ANALISA GAYA DIAFRAGMA, KORD DAN KOLEKTOR PADA BANGUNAN GEDUNG SESUAI DENGAN SNI 1726:2012

Prijasambada¹, Vifi Hafifah²

¹ Dosen Jurusan Teknik Sipil, Fakultas Teknik, Universitas Persada Indonesia YAI, Jakarta, Indonesia ² Alumni Jurusan Teknik Sipil, Fakultas Teknik, Universitas Persada Indonesia YAI, Jakarta, Indonesia E-mail : prijasambada@yahoo.com¹, vifi_hafifah@yahoo.com²

ABSTRAK

Salah satu perubahan aturan gempa dari SNI 03-1726-2002 ke SNI 1726:2012 yaitu adanya gaya gempa diafragma sebagai gaya gempa tambahan yang menghasilkan tulangan ekstra berupa tulangan kord, kolektor dan sambungannya. Tujuan dari penulisan ini yaitu untuk menjelaskan cara analisa perhitungan gaya diafragma dan perhitungan tulangan ekstra tersebut pada bangunan beton bertulang 15 lantai atas dan 1 basement yang digunakan sebagai bahan analisa yang berlokasi di Jakarta dengan kelas situs tanah lunak (SE). Dari hasil penelitian diketahui bahwa dengan adanya gaya desain diafragma, menghasilkan tulangan ekstra pada diafragma ke shearwall sebagai tulangan geser friksi, tulangan elemen kolektor ke shearwall dan tulangan kord pada balok. Besarnya jumlah tulangan esktra yang diperlukan tergantung dari tingkat irregular bangunan tersebut. Pada contoh kasus, penambahan jumlah tulangan tidak banyak yang disebabkan tingkat irregular bangunan yang rendah.

Kata kunci : SNI 1726:2012; Gaya diafragma; kord; kolektor; kuat geser diafragma

1. PENDAHULUAN

Dalam periode tahun 2002 sampai 2012, Indonesia mengalami kejadian gempa besar yang menunjukkan bahwa kerusakan struktur tidak hanya terjadi pada bangunan yang tidak direncanakan tahan gempa, namun juga pada beberapa bangunan tahan gempa. Seiring dengan perkembangan ilmu pengetahuan dan munculnya data – data gempa terbaru serta perlunya Indonesia memiliki peraturan perencanaan ketahanan gempa yang baik, mendorong dilakukannya pembaruan terhadap SNI 03-1726-2002.

SNI 03-1726-2002 yang mengacu pada UBC 97 dianggap sudah ketinggalan zaman mengingat beberapa negara kiblat peraturan dunia sudah mengalami pembaruan baik isi maupun peta gempanya. Pakar gempa juga telah mengadakan penelitian terhadap gempa – gempa besar yang sudah terjadi di Indonesia dan diketahui bahwa percepatan batuan dasar gempa yang melanda Indonesia lebih besar dari yang ditetapkan pada SNI 03-1726-2002. Pada pembagian zonasi wilayah gempa menganggap bahwa semua daerah di setiap kota dalam satu zonasi tersebut memiliki respons spektrum yang sama, padahal kenyataannya tidak demikian. Hal ini membuat semakin bulatnya tekad para pakar untuk merevisi peraturan tersebut. Oleh karena itu, diterbitkan SNI 1726:2012 yang mengacu pada ASCE 7-10 untuk menggantikan SNI 03-1726-2002.

Sesuai dengan SNI 1726:2012, terdapat elemen – elemen struktur baru seperti kord dan kolektor serta diafragma yang digunakan sebagai penahan gempa. Hal ini dimaksudkan untuk mendukung tingkat keamanan struktur dengan kenaikan percepatan gempa dan semakin banyaknya gedung bertingkat yang memiliki bentuk yang tidak regular. Oleh karena itu, pada jurnal ini akan dianalisa gedung bertingkat di Jakarta sesuai dengan peraturan terbaru tersebut.

2. METODOLOGI

Metodologi penulisan melingkupi studi pustaka, menentukan kriteria desain gedung, menentukan desain awal gedung, modelisasi struktur dan analisa struktur sesuai dengan peraturan terbaru, yaitu SNI 1726:2012 dan SNI 2847:2013.

3. LANDASAN TEORI

Gaya Desain Diafragma

п

Berdasarkan SNI 1726:2012 pasal 7.10.1.1, diafragma lantai dan atap harus didesain untuk menahan gaya gempa desain dari analisis struktur, tetapi tidak boleh kurang dari yang ditentukan sesuai dengan Persamaan 1 sebagai berikut :

$$F_{px} = \frac{\sum_{i=x}^{n} F_i}{\sum_{i=x}^{n} w_i} w_{px}$$
(1)

Dimana :

Fpx = gaya desain diafragma

Fi = gaya desain yang diterapkan di tingkat i

wi = tributari berat sampai tingkat i

wpx = tributari berat sampai diafragma di tingkat x.

