling sering digunakan. Namun, saat ini belum ada data penggunaan TRISS dalam penanganan pasien politrauma di Instalasi Gawat Darurat (IGD) Rumah Sakit Umum Pusat Nasional dr. Cipto Mangunkusumo (RSUPNCM). Penelitian ini bertujuan untuk mengetahui kemampuan TRISS dalam memprediksi mortalitas pasien politrauma di IGD RSUPNCM. Penelitian ini adalah studi analitik deskriptif dengan menggunakan desain kohort retrospektif. Data diambil dari rekam medis pasien politrauma yang datangke IGD RSUPNCM tahun 2011-2014. Selanjutnya, kami lakukan analisis bivariat dan multivariate terkait hubungan antara TRISS dengan prognosis pasien politrauma menggunakan program SPSS 20. Tujuh puluh rekam medister masuk dalam criteria inklusi pada studi ini. Mayoritas pasien adalah pria (65%) dan berusia muda. Terdapat 69 pasien yang mengalami trauma tumpul dengan kecelakaan lalu lintas menjadi penyebab terbanyak (94.3%). Setelah pasien menjalani perawatan, didapatkan 26 pasien meninggal dunia sedangkan 44 lainnya selamat. Dari analisis bivariat dan multivariate ditemukan bahwa terdapat perbedaan bermakna antara TRISS dengan prognosis pasien. TRISS mampu memprediksi kuat mortalitas pasien politrauma (AUC 0,899; IK95% 0,824-0,975). TRISS memiliki sensitivitas sebesar 84.6% dan spesifisitas sebesar 81.8% dengan titik potong optimal ≤ 90,5. TRISS dapat memprediksi mortalitas pasien politrauma di RSUPNCM. Kata kunci: politrauma; TRISS; prognosis. ### Introduction Trauma is the leading cause of death and disability throughout developed and developing countries.1 Approximately 16,000 people die every day as a result of trauma (5.8 million deaths per year), and it is estimated that the number will increase to 8.4 million deaths per year in 2020. Traumatic incidents may increase, especially in developing countries with industrialization, where motor vehicles are increasingly being used.2 Although the incidence is low, trauma remains the most common cause of death and disability in children and young adults in developed countries.³ Polytrauma patient mortality ranged between 18-23% worldwide in 2000-2005, while there were 4 deaths from 17 polytrauma patients in dr. Cipto Mangunkusumo Hospital (CMH) from January 2011 to December 2014. One way to objectively measurehospital trauma care is by using trauma score. Of the many trauma scores, trauma and injury severity score (TRISS) is the most commonly used tool to evaluate trauma patient care.5 Quality of hospital care may be evaluated by comparing predictions of the patient's prognosis with the outcome.⁶ In addition, TRISS permits comparison between the qualities of one hospital care to the other hospitals.6 This study was aimed to evaluate the relationship between TRISS and the prognosis of polytrauma patients in the emergency room (ER) of CMH. ### **Methods** This was an analytic descriptive study with retrospective cohort design in the ER of CMH from January 2011 to December 2014. Patients with incomplete or missing records as well as intubated or death on arrival were excluded from the study. We collected data which comprised of patient characteristics, Glasgow Coma Scale (GCS), type of trauma, TRISS, referral status, response time, and outcome (death or survive). From the data, we set gender, referral status, response time, and TRISS as independent variables. The dependent variable of the study was patient's prognosis. Bivariate analyses were carried out by chi square test, Fisher's exact test, and Mann-Whitney test between prognostic variables. Variables with correlation according to bivariate analyses (p < 0.25) were compiled by multivariate analysis with logistic regression. ### Results From January 2011 to December 2014 there were 158 polytrauma patients who were admitted to ER of CMH, but only 70 patients who met the inclusion and exclusion criteria of the study. There were 19 polytrauma patients in 2011, 24 in 2012, 14 in 2013, and 13 in 2014. Subject characteristics were shown in Table 1. **Table 1. Characteristics of Study Subjects** | Variable Description Year of admission 2011 19 (27.1%) 2012 24 (34.3%) 2013 14 (20.0%) 2014 13 (18.6%) Age 29.00 (13.00-67.00) Gender Male 60 (85.7%) Female 10 (14.3%) Payment method Out-of-pocket 40 (57.2%) Local or national insurance 21 (30.0%) Homeless person 5 (7.1%) Others 4 (5.7%) Occupation Femployee 16 (22.9%) Labour 2 (2.8%) Unemployed 32 (45.7%) Entrepreneur and (14.3%) Student and (14.3%) Transportation Transportation and (14.3%) T | | otudy odbjects | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------| | 2011 19 (27.1%) 2012 24 (34.3%) 2013 14 (20.0%) 2014 13 (18.6%) Age 29.00 (13.00-67.00) Gender Male 60 (85.7%) Female 10 (14.3%) Payment method