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Abstract – The aim of this work is to explore the adsorption process of an organic pollutant the 2,4,6-trichlorophenol 
on the clay mineral (kaolinite) surface in order to identify the sites of adsorption as well as conformations corresponding 
to the lowest energies. Ab-initio calculations have been used to investigate the adsorption process using a representative 
cluster model. According to the results obtained on the various studied models, the orientations of TCP on the surfaces 
clay affect the parameters such as: HOMO-LUMO energy gap, the enthalpy change, the thermal Gibbs free energy and 
entropy contribution.  The results point out a preferential adsorption of TCP on the octahedral surface and the NBO 
analysis indicates that the electron donor-acceptor complex was the dominant adsorption mechanism. 
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Introduction 

The clay minerals, as natural materials, are among the world's most important and useful industrial 
minerals. They are used in traditional and industrial applications and because of their high surface areas, they 
are often used as adsorbents (Patwardhan and Clarson, 2002; Savin and Lee, 1988; Tunney and Detellier, 
1996; Komori et al., 1998; Guimaraes et al., 1998; Ogawa and Kuroda, 1995) especially for organic 
compounds coming from different sources: industry, agriculture, chemical warfare and home products.  

Phenol and its derivatives are among the most frequent contaminants of water, they are widely used as 
intermediates in the synthesis of dyes, pesticides, insecticides, explosives, etc. (Salvador and Merchan, 1996).  

We have chosen for our study the 2,4,6-trichlorophenol (TCP) molecule because it is one of the most 
wide-spread pollutants in the environment. It is recognized as a toxic carcinogen (Podkoscielny et al., 2003), 
and is also a weak acid which can easily permeate into the human skin in vitro and is readily absorbed by the 
gastro-intestinal tract (Hameed et al., 2009); It is normally found in the industrial wastewater such as from 
paint, pharmaceutical, pesticide, wood, pulp and paper industries as well as water disinfecting process 
(Hameed, 2007; Gao and Wang 2007). The TCP was listed by the Environmental Protection Agency (EPA) 
as one of 31 high-priority pollutants, appearing on the EPA's “persistent, bio-accumulative and toxic” (PBT) 
chemicals list (EPA, 1980; EPA, 2002).   

The stable carbon-chlorine bond and the position of chlorine atoms relative to the hydroxyl group are 
responsible for their toxicity, carcinogenic properties, structural stabilization and persistence in the 
environment, making the removal of the TCP from the environment very crucial (Vidic et al., 1993). Waste 
waters containing such phenolic compounds must be treated before being discharged (Oh et al., 2003) and 
degradation of these substances means the appearance of phenol and its derivatives in the environment 
(Dabrowski et al., 2005).  

The aim of this study is to understand the adsorption process of 2,4,6- trichlorophenol (TCP) on the 
kaolinite surface.  This pollutant was widely  investigated experimentally (Hameed, 2007; Gao and Wang, 
2007; Chaliha and Bhattacharyya 2008; Tan et al., 2009) since it is one of the most widespread pollutants in 
the environment but  to  our knowledge, no investigations involving  a theoretical study of the interactions 
of TCP with clay minerals have been performed.  
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Materials and Methods  

The study of the adsorption of TCP on kaolinite layers was performed using the density functional 
theory with the becke’s three parameter exchange functional (Becke, 1993) with the Lee-Yang-Parr nonlocal 
correlation functional (B3LYP). The 6-31G** basis set was applied and the GAUSSIAN-09 program package 
(Frisch, 2009) was used in this study. The starting geometry of TCP was taken from the published X-ray data 
(González et al., 2007). 

For our investigation we used a cluster of clay mineral as most of the theoretical studies of the 
interactions between clay minerals and the organic species apply cluster approximations, which prove to be 
very useful for giving detailed insight concerning the adsorption processes of organic molecules on clay 
minerals.  We have modelled the adsorption of TCP on the tetrahedral and octahedral side of the kaolinite. 
Minerals of the kaolinite group have a common chemical formula Al2Si2O5(OH)4  and the most common are 
kaolinite and dickite. Kaolinite   is a layered aluminosilicate mineral affiliated to the class of dioctahedral 1:1 
clay.  

Individual kaolinite layers consist of an octahedral aluminum hydroxide sheet and a tetrahedral silicate 
sheet interconnected via the plane of apical oxygen atoms. One side (octahedral) of the kaolinite layer is 
covered with the surface hydroxyl group while the opposite side (tetrahedral) is formed from basal oxygen 
atoms of the tetrahedral sheet.  