Gaya yang ditentukan dari Persamaan 1 tidak boleh kurang dari :

$$F_{px} = 0,2S_{DS}I_eW_{px} \tag{2}$$

dan tidak boleh melebihi :

$$F_{px} = 0,4S_{DS}I_eW_{px}$$

Kolektor

Kolektor adalah elemen tarik atau tekan yang mengumpulkan gaya geser dari diafragma dan menyalurkan gaya ke elemen vertikal. Kolektor dapat berupa balok atau zona yang diberi tulangan di dalam pelat lantai.

Gambar 3. Elemen kolektor Sumber : ASCE 7-10, 2010

Berdasarkan SNI 1726:2012 untuk struktur yang dirancang pada Kategori Desain Seismik (KDS) C, D, E atau F, elemen – elemen kolektor dan sambungannya, termasuk sambungan ke komponen vertikal harus didesain untuk menahan nilai maksimum diantara nilai – nilai pada Pasal 7.10.2.1 dan pengecualiannya. Namun, gaya – gaya transfer sebagaimana dijelaskan dalam Pasal 7.10.1.1, harus ditinjau.

Gambar 5. Gaya desain kolektor berdasarkan ASCE 7-10

Sumber : Significant Changes From ASCE 7-05 to ASCE 7-10 part 1 : Seismic Design Provisions, S.K. Ghosh, 2014

Kord

(3)

Kord merupakan elemen struktur dapat berupa balok atau pelat lantai yang berada pada tepi bangunan sebagai penahan gaya tarik dan tekan akibat adanya gaya gempa pada diafragma. Perhitungan tulangan tarik kord yang terkonsentrasi dekat dengan tepi diafragma dengan nilai $\emptyset = 0,9$ dapat diperoleh dengan persamaan berikut : $A = {}^{1}T_{u}$ (4)

(4)

$$A_s = \frac{1}{\emptyset} \frac{r_u}{f_y}$$

ACI 318 memperbolehkan tulangan kord untuk didistribusikan sepanjang kedalaman diafragma, meskipun NEHRP – Seismic Design of Cast-in-Place Concrete Diaphragms, Chords, and Collectors (2010) merekomendasikan diletakkan antara seperempat luar kedalaman diafragma.

Sesuai dengan ACI 318 edisi sebelum 2008, kord tekan harus diberi tulangan sengkang jika tegangan tekan melebihi 0,2 f'c. Persyaratan ini telah dihilangkan pada edisi 2008 kecuali untuk elemen diafragma utama yang menerima gaya tekan aksial (struts) dan digunakan untuk meneruskan gaya geser atau lentur diafragma pada sekitar bukaan atau area tidak menerus lainnya.

4. HASIL DAN PEMBAHASAN

Gedung yang dianalisa dalam jurnal ini adalah gedung perkantoran bertingkat 15 lapis atas dan 1 lapis basement yang berlokasi di Jakarta dengan kelas situs tanak lunak (SE). Sistem struktur adalah sistem ganda dengan sistem rangka pemikul momen khusus (SRPMK) beton bertulang dan dinding beton bertulang khusus (DBK). Gedung dianalisa dengan sistem 2 tahap, dimana untuk perhitungan struktur atas dipisah dengan lantai basement. **Kord**

Elemen kord pada bangunan ini dimodelisasikan sebagai elemen balok. Gaya yang diterima kord dihitung dengan persamaan gaya diafragma sesuai dengan persamaan (1) sampai (3).

Tabel 1 dan 2 adalah perhitungan gaya diafragma pada setiap lantai untuk arah X dan Y.

Gambar 6. Pemodelan struktur 3D tanpa basement Sumber : Pengolahan Penulis, 2017

Input beban lateral ke diafragma dilakukan dengan distribusi *assembled mass joint*. Penggunaan opsi *User Coefficient* pada *Defined Pattern Load* pada *Seismic Load* pada program *ETABS* digunakan untuk menginput Fpx dan Fpy dalam bentuk ratio Fpx atau Fpy terhadap berat *story* yang ditinjau sebagai *user coefficient base shear*. Beban lateral Fpx atau Fpy pada diafragma secara otomatis akan terdistribusi sesuai *Assembled Point Mass*. Analisis dilakukan hanya untuk diafragma yang sedang ditinjau satu persatu tidak sekaligus, karena beban maksimum pada diafragma tidak terjadi bersamaan pada lantai.