Ut-of-pocket 40 (57.2%) Local or national insurance 21 (30.0%) Homeless person 5 (7.1%) Others 4 (5.7%) Occupation Employee Employee 16 (22.9%) Labour 2 (2.8%) Unemployed 32 (45.7%) Entrepreneur 10 (14.3%) Student 10 (14.3%) Type of admission Referred Referred 31 (44.3%) Not referred 35 (57.7%) Transportation 38 (54.3%) Reason to refer Full ICU 12 (38.7%) Full ICU 12 (38.7%) No experts, facilities and full ICU 12 (38.7%) Cocupational accident 66 (94.3%) Occupational accident 68 (97 | | Description | | 2012 24 (34.3%) 2013 14 (20.0%) 2014 13 (18.6%) Age 29.00 (13.00-67.00) Gender Male Male 60 (85.7%) Female 10 (14.3%) Payment method Out-of-pocket Ucolar or national insurance 21 (30.0%) Homeless person 5 (7.1%) Others 4 (5.7%) Occupation 2 (2.8%) Employee 16 (22.9%) Labour 2 (2.8%) Unemployed 32 (45.7%) Entrepreneur 10 (14.3%) Student 10 (14.3%) Type of admission Referred Referred 31 (44.3%) Not referred 39 (55.7%) Transportation 38 (54.3%) Reason to refer Full ICU 12 (38.7%) Foll ICU 12 (38.7%) No experts, facilities and full ICU 12 (38.7%) Cause of trauma 1 (1.4%) Type of trauma 66 (94.3%) Blount trauma < | | 10 (07 :50) | | 2013 | | | | 2014 | | | | Age 29.00 (13.00-67.00) Gender Male Male 60 (85.7%) Female 10 (14.3%) Payment method Out-of-pocket Out-of-pocket 40 (57.2%) Local or national insurance 21 (30.0%) Homeless person 5 (7.1%) Others 4 (5.7%) Occupation Employee Employee 16 (22.9%) Labour 2 (2.8%) Unemployed 32 (45.7%) Entrepreneur 10 (14.3%) Student 10 (14.3%) Type of admission Referred Referred 31 (44.3%) Not referred 39 (55.7%) Transportation 38 (54.3%) Reason to refer Full ICU 12 (38.7%) Full ICU 12 (38.7%) No facilities and full ICU 12 (38.7%) No experts, facilities and full ICU 7 (22.6%) Cause of trauma 11 (1.4%) Type of trauma 66 (94.3%) Blount trauma 69 (98.5%) | | , , | | Gender Male Male Female 10 (14.3%) Payment method Out-of-pocket Local or national insurance Homeless person Others Occupation Employee Labour Unemployee Labour Unemployed Labour Unemployed Later and the state | | | | Male 60 (85.7%) Female 10 (14.3%) Payment method 10 (14.3%) Out-of-pocket 40 (57.2%) Local or national insurance 21 (30.0%) Homeless person 5 (7.1%) Others 4 (5.7%) Occupation 2 (2.8%) Unemployee 16 (22.9%) Labour 2 (2.8%) Unemployed 32 (45.7%) Entrepreneur 10 (14.3%) Student 10 (14.3%) Type of admission Referred Referred 31 (44.3%) Not referred 39 (55.7%) Transportation 38 (54.3%) Reason to refer Full ICU 12 (38.7%) No facilities and full ICU 12 (38.7%) No experts, facilities and full ICU 7 (22,6%) Cause of trauma Traffic accident Occupational accident 3 (4.3%) Fight 1 (1.4%) Type of trauma 66 (94.3%) Boon frauma 2 (32.8%) Externity 68 (97.1%) </td <td>•</td> <td>29.00 (13.00-67.00)</td> | • | 29.00 (13.00-67.00) | | Female 10 (14.3%) Payment method 0ut-of-pocket Local or national insurance 21 (30.0%) Homeless person 5 (7.1%) Others 4 (5.7%) Occupation 4 (5.7%) Employee 16 (22.9%) Labour 2 (2.8%) Unemployed 32 (45.7%) Entrepreneur 10 (14.3%) Student 10 (14.3%) Type of admission 4 (5.7%) Referred 31 (44.3%) Not referred 39 (55.7%) Transportation 38 (54.3%) Reason to refer 4 (5.7%) Full ICU 12 (38.7%) No facilities and full ICU 12 (38.7%) No experts, | | 00 (07 70() | | Payment method Out-of-pocket Local or national insurance Homeless person Others Occupation Employee Labour Employee Labour Employee Labour Unemployed Entrepreneur Student Student Traffic accident Traffic accident Occupation Employee Fight Trama Blount trauma Blount trauma Extremity Head External Ochest External Observation room ICU+ward HCU+ward HCU+Wa | | | | Out-of-pocket 40 (57.2%) Local or national insurance 21 (30.0%) Homeless person 5 (7.1%) Others 4 (5.7%) Occupation 2 (2.8%) Employee 16 (22.9%) Labour 2 (2.8%) Unemployed 32 (45.7%) Entrepreneur 10 (14.3%) Student 10 (14.3%) Type of admission Referred Referred 31 (44.3%) Not referred 39 (55.7%) Transportation 38 (54.3%) Reason to refer Full ICU 12 (38.7%) Public transportation 38 (54.3%) Reason to refer Full ICU 12 (38.7%) No experts, facilities and full ICU 12 (38.7%) No experts, facilities and full ICU 12 (38.7%) No experts, facilities and full ICU 12 (38.7%) Cause of trauma 66 (94.3%) Traffic accident 66 (94.3%) Occupational accident 68 (97.1%) Type of trauma 11 (1.4%) Region of trauma 2 | | 10 (14.3%) | | Local or national insurance | | | | Homeless person | | , , | | Others 4 (5.7%) Occupation Employee Labour 2 (2.8%) Unemployed 32 (45,7%) Entrepreneur 10 (14.3%) Student 10 (14.3%) Type of admission Referred Referred 31 (44.3%) Not referred 39 (55.7%) Transportation 38 (54.3%) Reason to refer Full ICU Full ICU 12 (38.7%) No facilities and full ICU 12 (38.7%) No experts, facilities and full ICU 7 (22,6%) Cause