The structure of TCP was minimized with the B3LYP method at 6-31G* level and its position with 
respect to the surface cluster was fully optimized. The representative cluster models of the tetrahedral and 
octahedral surface of kaolinite were constructed using its structural data (Bish, 1993) whose chemical formula 
is Si6Al6O36H30 and was constructed as a cut out from the periodic structure.Dangling bonds of the mineral-
layer fragment was saturated with hydrogen atoms. 

The model of kaolinite used to simulate the adsorption on the tetrahedral and octahedral surface consist 
of one tetrahedral and one octahedral ring respectively. The regular layer surfaces are parallel to the (001) 
plane. The isolated layers are identical and are formed from one ditrigonal silicon-oxygen ring of tetrahedral 
sheet and one aluminium-oxygen ring of octahedral sheet. Both sheets share a common plane of apical 
oxygen atoms. The isolated kaolinite layer is electroneutral so the interlayer space is empty and no 
compensating cations are required. Such models have been used in various investigations (Song et al., 2013 ; 
Scott et al., 2014 ; Wang et al., 2013 ; Robinson et al., 2007 ; Michalkova and Tunega, 2007). The surface of 
the octahedral sheet is covered with surface hydroxyl groups, which are involved in hydrogen bonds with 
basal oxygen atoms of the adjacent layer. The structure of this cluster is displayed in figure 1.     

 

 
Figure 1.  Two views of the of kaolinite cluster model 
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Computational details     

Studies of adsorption of trichlorophenol on a kaolinite cluster have been performed within the density 
functional theory (DFT) as implemented in Gaussian 09 package. Full geometry optimizations were carried 
out in gas phase for all structures under investigation. All of them were identified as minima by means of a 
harmonic vibrational analysis. The location of the adsorbate on the surface of the kaolinite layer is governed 
by the shape of the electrostatic potential and its ability to form attractive contacts with the surface of clay 
the reason for which we created several models for adsorption of TCP on the tetrahedral and octahedral side 
of the kaolinite, which differ by the position of the studied molecule on the cluster surface and we 
approached on every case the following parameters: binding energy, enthalpy, the thermal Gibbs free energy, 
constant of reaction and NBO analysis. We noticed, for the various studied cases, the formation of several 
hydrogen bonds. 

The TCP molecule was placed above the octahedral hole of kaolinite in such a way that hydroxyl group 
of the TCP is directed into the center of the octahedral cavity while for the tetrahedral sheet, the molecule 
of TCP was located in parallel and perpendicular to the surface clay. The starting geometries and final 
optimized structures of adsorbed complexes are shown in figures 2 and 3. 

Calculations are presented for HOMO-LUMO energies, the binding energies corrected to the BSSE, 
Boys−Bernardi’s counterpoise procedure (CP) was used to calculate the basis set superposition errors 
(BSSE) (Boys and Bernardi, 1970). To investigate the thermodynamics of the binding process, the 
thermodynamic calculations were carried out by B3LYP/6-31G**. The enthalpy change (ΔH), the thermal 
Gibbs free energy (ΔG), entropy contribution (ΔS) and adsorption constant, for all adsorbed configuration 
was obtained. The NBO analysis of hydrogen bonded systems was calculated and the strength of this 
interaction was estimated by the second order perturbation theory. 

Binding energy of TCP adsorbed on the kaolinite is computed using the following equation. 

BEbin  = ETot(TCP/kaolinite) – E(TCP) –E(kaolinite)        (1) 

Where BEbin  is the binding energy of the adsorbed molecule to the kaolinite sheet. ETot  is the total 
energy of the system, ETCP  and Ekaolinite are those of the isolated molecule and isolated kaolinite, respectively. 
By the definition, a negative value of  BEbin corresponds to exothermic adsorption. The adsorption constant 
K at 298K and 1 atm is computed using a thermodynamic equation. 

ΔG° = - RT Ln k (          2) 

 

Results and Discussion 

Geometry optimization    

In order to obtain the stable configurations of the TCP adsorbed on the kaolinite sheet, various possible 
initial adsorption geometries are considered where the molecule is oriented perpendicular, parallel and in an 
oblique position in such a way that the oxygen atom of the TCP is in the role of the proton acceptor and/or 
donor with protons from surface hydroxyl groups on the octahedral and tetrahedral side of the kaolinite 
layer, see initial structures on figure 2. On this figure, the separating distances of the hydroxyl group and 
chlorine atom of the TCP molecule to the closest hydroxyl groups of kaolinite layer surface are represented.  