Berikut analisa perhitungan tulangan balok kord pada lantai 15.

Sumber : Pengolahan Penulis, 2017

Perhitungan tulangan balok kord tipe 1, 2 dan 3 sesuai dengan persamaan (4) terdapat pada Tabel 3.

Gambar 8. Gaya tarik maksimum tipe balok kord 1 Sumber : Pengolahan Penulis, 2017

Gambar 9. Gaya tarik maksimum tipe balok kord 2 Sumber : Pengolahan Penulis, 2017

Gambar 10. Gaya tarik maksimum tipe balok kord 3 Sumber : Pengolahan Penulis, 2017

Gaya tarik pada Tabel 6 didapat dari *ETABS* gaya diafragma dan momen didapat dari *ETABS* gaya gempa dinamik skala. Kemudian gaya dan momen tersebut dimasukkan kedalam diagram interaksi untuk mengetahui apakah tulangan terpasang mencukupi.

Tabel 2. Pehitungan Fpx kord

Story	Wpx	∑Wi	∑Fi	Fpx	Fpx min	Fpx max	Fpx Dipakai	Fpx dipakai / Wpx
	(kN) 10 ⁴	mpx						
ATAP	0,97	1,05	0,196	0,180	0,118	0,235	0,180	0,1867
LT15	1,10	2,31	0,388	0,185	0,134	0,268	0,185	0,1681
LT14	1,10	3,57	0,547	0,169	0,134	0,268	0,169	0,1531
LT13	1,10	4,84	0,679	0,155	0,134	0,268	0,155	0,1403
LT12	1,45	6,48	0,821	0,184	0,176	0,352	0,184	0,1268
LT11	1,45	8,14	0,948	0,169	0,176	0,353	0,176	0,1216
LT10	1,45	9,81	1,059	0,157	0,176	0,353	0,176	0,1216
LT9	1,45	11,48	1,159	0,146	0,176	0,353	0,176	0,1216
LT8	1,44	13,12	1,249	0,137	0,175	0,351	0,175	0,1216
LT7-P6	1,09	14,33	1,314	0,100	0,132	0,264	0,132	0,1216
P5B	0,37	14,80	1,340	0,034	0,045	0,091	0,045	0,1216
P5A	0,40	15,29	1,365	0,036	0,049	0,098	0,049	0,1216
LT6-P5	1,07	16,45	1,424	0,092	0,130	0,260	0,130	0,1216
P4A	0,40	16,95	1,450	0,035	0,049	0,098	0,049	0,1216
LT5-P4	1,09	18,12	1,509	0,090	0,132	0,264	0,132	0,1216
P3B	0,40	18,61	1,534	0,033	0,049	0,097	0,049	0,1216
P3A	0,39	19,09	1,556	0,032	0,047	0,094	0,047	0,1216
LT.4-P3	1,05	20,24	1,606	0,084	0,128	0,256	0,128	0,1216
P2A	0,39	20,71	1,625	0,030	0,047	0,094	0,047	0,1216
LT3-P2	1,06	21,87	1,669	0,081	0,129	0,259	0,129	0,1216
P1B	0,39	22,35	1,686	0,029	0,047	0,094	0,047	0,1216
P1A	0,49	22,93	1,703	0,036	0,059	0,118	0,059	0,1216
LT2-P1	1,18	24,22	1,734	0,084	0,143	0,286	0,143	0,1216
MZN	0,85	25,30	1,753	0,059	0,103	0,206	0,103	0,1216

Tabel 3. Perhitungan tulangan balok kord

	TA.	Tulangan Pelat Lantai									
Lokasi	vu	Tulanaan	Jumlah	And	fi		Vn	$\mathcal{P}Vn$	Cek		
	kΝ.	THIRD FAIL	batang/m	mm^2	N/mm ²	μ	KN.	kN.	$\Phi Vn > Vu$		
1	59,987	D10-200 (2 lapis)	10	785	400	0,6	188,400	141,300	OK		
2	132,414	D10-200 (2 lapis)	10	785	400	0,6	188,400	141,300	OK		
3	49,600	D10-200 (2 lapis)	10	785	400	0,6	188,400	141,300	OK		