of trauma Traffic accident 66 (94.3%) Occupational accident 3 (4.3%) Fight 1 (1.4%) Type of trauma 69 (98.5%) Blount trauma 69 (98.5%) Penetrating trauma 68 (97.1%) Region of trauma 1 (1.5%) Extremity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) Ex | | | | Occupation Employee 16 (22.9%) Labour 2 (2.8%) Unemployed 32 (45.7%) Entrepreneur 10 (14.3%) Student 10 (14.3%) Type of admission Referred Referred 31 (44.3%) Not referred 39 (55.7%) Transportation 38 (54.3%) Reason to refer Full ICU Full ICU 12 (38.7%) No experts, facilities and full ICU 7 (22,6%) Cause of trauma 7 (22,6%) Traffic accident 66 (94.3%) Occupational accident 3 (4.3%) Fight 1 (1.4%) Type of trauma 1 (1.5%) Region of trauma 69 (98.5%) Penetrating trauma 1 (1.5%) Region of trauma 1 (1.5%) Extermity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room< | • | | | Employee | _ | 4 (5.7%) | | Labour 2 (2.8%) Unemployed 32 (45,7%) Entrepreneur 10 (14.3%) Student 10 (14.3%) Type of admission Referred 31 (44.3%) Not referred 39 (55.7%) Transportation Ambulance 32 (45.7%) Public transportation 38 (54.3%) Reason to refer Full ICU 12 (38.7%) No facilities and full ICU 12 (38.7%) No facilities and full ICU 7 (22,6%) Cause of trauma Traffic accident 66 (94.3%) Occupational accident 3 (4.3%) Fight 1 (1.4%) Type of trauma Blount trauma 69 (98.5%) Penetrating trauma 1 (1.5%) Region of trauma Extremity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours 9 (12.9%) 1-6 hours 37 (52.9%) 7-24 hours 9 (12.9%) 1-7-13 17 (24.3%) 14-15 37 (52.8%) FIRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 24-00rs 11 (42.3%) 24-48 hours 5 (19.2%) | _ '. | 40 (00 00() | | Unemployed | | | | Entrepreneur Student Type of admission Referred Not referred Ambulance Public transportation Reason to refer Full ICU No facilities and full ICU Cause of trauma Traffic accident Fight Type of trauma Blount trauma Blount trauma Begion of trauma Extremity Head Abdomen Chest Face Bill-Ward HCU+ward HCU+ward HCU+ward HCU+ward HCU+ward HCU+ward HCH-ward Hours 1-6 hours 7-24 hours Survive Death Time of death 24.48 hours 11(4.3%) Type of 11,43%) Type of 14,3%, Type of 15,7%, 16,24,7%, | | , , | | Student 10 (14.3%) Type of admission Referred Referred 31 (44.3%) Not referred 39 (55.7%) Transportation 38 (54.3%) Reason to refer Full ICU Full ICU 12 (38.7%) No facilities and full ICU 12 (38.7%) No experts, facilities and full ICU 7 (22,6%) Cause of trauma 66 (94.3%) Traffic accident 66 (94.3%) Occupational accident 3 (4.3%) Fight 1 (1.4%) Type of trauma 69 (98.5%) Penetrating trauma 1 (1.5%) Region of trauma 8 (97.1%) Extremity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room 8 (11.4%) ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Vard | | ` | | Type of admission Referred Ref | • | , , | | Referred 31 (44.3%) Not referred 39 (55.7%) | | 10 (14.3%) | | Not referred 39 (55.7%) Transportation 32 (45.7%) Public transportation 38 (54.3%) Reason to refer Full ICU Full ICU 12 (38.7%) No experts, facilities and full ICU 7 (22,6%) Cause of trauma Traffic accident 66 (94.3%) Occupational accident 3 (4.3%) Fight 1 (1.4%) Type of trauma 69 (98.5%) Blount trauma 69 (98.5%) Penetrating trauma 1 (1.5%) Region of trauma Extremity Extremity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room 8 (11.4%) Resuscitation room 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours | • • | 04 (44 00) | | Transportation Ambulance | | , | | Ambulance Public transportation Reason to refer Full ICU No facilities and full ICU Rouse of trauma Traffic accident Fight Type of trauma Blount trauma Blount trauma Extremity Head Abdomen Chest External Observation room ICU+ward HCU+ward HCU+ward Response time CHONUS Response time Response time 4.00 (0.16-168.00) C1 (24.3%) C2 (37.1%) C3 (37.1%) C4 (38.7%) C6 (94.3%) C7 (1.4%) C7 (22.6%) C8 (97.1%) C8 (96.3%) C9 (96.4%) | | 39 (55.7%) | | Public transportation 38 (54.3%) Reason to refer Full ICU 12 (38.7%) No facilities and full ICU 12 (38.7%) No experts, facilities and full ICU 7 (22,6%) Cause of trauma 66 (94.3%) Traffic accident 66 (94.3%) Occupational accident 3 (4.3%) Fight 1 (1.4%) Type of trauma 69 (98.5%) Penetrating trauma 1 (1.5%) Region of trauma 2 (60%) Extremity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room 8 (11.4%) External 70 (100%) Observation room 8 (11.4%) Resuscitation room 8 (11.4%) Ward 4 (1.4%) Response time 4.00 (0.16-168.00) < 1 hours | • | 00 (45 70/) | | Reason to refer Full ICU No facilities and full ICU No experts, facilities and full ICU Cause of trauma Traffic accident Occupational accident Fight Type of trauma Blount trauma Benetrating trauma Extremity Head Abdomen Chest Face External Observation room ICU+ward HCU+ward