Structures of all models optimized with B3LYP/ 6-31G** level are illustrated in figure 3. For better 
description, two views are represented for each model. As shown in Fig 3, the TCP is adsorbed on the 
surface cluster through several different types of hydrogen bonds; structural data of these intermolecular 
bonds occurring in adsorbed systems are collected in table 1. 
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Figure 2. Initial geometrical structures of TCP-kaolinite complex on: octahedral sheet of kaolinite (A-
B-C-D) configurations and tetrahedral sheet of kaolinite (E-F) configurations. (Right) Top and (left) front 
views. Atom colours are Blue: Al, Yellow: Si, Red: O, Green: Cl, White: H and Grey: C. 

 

Table 1. Hydrogen Bond length calculated with B3LYP/6-31g** in TCP-kaolinite complex. 
Configuration Number of hydrogen 

bond 
Hydrogen bond Bond length (Å) 

Octahedral surface    

(A) 

4 

C2—Cl7---H63—O46 

C2—Cl7---H66—O48 

C6—Cl9---H23—O17 

O10—H11---O18—H24 

2.80 

2.56 

2.56 

1.62 

(B) 

4 

C2—Cl7---H63—O46 

C2—Cl7---H66—O48 

C6—Cl9---H23—O17 

O10—H11---O18—H24 

2.80 

2.56 

2.55 

1.62 

(C) 
1 C4—Cl8---H25—O19 

2.62 

 

(D) 
2 

C2—Cl7---H21—O15 

O10—H11---O17—H23 

2.92 

1.54 

Tetrahedral surface    

(E) 
1 

C1—O10—H11---

O31<𝑆𝑖32𝑆𝑖30 2.24 

(F) / / / 

 

We have retained four configurations for the position of TCP above the octahedral surface: 

Configuration (A): Figure 3 illustrate the optimized geometries of the TCP-kaolinite system with TCP 
placed in a perpendicular orientation toward the surface. From the top view of the geometry we can see the 
hexagon of the TCP molecule centred a hexagon of the kaolinite cluster, the oblique orientation is 
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maintained. Hydroxyl group and two chlorine atoms of TCP are oriented toward the surface sheet above 
the octahedral hole. Four hydroxyl groups, which are surrounding the hole in the octahedral sheet, are 
involved in hydrogen bonding with the absorbance of TCP molecule. Three of them act as protons donors 
to the TCP chlorine atoms and the fourth one act as proton acceptor for the proton of hydroxyl group of 
the TCP molecule at O....H distance about 1.62 Å. 

Configuration (B): Initially the molecule cantered the hole of the layer sheet and was oriented in a 
parallel way toward the octahedral surface; after optimization configuration (B) has led to the same structure 
as revealed from the optimization of configuration (A). Adsorption of the TCP molecule on these two 
models is governed by the same hydrogen bonds. We notice once again the bi-functional ability of the surface 
hydroxyl groups, which can act either as proton donor or as proton acceptor. 

Configuration (C): In this case, the hydroxyl group of the TCP was oriented perpendicular and in the 
opposite direction of surface sheet. After optimization, in addition to being tilted up at few degrees from the 
initial position, the molecule has been rotated roughly 60° around an axis perpendicularly to the molecule 
plan. The chlorine atom is bounded to hydroxyl groups of the surface sheet as proton acceptor.                            
Configuration (D): initially the TCP molecule is oriented in oblique position; the oxygen atom is bonded 
to three hydroxyl groups of the surface layer. After optimization of the structure, two hydroxyl groups of 
the surface sheet were involved in hydrogen bonding with the absorbance molecule as donor and acceptor 
of proton in a distance between 2.92 and 1.54 Å, respectively which is the smallest distance obtained between 
the TCP molecule and the octahedral surface of kaolinite. 