Tabel 4. Pemeriksaan tulangan geser friksi

Tipe	COMP	Ти	£	fy	As	Penul	As Terpasang	Cak
Balok	COMB	(I-NI)	J	(N/m)	(2)	angan	(2)	Cek
		(KIN)		m ⁻)	(<i>mm</i> -)		(mm^{-})	
1	Comb 5	27,81	0,9	400	77,25	6 D19	1700,31	OK
2	Comb 9	115,15	0,9	400	319,8611	6 D19	1700,31	OK
3	Comb 11	32,27	0,9	400	89,63889	4 D13	530,66	OK

Fpy Fpy ∑Wi Wpx ∑Fi Fpy Fpy min Fpy dipakai max dipaka Story (kN)(kN)(kN)(kN)(kN)(kN)i / Wpx $(kN) 10^4$ 10^{4} 10^{4} 10^{4} 10^{4} 10^{4} 10^{4} 0,97 1,05 0,211 0,194 0,235 0,194 0,2004 ATAP 0,118 LT15 1,10 2,31 0,408 0,195 0,134 0,268 0,195 0,1765 LT14 1,10 3,57 0,566 0,174 0,134 0,268 0,174 0,1583 LT13 4,84 0,134 0,156 0,1419 1,10 0,687 0,156 0,268 LT12 1,45 0,803 0,179 0,176 0,352 0,179 0,1240 6,48 LT11 1,45 8,14 0,904 0,161 0,176 0,353 0,176 0,1216 LT10 1.45 9.81 0.990 0.146 0.176 0,353 0,176 0,1216 LT9 1.45 11.48 1.068 0.135 0.176 0.353 0.176 0,1216 LT8 1,44 13,12 1,143 0,126 0,175 0,351 0,175 0,1216 LT7-P6 0.132 0,1216 1.09 14,33 1,200 0.091 0,132 0,264 P5B 0,37 14,80 1,225 0,031 0,045 0,091 0,045 0,1216 0,40 15,29 0,033 0.049 P5A 1,250 0.049 0,098 0,1216 LT6-P5 1,07 16,45 1,312 0.085 0,130 0,260 0,130 0,1216 P4A 0,40 16,95 1,340 0,032 0,049 0,098 0,049 0,1216 LT5-P4 1,09 18,12 1,406 0,084 0,132 0,264 0,132 0,1216 P3B 0,40 18,61 1,435 0,031 0,049 0,097 0,049 0,1216 P3A 0,39 19,09 1,462 0,030 0,047 0,094 0,047 0,1216 LT.4-P3 1,05 20,24 1,523 0,079 0,128 0,256 0,128 0,1216 P2A 0,39 20,71 1,549 0,029 0,047 0,094 0,047 0,1216 LT3-P2 21,87 1,06 1,607 0,078 0,129 0,259 0,129 0,1216 0,39 22,35 0,028 0,047 0,094 0,047 0,1216 P1B 1,631 P1A 0,49 22,93 1,655 0,035 0,059 0,118 0,059 0,1216 LT2-P1 1,18 24,22 1,703 0,083 0,143 0,286 0,143 0,1216 MZN 0,85 25,30 1,734 0,058 0,103 0,206 0,103 0,1216

Tabel 6. Perhitungan kuat geser diafragma

Tabel 5. Perhitungan Fpy kord

Loca tion	F22	(kN)	Sect ion Wid th	Vn Vu / ø	Concrete Shear Capacity $\forall \mathbf{n} = \frac{1}{6} \sqrt{\mathbf{fc} \mathbf{x} \mathbf{b} \mathbf{x} \mathbf{d}}$	Shear Reinforcem ent	Reinforc ement Needed
	Right	Left	<i>(m)</i>	(kN)	(kN)	(kN)	
1	50,878	-41,859	36,4	78,27338	3322,850	-	-
2	113,942	-113,942	3,35	175,2948	305,812	-	-
3	17,916	-17,916	1,2	27,56308	109,545	-	-

Tabel 7. Gaya aksial dan momen balok kord

Tine Ralek	Tu	MZ
THE BUILD	(BN)	(KNM)
1	27,81	346,355
2	115,15	259,108
3	32,27	108,928