Response time Vard Response time Vard Response time Vard CSS score Vard Vard CSS score Vard Vard Vard CSS Score Vard Vard CSS Score Vard Vard Vard CSS Score Vard Vard Vard Vard CSS Score Vard Vard Vard Vard Vard Vard Vard Vard | | , , | | Full ICU 12 (38.7%) No facilities and full ICU 12 (38.7%) No experts, facilities and full ICU 7 (22,6%) Cause of trauma Traffic accident 66 (94.3%) Occupational accident 3 (4.3%) Fight 1 (1.4%) Type of trauma Blount trauma 69 (98.5%) Penetrating trauma 1 (1.5%) Region of trauma Extremity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Response time 4.00 (0.16-168.00) < 1 hours 9 (12.9%) T-24 hours 9 (12.9%) T-24 hours 9 (12.9%) T-24 hours 9 (12.9%) Second 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 150 (19.2%) Till (23.3%) Till (24.3%) Till (24.3%) Till (24.3%) Till (24.3%) Time of death < 24 hours 11 (42.3%) 24-48 | • | 38 (54.3%) | | No facilities and full ICU No experts, facilities and full ICU Cause of trauma Traffic accident Occupational accident Fight Type of trauma Blount trauma Blount trauma Extremity Head Abdomen Chest Face Sternal HCU+ward HCU+ward HCU+ward HCU+ward HCSPonse time Vard Hours 1, 24 hours 1, 24 48 hours 2, 42 (60 W) 1, 26 (37.1 %) 1, 26 (37.1 %) 1, 26 (37.1 %) 1, 27 (100 %) 1, 28 (32.8 %) 1, 28 (32.8 %) 1, 29 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 %) 1, 20 (32.8 | | 12 (20 70/) | | No experts, facilities and full ICU Cause of trauma Traffic accident Occupational accident Type of trauma Blount trauma Blount trauma Blount trauma Begin of trauma Extremity Head Abdomen Chest Face External Observation room ICU+ward HCU+ward Response time Abours 1 hours 2 hours 2 hours 3 hours 3 hours 3 hours 4 1 2 hours 3 hours 4 hours 4 hours 4 hours 4 hours 1 | | | | Cause of trauma Traffic accident Occupational accident Fight Type of trauma Blount trauma Penetrating trauma Extremity Head Abdomen Chest External Observation room ICU+ward HCU+ward Response time At 1 hours T-24 hours T-24 hours Survive Death Time of death 24 (60,94.3%) C6 (94.3%) C1.4%) C1.4%) C1.4%) C2.5%) C3 (32.5%) C4 (98.5%) C5 (98.5%) C6 (98.5%) C7 (1.5%) C8 (98.5%) C9 (99.13 C1.6%) C1.6% C2.9%) C3 (1.4%) C4.3%) C4.3%) C4.3%) C5 (37.1%) C6 (37.1%) C6 (37.1%) C7 (19.2%) C6 (37.1%) C7 (19.2%) C6 (37.1%) C7 (19.2%) C8 (19.2%) C9 | | ` , | | Traffic accident 66 (94.3%) Occupational accident 3 (4.3%) Fight 1 (1.4%) Type of trauma 8 (97.1%) Blount trauma 69 (98.5%) Penetrating trauma 1 (1.5%) Region of trauma Extremity Extremity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room 8 (11.4%) Ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours | · | 7 (22,6%) | | Occupational accident 3 (4.3%) Fight 1 (1.4%) Type of trauma 69 (98.5%) Penetrating trauma 1 (1.5%) Region of trauma Extremity Extremity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room (64.3%) HCU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours | | 66 (04 39/) | | Fight Type of trauma Blount trauma Blount trauma Penetrating trauma Region of trauma Extremity Head Abdomen Chest Chest External Chest External Chest Abdomen Chest External To (100%) Chesrvation room CU+ward Face External Fo (100%) Chest External Face | | | | Type of trauma Blount trauma Blount trauma Penetrating trauma Region of trauma Extremity Head Abdomen Chest Face Bit (11.4%) External Observation room ICU+ward HCU+ward Response time Aunum (11.4%) R | | , , | | Blount trauma Penetrating trauma Region of trauma Extremity Head Abdomen Chest Face External Observation room ICU+ward Resuscitation room Ward Response time A 100 (0.16-168.00) A 1400 | | 1 (1.4%) | | Penetrating trauma Region of trauma Extremity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours 9 (12.9%) 1-6 hours 37 (52.9%) 7-24 hours 9 (12.9%) 5 (7.1%) SCS score 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | • • | 60 (09 59/) | | Region of trauma Extremity 68 (97.1%) Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room ICU+ward HCU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours | | . 1 | | Extremity Head Abdomen Abdomen Chest Face B (11.4%) External Observation room ICU+ward HCU+ward HCU-y%) HCU-y% HCU-y% HCU-yW HCU-y | | 1 (1.576) | | Head 42 (60%) Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room 100% ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours | | 68 (97 1%) | | Abdomen 34 (48.5%) Chest 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours 9 (12.9%) 1-6 hours 9 (12.9%) 7-24 hours 9 (12.9%) 7-24 hours 19 (27.1%) > 24 hours 5 (7.1%) GCS score 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death < 24 hours 11 (42.3%) 24-48 hours 5 (19.2%) | | _ ` | | Chest Face 23 (32.8%) Face 8 (11.4%) External 70 (100%) Observation room 70 (100%) ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours 9 (12.9%) 1-6 hours 37 (52.9%) 7-24 hours 19 (27.1%) >24 hours 5 (7.1%) GCS score 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | , , | | Face 8 (11.4%) External 70 (100%) Observation room ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours 9 (12.9%) 1-6 hours 37 (52.9%) 7-24 hours 19 (27.1%) >24 hours 5 (7.1%) GCS score 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | | | External 70 (100%) Observation room ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours 9 (12.9%) 1-6 hours 37 (52.9%) 7-24 hours 19 (27.1%) >24 hours 5 (7.1%) GCS score 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | | | Observation room ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours | | , , | | ICU+ward 45 (64.3%) HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours | | 70 (10070) | | HCU+ward 9 (12.9%) Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours | | 45 (64 3%) | | Resuscitation room 8 (11.4%) Ward 8 (11.4%) Response time 4.00 (0.16-168.00) < 1 hours | | | | Ward Response time 4.00 (0.16-168.00) <1 hours 9 (12.9%) 1-6 hours 37 (52.9%) 7-24 hours 9 (12.7.1%) >24 hours 5 (7.1%) GCS score 14.00 (3.00-15.00) <9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome Survive Death Death 10 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 15 (19.2%) | | | | Response time 4.00 (0.16-168.00) < 1 hours | | | | < 1 hours 9 (12.9%) 1-6 hours 37 (52.9%) 7-24 hours 19 (27.1%) >24 hours 5 (7.1%) GCS score 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | | | 1-6 hours 37 (52.9%) 7-24 hours 19 (27.1%) >24 hours 5 (7.1%) GCS score 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | • | | | 7-24 hours 19 (27.1%) >24 hours 5 (7.1%) GCS score 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | | | >24 hours 5 (7.1%) GCS score 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | , | | GCS score 14.00 (3.00-15.00) < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | | | < 9 16 (22.9%) 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | | | 9-13 17 (24.3%) 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | | | 14-15 37 (52.8%) TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death 44 (42.3%) 24 hours 11 (42.3%) 24-48 hours 5 (19.2%) | | 17 (24 3%) | | TRISS Outcome 92.20 (12.40-98.70) Survive 44 (62.9%) Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | , | | Survive 44 (62.9%) Death 26 (37.1%) Time of death *** <24 hours | | | | Death 26 (37.1%) Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | | | Time of death <24 hours 11(42.3%) 24-48 hours 5 (19.2%) | | , | | <24 hours 11(42.3%)
24-48 hours 5 (19.2%) | | 20 (07.170) | | 24-48 hours 5 (19.2%) | | 11(42.3%) | | ` , | | | | | >48 hours | 10 (38.5%) | Twelve patients had a polytrauma in head-extremity-external region which made it the most common trauma distribution in this study. The second most common trauma distribution was head-chest-extremity region in 10 patients. Those two locations were followed by abdomen-extremity-external region (8 patients), head-extremity-abdomen and extremity-abdomen-chest region (6 patients), extremity-head-face region (5 patients), extremity- abdomen-head-external region (4 patients), and extremity-abdomen-external region (3 patients). We also recorded subjects who suffered polytrauma in extremity-chest-face-external, extremity-abdomen-face, chest-extremity-external, and head-extremity-face, each with 2 patients. The least frequent regions we recorded were abdomen-chest-external region and head-abdomen-external region, each with 1 patient. Complete distribution Figure 1. Trauma Distribution of Study Subjects Table 2. Bivariate Analysis Between independent Variables and Prognosis | | Death (n=26) | Survive (n=44) | p-value | | |------------------------------|---------------------|---------------------|----------|--| | Gender | | | | | | Male | 21 (35%) | 39 (65%) | 0.483 a | | | Female | 5 (50%) | 5 (50%) | | | | Referral status | | | | | | Referred | 11 (35.5%) | 20 (64.5%) | 0.798° | | | Not referred | 15 (38.5%) | 24 (61.5%) | | | | TRISS | 78.60 (12.40-97.60) | 97.00 (55.10-98.70) | <0.001 b | | | Response time (hours) | 1.50 (0.25-48.00) | 5.00 (0.16-168.00) | 0.093 b | | | Response time classification | | | | | | <1 hours | 4 (44.4) | 5 (55.6) | 0.496 b | | | 1-6 hours | 14 (37.8) | 23 (62.2) | | | | 7-24 hours | 7 (36.8) | 12 (63.2) | | | | >24 hours | 1 (20.0) | 4 (80.0) | | | Numerical variables were abnormally distributed, presented as median (minimum-maximum). Categorical variables were presented as n (percentage). Multivariate analysis was carried out by incorporating variables that had a bivariate analysis with