For the tetrahedral side two configurations were retained:  

Configuration (E): initially the TCP molecule was oriented perpendicularly to the surface layer; this 
position was maintained after optimization. There is formation of a single intermolecular hydrogen bond 
between the phenol hydroxyl group and the oxygen atom of the tetrahedral surface. The corresponding 
interaction distance is about 2.24 Å 

Configuration (F): the TCP molecule was positioned in a parallel orientation with the hexagon of the 
molecule on top of the surface layer, after optimization this position was maintained with nevertheless a light 
rotation of some degrees. No intermolecular hydrogen bond has been formed.  
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Figure 3. Optimized structures of TCP- kaolinite complex with B3LYP/6-31G**. Octahedral sheet of  
kaolinite (A-B-C-D) configurations and tetrahedral sheet of kaolinite (E-F) configurations. (Right) Top and 
(left) front views.  Atom colors are Blue: Al, Yellow: Si, Red: O, Green: Cl, White: H and Grey: C. 

Binding energy  

The results summarized in table 2 for the most stable structures shows the calculated binding energy 
(BE) of  the TCP interaction with  kaolinite, BSSE with conventional counterpoise (CP) method,  real BSSE 
corrected binding energies and the relative energy difference of all studied systems. 
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From the BSSE values calculated with the counterpoise method (CP) we notice that our results are in 
good agreement with the results of Michalkova (Michalkova et al., 2011). The CP procedure most likely 
overestimates the BSSE the reason for which  previous studies (Wang et al., 2013; Austen et al., 2008; Sainz-
Díaz et al., 2011) have suggested that, for systems with weak interactions, the real  BSSE is small and the real 
BSSE can be considered to be one order of magnitude lower than that calculated by the counter-poise (CP) 
method (BSSE =CP/10) proposed by Austen et al (Austen et al., 2008). In this paper, we applied the 
approximation of BSSE = CP/10. 

Table 2. Binding energy (BEbin),  relative energy difference, BSSE with conventional counterpoise (CP) 
method (BSSECP)  and real BSSE corrected binding energies (BEbin Corr ) of all studied systems 
calculates at B3LYP/6-31g**. 

Configuratio
n 

BEbin (kcal/mol)  ∆E  BSSECP  
(kcal/mol)  

BEbinCorr 

(kcal/mol) 

Octahedral Surface     

(A)  -17.257 1.574 5.194 -16.738 

(B)  -17.259 1.572 5.198 -16.739 

(C)   -5.805 13.026 3.152   -5.489 

(D)  -18.831 - 5.589 -18.272 

     

Tetrahedral surface     

(E)  -7.790 - 4.825 -7.308 

(F) -7.039 0.751 5.069 -6.532 

 

The negative binding energy proves that the TCP can form stable complexes with kaolinite. The BSSE 
corrected binding energies are within a range of -5.489 to -18.272kcal/mol for the octahedral surface. 
Relative stabilities of the adsorption complexes structures based on their relative binding energies are in 
order: configuration (D) ˃ (A) ≈ (B) ˃ (C) for the octahedral surface, (A) and (B) configurations showed 
binding energies of the same order of magnitude. 

The interaction energies amount to about -16.7 kcal mol-1. In these two configurations the molecule 
was placed initially directly above the center of the octahedral cavity in perpendicular and in parallel (after 
optimization this orientation changes to perpendicular) to the plane of the surface hydroxyl groups, in a 
range of sizes from 1.99 to 2.1 Å and from 1.59 to 1.68Å, respectively, see figure 2. Configuration (D) offers 
the energetically most predisposed position to an adsorbate molecule, the BEbin Corr value  is -18.272 kcal/mol. 
The average distance of the intermolecular bond for (A) and (B) configurations is 2.38Å which is longer than 
2.23 Å on configuration (D). It should be mentioned that for these two configurations, the formation and 
the co-operation of the multiple H-bonds with the surface hydroxyl groups surrounding the hole in the 
octahedral surface affect the adsorption energies. These hydrogen bonds are formed due to the flexibility of 
the surface hydroxyl groups. For the tetrahedral surface, based on their relative binding energies, 
configurations are in order (E) ˃  (F) with the values of -7.308 and -6.532 kcal/mol respectively. Configuration 
(E) is more favourable than (F) configuration by an energy difference of  0.751 kcal/mol. 