Tabel 8. Perhitungan 1,25 Fpx

Story	Wpx	$\sum Wi$	$\sum Fi$	Fpx	Fpx min	Fpx max	Fpx Dipakai	1.25 x Fpx Dipakai	1.25 x Fpx dipakai / Wpx
	(kN) 104	(kN) 104	(kN) 10 ⁴	(kN) 104	(kN) 104	(kN) 10 ⁴	(kN) 10 ⁴	(kN) 104	
ATAP	0,97	1,05	0,196	0,180	0,118	0,235	0,180	0,2256	0,2334
LT15	1,10	2,31	0,388	0,185	0,134	0,268	0,185	0,2318	0,2101
LT14	1,10	3,57	0,547	0,169	0,134	0,268	0,169	0,2107	0,1913
LT13	1,10	4,84	0,679	0,155	0,134	0,268	0,155	0,1932	0,1754
LT12	1,45	6,48	0,821	0,184	0,176	0,352	0,184	0,2294	0,1585
LT11	1,45	8,14	0,948	0,169	0,176	0,353	0,176	0,2206	0,1520
LT10	1,45	9,81	1,059	0,157	0,176	0,353	0,176	0,2206	0,1520
LT9	1,45	11,48	1,159	0,146	0,176	0,353	0,176	0,2206	0,1520
LT8	1,44	13,12	1,249	0,137	0,175	0,351	0,175	0,2192	0,1520
LT7-P6	1,09	14,33	1,314	0,100	0,132	0,264	0,132	0,1651	0,1520
P5B	0,37	14,80	1,340	0,034	0,045	0,091	0,045	0,0567	0,1520
P5A	0,40	15,29	1,365	0,036	0,049	0,098	0,049	0,0613	0,1520
LT6-P5	1,07	16,45	1,424	0,092	0,130	0,260	0,130	0,1623	0,1520
P4A	0,40	16,95	1,450	0,035	0,049	0,098	0,049	0,0613	0,1520
LT5-P4	1,09	18,12	1,509	0,090	0,132	0,264	0,132	0,1650	0,1520
P3B	0,40	18,61	1,534	0,033	0,049	0,097	0,049	0,0607	0,1520
P3A	0,39	19,09	1,556	0,032	0,047	0,094	0,047	0,0589	0,1520
LT.4-P3	1,05	20,24	1,606	0,084	0,128	0,256	0,128	0,1602	0,1520
P2A	0,39	20,71	1,625	0,030	0,047	0,094	0,047	0,0589	0,1520
LT3-P2	1,06	21,87	1,669	0,081	0,129	0,259	0,129	0,1616	0,1520
P1B	0,39	22,35	1,686	0,029	0,047	0,094	0,047	0,0589	0,1520
P1A	0,49	22,93	1,703	0,036	0,059	0,118	0,059	0,0740	0,1520
LT2-P1	1,18	24,22	1,734	0,084	0,143	0,286	0,143	0,1787	0,1520
MZN	0,85	25,30	1,753	0,059	0,103	0,206	0,103	0,1287	0,1520

Tabel 9. Perhitungan 1,25 Fpy

Story	Wpx	$\sum Wi$	∑Fi	Fpy	Fpy min	Fpy max	Fpy dipakai	1.25 x Fpy Dipakai	1.25 x Fpy dipakai / Wpx
	(kN) 104	(kN) 104	(kN) 104	(kN) 104	(kN) 104	(kN) 10 ⁴	(kN) 104	(kN)	
ATAP	0,97	1,05	0,211	0,194	0,118	0,235	0,194	0,2421	0,2505
LT15	1,10	2,31	0,408	0,195	0,134	0,268	0,195	0,2434	0,2206
LT14	1,10	3,57	0,566	0,174	0,134	0,268	0,174	0,2179	0,1978
LT13	1,10	4,84	0,687	0,156	0,134	0,268	0,156	0,1954	0,1774
LT12	1,45	6,48	0,803	0,179	0,176	0,352	0,179	0,2243	0,1550
LT11	1,45	8,14	0,904	0,161	0,176	0,353	0,176	0,2206	0,1520
LT10	1,45	9,81	0,990	0,146	0,176	0,353	0,176	0,2206	0,1520
LT9	1,45	11,48	1,068	0,135	0,176	0,353	0,176	0,2206	0,1520
LT8	1,44	13,12	1,143	0,126	0,175	0,351	0,175	0,2192	0,1520
LT7-P6	1,09	14,33	1,200	0,091	0,132	0,264	0,132	0,1651	0,1520
P5B	0,37	14,80	1,225	0,031	0,045	0,091	0,045	0,0567	0,1520
P5A	0,40	15,29	1,250	0,033	0,049	0,098	0,049	0,0613	0,1520
LT6-P5	1,07	16,45	1,312	0,085	0,130	0,260	0,130	0,1623	0,1520
P4A	0,40	16,95	1,340	0,032	0,049	0,098	0,049	0,0613	0,1520
LT5-P4	1,09	18,12	1,406	0,084	0,132	0,264	0,132	0,1650	0,1520
P3B	0,40	18,61	1,435	0,031	0,049	0,097	0,049	0,0607	0,1520
P3A	0,39	19,09	1,462	0,030	0,047	0,094	0,047	0,0589	0,1520
LT.4-P3	1,05	20,24	1,523	0,079	0,128	0,256	0,128	0,1602	0,1520
P2A	0,39	20,71	1,549	0,029	0,047	0,094	0,047	0,0589	0,1520
LT3-P2	1,06	21,87	1,607	0,078	0,129	0,259	0,129	0,1616	0,1520
P1B	0,39	22,35	1,631	0,028	0,047	0,094	0,047	0,0589	0,1520
P1A	0,49	22,93	1,655	0,035	0,059	0,118	0,059	0,0740	0,1520
LT2-P1	1,18	24,22	1,703	0,083	0,143	0,286	0,143	0,1787	0,1520
MZN	0,85	25,30	1,734	0,058	0,103	0,206	0,103	0,1287	0,1520