p<0.25 (response time and TRISS) into logistic regression. From the logistic regression, we found that TRISS had a correlation with patient's prognosis with p value < 0.001 as shown in Table 3. Table 3. Multivariate Analysis between Independent Variables and Prognosis | | | В | S.E. | Wald | df | p-value | OR | 95% CI | | |--------|---|--------|-------|--------|----|---------|----------|--------|------| | Step 1 | TRISS Response time Constanta TRISS Constanta | -0.118 | 0.033 | 12.840 | 1 | <0.001 | 0.89 | 0.83 | 0.95 | | | | -0.007 | 0.016 | 0.227 | 1 | 0.634 | 0.99 | 0.96 | 1.02 | | | | 9.731 | 2.921 | 11.097 | 1 | 0.001 | 16837.47 | | | | | | -0.121 | 0.033 | 13.401 | 1 | <0.001 | 0.89 | 0.83 | 0.95 | | | | 9.862 | 2.928 | 11.346 | 1 | 0.001 | 19188.74 | | | The third model: AUC = 0.899 (95% CI 0.824-0.975); p<0.001; Hosmer and Lemeshow, p=0.177; Regression equation y=0.862 - 0.121 TRISS; probability of death p=1/(1+exp(-y)) ^a Fisher's exact test; ^b Mann-Whitney test; ^c Chi-square test # Figure 2. TRISS Discrimination to Patient's Prognosis. ### AUC = 0.899 (95% CI 0.824-0.975); p<0.001 By using receiver operating characteristic (ROC) model, AUC was found to be 89.9% as shown in Figure 2, meaning that TRISS was a strong factor to predict patient's prognosis with polytrauma. TRISS also had a good calibration to predict patient's survival which was calculated and proved using Hosmer and Lemeshow test (p value = 0.177). # Mortality Prediction Using TRISS Score Mortality prediction for polytrauma patients from our study could be estimated by regression equation shown in Table 3. For clinical practice, we simplifed our data and equation in a form of probability curve shown in Figure 3. the higher the TRISS was, the higher probability to survive. # Figure 3. Mortality Prediction Using TRISS Intersection Point of TRISS for Mortality ### **Prediction** We drew sensitivity and specificity lines of TRISS to predict the mortality of polytrauma patients in our study. The optimal point was an intersection of two afore mentioned lines observed when TRISS ≤90.5 with 84.6% sensitivity and 81.8% specificity value. # Figure 4. Intersection Point of TRISS for Mortality Prediction ### **Discussion** The number of male patients in this study was six times more than the number of female counterparts. It was probably because the male population worked more actively, travelled more frequently, and drive motor vehicle more commonly than female population.²⁰ The proportion was similar with Pakistan population according to a study by Chaudri et al.⁵ In Singapore, male to female polytrauma patient ratio was smaller, which is 2.8:1.²² Nearly 70% of polytrauma patients in our study were aged between 20-55 years old which was classified as the productive age. Some studies reported that trauma was more frequently occurred in young age. This fact is quite worrying since prolonged hospitalization and disability may impair patient's productivity.^{6,22,23} Majority of patients in our study was admitted to hospital without using any insurance. Polytrauma care costs are quite substantial, and patients should be encouraged to take an effective payment method, especially insurance, to reduce the hospitalization cost. On a larger scale, the burden of public financing for trauma care are astronomical, and in developing countries is estimated to be hundreds of millionsdollars per day.²⁴ More than half of the patients were brought to hospital using public transportation. This phenomenon was similar with Iran,5 therefore public education about the use of transportation for patients becomes an urgent matter.²⁵ In polytrauma patients, blunt trauma was more commonly found than penetrating trauma. This finding was similar with other studies.^{2,24,26} In this study, commonly involved body regions were extremity (97.1%), head (60%), abdomen (48.6%), chest (32.9%), and face (11.4%). Chaudry et al⁵ reported that the body regions involved in polytrauma patients were abdomen (71%), chest (68%), face (14%), head (6.8%), and extremity (6.8%).5 Moreover, Chen et al²⁷ reported that the body regions involved in their patients were extremity (63%), head (26%), chest (15%), abdomen (12%), and face (12%). There were 11 patients died within 24 hours, 5 patients within 24-48 hours, and 10 patients after 48 hours of admission. Mortality in the first 24 hours was largely associated with head injury and abdominal bleeding. Some studies suggested that majority of trauma patients who died within the first 48 hours were related to head injury and bleeding. 30,31 After 48 hours, mortality was due to sepsis and multi organ failure. 