The Configuration (C) shows a weak interaction, BEbin corr value is about -5,489kcal/mol, which is much 
less than the interaction energies on the tetrahedral surface we assume that has a relationship with the fact 
that the adsorbate is not linked to the octahedral surface with his OH group. In this configuration, the TCP 
molecule was bonded to the surface sheet with its chlorine atom Cl8. The data reported in table 2 indicate 
also that greater adsorption energies are observed for the octahedral surface than the tetrahedral one with 
the energy difference of about 11kcal/mol. This result is in accordance with conclusions of previous studies 
(Castro et al., 2012; Boys and Bernardi, 1970; Michalkova et al., 2011). This suggests that TCP molecule is 
much more stabilized on the octahedral kaolinite surface due to the formation of multiple hydrogen bonds 
between the TCP molecule and the hydroxyls surface. However if we compares between the configurations 
(D), (A) and (B) we have to note that configuration (D) has only 2 hydrogen bonds but are significantly more 
stable than configuration (A) and (B) which have four H-bonds. Three of them are C-Cl ....H hydrogen 
bonds and are characterized as weak with distances in the 2.55-2.80 Å interval. From the length of the 
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hydrogen bonds listed in Table1 we can see that the shortest bonds precisely corresponds to the 
configuration (D) with 1.54 Å ; this leads to conclusion that the shorter the hydrogen bond length is, the 
more stable the interaction is. 

Thermochemistry  

The Calculated thermodynamic values are presented in Table 3. The negative ∆G° values obtained for 
configurations (A), (B) and (D) indicate the feasibility and spontaneous nature of TCP adsorption. The 
negative values of ∆H° and ∆S°, in all cases, indicate that the adsorption process is exothermic and an 
enthalpy-driven process. Furthermore, the absolute values of ∆H° are increasing in the order of (C) < (A) ≈ 
(B) < (D), suggesting a higher affinity for the configuration (D). However the enthalpy changes for the 
octahedral sheet is more negative than on the tetrahedral side. This corresponds with the strength of 
intermolecular binding. 

Unfortunately, we did not find any relevant experimental thermochemical data for the TCP-kaolinite 
intercalation process to compare with our theoretical investigations.  

All adsorption reactions of the studied complexes are spontaneous, except the adsorption process of 
the configuration (C), (E) and (F) see table 3. The adsorption coefficients for these adsorption processes has 
a value of 5.99 10-4 for configuration (C), 1.24 10-2 and 8.63 10-4 for configuration (E) and (F), respectively, 
implying that binding interaction are not favored.  

The adsorption coefficient is more important with configuration (D) with a value of 4.38 109. ∆S° value 
indicates that the adsorbate is weakly bound, likely by Van der Waals forces to the surface clay. 

 

Table  3. Thermodynamics properties, adsorption constants for all configurations of adsorption 
processes 

Configuration ∆H°298 ( kcal/mol) ∆G°298(k cal/mol) ∆S°298( 

kcal/mol.K) 

K298 

Octa hedral surface      

(A) -15.81 -4.30 -0.0385 1.38 103 

(B)  -15.82 -4.31 -0.0386 1.38 103 

(C)   -4.74  4.42 -0.0307  5.99 10-4 

(D)  -23.72 -13.23 -0.0351 4.38 109 

     

Tetrahedral surface     

(E) -6.38 2.61 -0.0301 1.24 10-2 

(F) 5.70 4.20 -0.0332 8.63 10-4 

 

Homo–Lumo Gap 

 The lowest unoccupied molecular orbital energies (ELUMO) witch characterizes the ability of electron 
accepting, the highest occupied molecular energies (EHOMO) witch characterizes the ability of electron giving 
and energy gaps (∆EHOMO-LUMO ) of all adsorption complexes are shown in table 4. These values inform us 
about the relative reactivity of the TCP adsorbed on the kaolinite and the molecular chemical stability. 
Chemicals with larger (∆EHOMO-LUMO) values tend to have higher stability (Karelson et al., 1996). The results 
reported in table 4, for the energy gap agree well with the results of the binding energies. The relative 
reactivity’s of the TCP adsorbed on kaolinite are in order: configuration (D) ˃ (A) ≈ (B) ˃ (C) what mean 
that configuration (D) have higher stability due to the large energy gap and configuration (C) is a soft 
molecule due to small energy gap. 

However for tetrahedral sheet we noticed HOMO level slightly move to lower energies so ∆E of the 
configuration decreased to 0,824 eV for configuration (E) and 0,779 eV for configuration (F). The small 
band gap values reflect the lower stability of the adsorption process for the tetrahedral sheet. 