Tabel 10. Fpx kolektor

		E 117:	5.0		Fpx		Check Max j	for Collector		Fpx	Identifika si	Fpx
Story	Wpx	ZWI	ΣFI	Fpx	min	Fi . Ω_0	Fpx. Ω_0	Fpx min	Max	max	F Collector	Collecto r dinakai
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)		/ Wpx
477.4.D	10"	10*	10"	10"	10"	10"	10"	10"	10"	10*	E 14	0.042
ATAP	0,97	1,05	0,196	0,180	0,118	0,491	0,451	0,118	0,491	0,235	Fpx Max	0,243
LTIS	1,10	2,31	0,388	0,185	0,134	0,480	0,464	0,134	0,480	0,268	Fpx Max	0,243
LT14	1,10	3,57	0,547	0,169	0,134	0,397	0,421	0,134	0,421	0,268	Fpx Max	0,243
LT13	1,10	4,84	0,679	0,155	0,134	0,329	0,386	0,134	0,386	0,268	Fpx Max	0,243
LT12	1,45	6,48	0,821	0,184	0,176	0,356	0,459	0,176	0,459	0,352	Fpx max	0,243
LT11	1,45	8,14	0,948	0,169	0,176	0,317	0,422	0,176	0,422	0,353	Fpx max	0,243
LT10	1,45	9,81	1,059	0,157	0,176	0,276	0,391	0,176	0,391	0,353	Fpx max	0,243
LT9	1,45	11,48	1,159	0,146	0,176	0,250	0,366	0,176	0,366	0,353	Fpx max	0,243
LT8	1,44	13,12	1,249	0,137	0,175	0,226	0,343	0,175	0,343	0,351	Fpx . Ω0	0,238
LT7-P6	1,09	14,33	1,314	0,100	0,132	0,162	0,249	0,132	0,249	0,264	Fpx . Ω0	0,229
P5B	0,37	14,80	1,340	0,034	0,045	0,064	0,084	0,045	0,084	0,091	Fpx . Ω0	0,226
P5A	0,40	15,29	1,365	0,036	0,049	0,063	0,090	0,049	0,090	0,098	Fpx . Ω0	0,223
LT6-P5	1,07	16,45	1,424	0,092	0,130	0,149	0,231	0,130	0,231	0,260	Fpx . Ω0	0,216
P4A	0,40	16,95	1,450	0,035	0,049	0,063	0,086	0,049	0,086	0,098	Fpx . Ω0	0,214
LT5-P4	1,09	18,12	1,509	0,090	0,132	0,148	0,226	0,132	0,226	0,264	Fpx . Ω0	0,208
P3B	0,40	18,61	1,534	0,033	0,049	0,062	0,082	0,049	0,082	0,097	Fpx . Ω0	0,206
P3A	0,39	19,09	1,556	0,032	0,047	0,055	0,079	0,047	0,079	0,094	Fpx . Ω0	0,204
LT.4-P3	1,05	20,24	1,606	0,084	0,128	0,124	0,209	0,128	0,209	0,256	Fpx . Ω0	0,198
P2A	0,39	20,71	1,625	0,030	0,047	0,049	0,076	0,047	0,076	0,094	Fpx . Ω0	0,196
LT3-P2	1,06	21,87	1,669	0,081	0,129	0,109	0,203	0,129	0,203	0,259	Fpx . Ω0	0,191
P1B	0,39	22,35	1,686	0,029	0,047	0,042	0,073	0,047	0,073	0,094	Fpx . Ω0	0,189
P1A	0,49	22,93	1,703	0,036	0,059	0,044	0,090	0,059	0,090	0,118	Fpx . Ω0	0,186
LT2-P1	1,18	24,22	1,734	0,084	0,143	0,078	0,210	0,143	0,210	0,286	Fpx . Ω0	0,179
MZN	0,85	25,30	1,753	0,059	0,103	0,046	0,147	0,103	0,147	0,206	Fpx . Ω0	0,173