30 Loss of consciousness was largely related to head injury. Low level of consciousness was associated to the increase of mortality, while high level of consciousness was associated with survival.²⁸ Severe head injury was the leading cause of death and disability. More than half of the death was associated with head injury.²⁰ Majority of polytrauma patients in this study (94.3%) was related to motor vehicle accidents. In accordance to Krug et al,² traffic accidents are the leading cause of deaths in productive age. Therefore, some preventive actions need to be taken seriously. Counselling and training toward the road users, especially for young people who drove motor vehicles as well as elderly and young adult pedestrians who are prone to traffic accidents and injuries, should be conducted widely.²⁹ Majority of subjects in this study were referred patient due to ICU unavailability of the referring hospital. Polytrauma patients were hemodynamically unstable and therefore demanded intensive observation in intensive care unit.²⁰ The availability of bed and facilities of ICU in many hospitals ares limited compared to the need of patients, not only trauma patients but also patients suffered from various systemic diseases. In contrary with a study by Horst et al32 we found that response time did not affect patient's prognosis. It was probably because most of our patients were admitted in a bad condition, therefore had poor prognosis regardless of their response time. Prehospital care in the present study did not affect patient's mortality. It was presumably due to missed diagnoses and delayed diagnoses, which were common in the management of polytrauma patients. Byun et al33 reported that missed diagnosis occurred in 1.3 to 39% of the polytrauma patients. Missed diagnosis and delayed diagnosis might contribute to patient's mortality, morbidity, and length of hospital stay. Both missed diagnoses and delayed diagnoses might be minimized by improving medical personnel ability and facility, which were frequently lacking in developing countries.33 Therefore, integrated trauma system including pre-hospital care and patient transportation needed to be improved, and trauma centres had to be developed.34 By using ROC we found AUC 0.899 (95% CI 0.824 – 0.975), which concluded that TRISS had a strong predictive value. The higher the TRISS was, the higher probability to survive. In this study, TRISS score had good sensitivity and specificity, which were 84.6% and 81.8% respectively with optimal intersection point at TRISS score ≤90.5. Other study reported higher sensitivity and specificity for TRISS, 90.9% and 97.2% respectively.¹⁹ TRISS was frequently used to predict the prognosis of polytrauma patients. ¹⁹ The score can also be utilized to evaluate hospital trauma care, to compare trauma care in a hospital with other hospitals, as well as to organize and improve trauma care system in a larger scale. ¹⁸ Good trauma care was associated with better prognosis and less mortality. ³⁰ TRISS had several noticeable weaknesses. First, the score was not able to calculate multiple injuries in the same body region. Second, the score did not include systemic comorbidities, which also contributed to patient's prognosis. Third, the score was not able to evaluate intubated patients, because the score was dependent to patient's respiratory rate. 18 Other specific conditions such as trauma epidemiology, emergency care, referral system, and medical care cannot be overlooked. In the end, the outcome of polytrauma patientsdepends on those factors, including trauma severity, comorbidity, emergency personnel, and trauma management system. 18,35 ### Conclusion From this study we conclude that TRISS may predict the mortality of polytrauma patients with strong factor to predict prognosis, analyzed using ROC model (AUC = 0.899; IK95% 0.824-0.975). TRISS also has high sensitivity and specificity value, hence it can be used to evaluate quality of service and treatment on patients with polytrauma. #### References - Murlidhar V, Roy N. Measuring trauma outcomes in India: an analysis based on TRISS methodology in a Mumbai university hospital. Injury 2004;35:386–90. - 2. Krug EG, Sharma GK, Lozano R. The global burden of injuries. Am J Public Health. 2000;90:523–6. - 3. Murray CL, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020. Lancet. 1997; 349:1498–504. - Pfeifer R, Tarkin IS, Rocos B, Pape HS. Patterns of mortality and causes of death in polytrauma patients—Has anything changed? Injury. Int J Care Injured. 