Table  4. The lowest unoccupied molecular orbital energies (ELUMO), the highest occupied molecular 
orbital energies (EHOMO) and frontier molecular orbital energy gap (∆EHOMO-LUMO) of all 
studied systems 
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Configuration EHOMO (eV) ELUMO  (eV) ∆E(HOMO-LUMO) (eV) 

Octahedral surface     

 (A)  -4.297 -2.246 2.051 

 (B)  -4.128 -2.158 2.050 

 (C)  -3.911 -2.140 1.771 

 (D)  -4.156 -2.002 2.154 

Tetrahedral surface    

(E)  -3.313 -2.489 0.824 

(F) -3.262 -2.483 0.779 

 

NBO analysis  

NBO analysis was undertaken to estimate the role of intermolecular charge transfer in determining the 
strength and equilibrium length of the hydrogen bond in the studied complexes. The donor–acceptor 
interactions of the TCP adsorption on the kaolinite clay surface were illustrated in Table 5 

According to the NBO results, the TCP molecule intervenes as donor with chlorine Cl7 for 
configuration A, B, D this  hydrogen bond seems to be the weakest one since it is the longer than the others 
H-bonds; TCP molecule intervenes also as donor with Cl8 in the configuration (C) and with Cl9 in 
configuration (A).Whereas the kaolinite cluster intervenes as donor with the oxygen of the hydroxyl groups: 
O18 for the configuration (A) and (B), O17 for configuration (D) and O31 for configuration (F). 

Table 5 lists the calculated second order interaction energy E(2) values between donor–acceptor orbitals 
in the studied configurations. The magnitude of charges transferred from a lone pair oxygen atom, LP O17 
to the anti-bonding acceptor σ* O10 - H11 shows that stabilization energy of about 40.55 kcal/ leads to the 
weakening of the  H-bond   corresponding to a bond length of 1.54 Å. 

When the kaolinite acts as a donor, the energy stabilization is much larger than when TCP acts as donor. 

We have to note that when the kaolinite plays the role of donor, the important intermolecular hydrogen 
bond is observed between LP O 18 and σ* O10 - H11 with energy equal to 9.45 and   9.37 kcal/mol for 
configuration (A) and (B) respectively as well as for the H-bond observed between LP O17 and σ* O10 - 
H11 with an energy about 40.55 kcal/mol. 

Table 5. Donor-acceptor interactions energies, distances and angles obtained for all studied systems 
calculate at B3LYP/6-31g**. 

Donor Acceptor E(2)(k(kcal/mol) Bond length A            Angle (°) 

Octahedral surface    

Configuration (B)    

LP Cl   7    

LP Cl   7                 

LP Cl   9   

LP O  18   

σ* O 46 - H 63      

σ* O 48 - H 66 

σ* O 17 - H 23  

σ* O 10 - H 11          

0.25 

4.37 

3.96 

9.37 

2.80                     159.43  

2.56                              174.13    

2.55                     163.39 

1.62                     158.52  

Configuration (C) 

LP Cl   8                 

 

σ*O 19 - H 25 

 

0.05 

 

2.62                         159.39 

Configuration (D) 

LP Cl   7      

LP O  17  

 

σ*O  15 - H  21 

σ*O  10 - H  11         

 

1.02 

40.55 

 

2.92                        154.19 

1.54                             162.14 

Tetrahedral surface    

Configuration   (E)    

LP O  31  σ*O  10 - H  11  3.71 2.24                         149.35 

Configuration  (F) /  /   /                                / 
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Conclusions 

The aim of the present work which lies within the framework of the environmental clean-up, was to 
show by means of theoretical calculations the process of adsorption of the organic pollutant 2,4,6-
trichlorophenol molecule on the kaolinite clay surface in order to identify the sites of adsorption as well as 
conformations corresponding to the ground state. The fixation of the TCP molecule on the mineral surface 
depends on its capability to form hydrogen bonds with the surface hydroxyl groups on the octahedral side 
and with basal oxygen atoms on the tetrahedral side. Various locations and orientations of TCP on the 
surfaces clay were found but the minimum energy structure corresponds to that where the TCP molecule is 
adsorbed in position including TCP hydroxyl group and one chlorine atom in the strongest hydrogen bonds. 
This position seems to minimize repulsive interactions. The hydroxyl group of the TCP molecule has the 
role of proton acceptor and forms several hydrogen bonds with protons from surface hydroxyl groups: 
electron donor-acceptor complex between kaolinite surface and TCP molecule were dominant adsorption 
mechanisms. The results point out a preferential adsorption of TCP on the octahedral surface. From the 
theoretical predictions of the thermodynamic parameters, it can be concluded that the process is driven 
thermodynamically. 
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