Tabel 11. Fpy kolektor

	117	EIV:	5.0	F	Fpy		Check Max j	for Collector		Fpy	Identifika si	Fpy
Story	wpx	Zwi	∑F1	гру	min	Fi . Ω_0	Fpy. Ω_0	Fpy min	Max	max	F Collector	Collecto r dinakai
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)		/ Wpx
1710	10*	10*	10*	10"	10*	10"	10"	10"	10"	10*	E.M.	0.242
L T15	0,97	1,05	0,211	0,194	0,118	0,320	0,484	0,118	0,320	0,255	Fpy Max	0,243
LT13	1,10	2,51	0,408	0,193	0,134	0,493	0,487	0,134	0,495	0,208	Fpy Max	0,243
L114	1,10	3,57	0,566	0,174	0,134	0,395	0,436	0,134	0,436	0,268	Fpy Max	0,243
L113	1,10	4,84	0,687	0,156	0,134	0,302	0,391	0,134	0,391	0,268	Fpy max	0,243
LIIZ	1,45	0,48	0,803	0,179	0,176	0,291	0,449	0,176	0,449	0,352	Fpy max	0,243
LIII	1,45	8,14	0,904	0,161	0,176	0,255	0,403	0,176	0,403	0,353	Fpy max	0,243
LIIO	1,45	9,81	0,990	0,146	0,176	0,214	0,366	0,176	0,366	0,353	Fpy max	0,243
L19	1,45	11,48	1,068	0,135	0,176	0,196	0,338	0,176	0,338	0,353	Fpy. Ω0	0,233
L18	1,44	13,12	1,143	0,126	0,175	0,188	0,314	0,175	0,314	0,351	Fpy . Ω0	0,218
L17-P6	1,09	14,33	1,200	0,091	0,132	0,143	0,227	0,132	0,227	0,264	Fpy. Ω0	0,209
P5B	0,37	14,80	1,225	0,031	0,045	0,062	0,077	0,045	0,077	0,091	Fpy . Ω0	0,207
P5A	0,40	15,29	1,250	0,033	0,049	0,064	0,082	0,049	0,082	0,098	Fpy . Ω0	0,204
LT6-P5	1,07	16,45	1,312	0,085	0,130	0,153	0,213	0,130	0,213	0,260	Fpy. Ω0	0,199
P4A	0,40	16,95	1,340	0,032	0,049	0,070	0,080	0,049	0,080	0,098	Fpy . Ω0	0,198
LT5-P4	1,09	18,12	1,406	0,084	0,132	0,165	0,210	0,132	0,210	0,264	Fpy . Ω0	0,194
P3B	0,40	18,61	1,435	0,031	0,049	0,074	0,077	0,049	0,077	0,097	Fpy. Ω0	0,193
P3A	0,39	19,09	1,462	0,030	0,047	0,067	0,074	0,047	0,074	0,094	Fpy . Ω0	0,191
LT.4-P3	1,05	20,24	1,523	0,079	0,128	0,153	0,198	0,128	0,198	0,256	Fpy . Ω0	0,188
P2A	0,39	20,71	1,549	0,029	0,047	0,065	0,072	0,047	0,072	0,094	Fpy . Ω0	0,187
LT3-P2	1,06	21,87	1,607	0,078	0,129	0,143	0,195	0,129	0,195	0,259	Fpy . Ω0	0,184
P1B	0,39	22,35	1,631	0,028	0,047	0,060	0,071	0,047	0,071	0,094	Fpy . Ω0	0,182
P1A	0,49	22,93	1,655	0,035	0,059	0,061	0,088	0,059	0,088	0,118	Fpy. Ω0	0,180
LT2-P1	1,18	24,22	1,703	0,083	0,143	0,121	0,207	0,143	0,207	0,286	Fpy. Ω0	0,176
MZN	0,85	25,30	1,734	0,058	0,103	0,077	0,145	0,103	0,145	0,206	Fpy . Ω0	0,171

Gambar 11. Diagram interaksi dan tulangan balok kord terpasang tipe 1 Sumber : Pengolahan Penulis, 2017

Kuat Geser Diafragma

Pelat lantai yang didesain sebagai penahan gempa harus diperiksa kembali kuat geser terhadap gaya diafragma. Berikut analisa perhitungan pada pada lantai 15.