2009;907–11. - Chaudhry N, Naqi SA, Qureshi AU. Effectiveness of TRISS to evaluate trauma care in a developing country. Emergency Med. 2012;2:124. - Norouzi V, Feizi I,Vatankhah S, Pourshaikhian M. Calculation of the probability of survival for trauma patients based on trauma score and the injury - severity score model in Fatemi Hospital in Ardabil. Arch Trauma Res. 2013;2(1):30–4. - Butcher NE, Enninghorst N, Sisak K,Balogh ZJ. The definition of polytrauma: variable interrater versus intrarater agreement a prospective international study among trauma surgeons. J Trauma Acute Care Surg. 2012;884–9. - Colton CL, Holz FD, Kellam JF, Ochsner PE. AO trauma-principle management of fracture. Switzerland: AO Publising;2000. - 9. Tien H, Chu P, Brenneman F. Causes of death following multiple trauma. Current Orthopaedics. 2004;304–10. - Gebhard F, Lang MH. Polytrauma: pathophysiology and management principles. Langenbecks Arch Surg. 2008; 825–31. - Brochner AC, Toft P. Pathophysiology of the systemic inflammatory response after major accidental trauma. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2009;17:43 - Aldrian S, Koenig F, Weninger P, Ve´csei V, Nau T. Characteristics of polytrauma patients between 1992 and 2002: What is changing? Injury. Int J Care Injured. 2007;1059–64. - Dhar SA et al. 'Damage control orthopaedics' in patients with delayed referral to a tertiary care center: experience from a place where composite trauma center do not exist. Journal of Trauma Management & Outcomes. 2008;2:2. - 14. Giannoudis PV. Surgical priorities in damage control in polytrauma. J Bone Joint Surg Br. 2003;478–83. - Nicola R. Early total care versus damage control: current concepts in the orthopedic care of polytrauma patients. ISRN Orthopedics. 2013;2013:1–9. - Champion HR, Sacco WJ, Carnazzo AJ, Copes W, Fouty WJ. Trauma score. Crit Care Med. 1981;672–6. - 17. Lefering R. Trauma score systems for quality assessment. Eur J Trauma. 2002;52–63. - Dillon B, Wang W, Bouamra O. A comparison study of the injury score models. Eur J Trauma. 2006;538–47. - Siritongtaworn P, Opasanon S. The use of trauma score-injury severity score (TRISS) at Siriraj hospital: how accurate is it? J Med Assoc Thai. 2009;92(8):1016–21. - Orhom R et al. Comparison of trauma scores for predicting mortality and morbidity on trauma patients. Ulus Travma Acil Cerrarhi Derg. 2014;20:258–64. - 21. Kalkulator Skor Triss. Diunduh dari http://www.trauma.org/archive/scores/triss.html. - Leong MKF, Mujumdar S, Lim YH, Chao TC, Anantharaman V. Injury related death in Singapore. Hongkong J Emerge Med. 2003;10:88–96. - Payal P, Sonu G, Anil G, Prachi V. Management of polytrauma patients in emergency department: an experience of tertiary care health institution of northern India. World J Emerg Med. 2013;4(1):15–9. - 24. Qureshi MA. Polytrauma: epidemiology & prognosis versus trauma score. Professional Med J. 2006;57–62. - Settervall CHC, Sousa RMC, Silva SCF. In-hospital mortality and the Glasgow coma scale in first 72 - hours after traumatic brain injury. Rev Latin-Am Enfermagem. 2011;19(6):1337–43. - 26. Sauaia A, Moore FA, Moore EE, Moser KS, Brennan R, Read RA, et al. Epidemiology of trauma deaths: a reassessment. J Trauma. 1995;38(2):185–93. - Chen SC, Lin FY. Chang KJ. Body region prevalence of injury in alcohol- and non-alcohol-related traffic injuries. J Trauma. 1999 Nov;47(5):881–4. - Wolfe RFS, Galvagno SM, Grissom TE. Critical Care Consideration in the management of the trauma patient following initial resuscitation. Scandinavian Journal Trauma, resuscitation. 2012; 20: 68 - Byun CS, Park H,Oh JH, Bae KS, Lee KH, Lee E. Epidemiology of trauma patients and analysis of 268 mortality cases: trens of a single centre in Korea. Yonse Med J. 2015;56:220-26. - 30. Sobrino J, Shafi MD. Timing and causes of death after injuries. Proc Byl Univ Med Cent. 2013;26:120-23. - 31. Trajano AD, Pereira BM, Fraga GP. Epidemiology - of in hospital trauma deaths in a Brazilian university hospital. BMC Emergency Medicine. 2014;14:22. - Murad MK, Larsen S, Husum H. Prehospital trauma care reduces mortality. Ten years result from a time cohort and trauma audit study in Iraq. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine. 2012;20:13 - Horst K, Dienstknecht, Pleifer R, Pishnamaz, Hildebrand F, Pape HC. Risk Stratification by injury distribution in polytruama patients-does the clavicular fracture play a role? Patient Safety in Surgery. 2013;7:23. - 34. Vikram U, Deshmukh, Mrunal N, Ketkar, Erach K, Bharucha. Analysis of trauma outcome using the TRISS method at tertiary care centre in Pune. Indian J Surg. 2012;74:440-44. - 35. Byun CS, Park H,Oh JH, Bae KS, Lee KH, Lee E. Epidemiology of trauma patients and analysis of 268 mortality cases: trends of a single centre in Korea. Yonse Med J. 2015;56:220-26. Norris R et al. TRISS unexpected survivors: an outdated standard? J Trauma. 2002;52:229-34.