Gambar 12. Lokasi *section cut* Sumber : Pengolahan Penulis, 2017

						_
- Section Cutting Lin	e					
	X		Y	Z	-	
Start Point	21,3035	118,0	388	62,65	_	
End Point	24,6387	18,1	202	62,65		
Resultant Force Lo	cation and Angle					
	×	-	Y	Z	Angl	e
	22,9/11	18,0	/95	162,65	190	
Include	Floors	🔽 Beams	🔲 Braces	🔲 Columns	Walls 🗖	Ramps
Integrated Forces						
	Right Sid	le		L	eft Side	
Fares	1 2	0.0410	Z	1	2	Z
Moment	-6,2183 11	3,9416	-47,677	6,2183	-113,9416	26,5855
inomone j	-02,1101] -11	2,0020 [-20,7202	117,5001]	110,021]	20,7202

Gambar 13. Hasil *section cut* lokasi 2 Sumber : Pengolahan Penulis, 2017

Berdasarkan Tabel 5, dengan tebal pelat lantai 130 mm, gaya geser ultimate pelat lantai diafragma disekitar dinding geser tidak melebihi kapasitas kuat geser betonnya saja sehingga tidak diperlukan tulangan geser pada pelat lantai.

Sambungan Diafragma ke Dinding Geser dan Kolektor.

Berdasarkan SNI 1726:2012 Pasal 7.3.3.4, untuk struktur yang dirancang di kategori KDS D, E, atau F dan mempunyai ketidakberaturan struktur horizontal Tipe 1a, 1b, 2, 3 atau 4 pada Tabel 10 SNI 1726:2012 atau ketidakberaturan struktur vertikal Tipe 4 pada Tabel 11 SNI 1726:2012, gaya desain yang ditentukan berdasarkan 7.10.1.1 harus ditingkatkan 25%, salah satunya adalah untuk elemen – elemen sistem penahan gaya gempa berupa sambungan antara diafragma ke elemen – elemen vertikal dan ke elemen kolektor.

Tabel 7 dan 8 adalah tabel perhitungan nilai Fpx dengan rumus yang sama dengan perhitungan nilai Fpx kord. Namun, nilai Fpx dipakai diperbesar 25% sesuai dengan ketentuan pada SNI 1726:2012 Pasal 7.3.3.4.

Gaya geser dari diafragma ke dinding geser dan balok kolektor ditransfer melalui geser friksi. Berdasarkan SNI 2847:2013 Pasal 11.6, tulangan geser friksi tersebut di cek dengan perhitungan sebagai berikut :

$$V_n = A_{\rm vf} f_y \,\mu \tag{4}$$

Dimana :

- Avf = Luas tulangan geser-friksi perlu
- μ = koefisien friksi sesuai dengan SNI 2847:2013 Pasal 11.6.4.3

Pada perhitungan ini, nilai μ yang digunakan adalah 0,6 λ , dimana $\lambda = 1,0$ untuk beton berat normal. Berikut analisa perhitungan pada pada lantai 15.

Gambar 14. Lokasi *section cut* Sumber : Pengolahan Penulis, 2017

Section Cutting	Line			_		
Start Roint	21.1401		Y 17 9888	L 62.65	-	
End Date	24 7096	¦	17 9999	62.65	-	
Endroine	24,7030	i J	17,3000	102,00		
Resultant Force	Location and An	gle				
	X		Y	Z	Ang	le
	22,9248	i I	17,9888	62,65	lan	
Include	🔽 Floor	s 🔽 Bear	ms 📃 Braces	🔲 Columns 🖡	Walls 🔲	Ramps
Integrated Force	es					
	Righ	t Side		Le	eft Side	
	1	2	Z	1	2	Z
Force	1,9323	132,4142	-12,3824	-1,9323	-132,4142	51,2909
Moment	-31,6418	-74,9448	-127,4751	65,0863	109,7698	127,4751

Gambar 15. Hasil *section cut* di *section* 2 Sumber : Pengolahan Penulis, 2017

Berdasarkan Tabel 4 dapat dilihat bahwa tulangan pelat lantai saja yang mentransfer gaya geser friksi dari diafragma ke dinding geser dan balok kolektor cukup sebagai tulangan geser friksi. Oleh karena itu tidak dibutuhkan tulangan geser friksi tambahan.

Kolektor.

Pada SNI 1726:2012 Pasal 7.10.2.1, untuk struktur yang dirancang pada Kategori Desain Seismik (KDS) C, D, E atau F, elemen – elemen kolektor dan sambungannya, termasuk sambungan ke komponen vertikal harus didesain untuk menahan nilai maksimum diantara nilai – nilai berikut :

 Gaya – gaya yang dihitung menggunakan pengaruh beban gempa, termasuk faktor kuat lebih dalam Pasal 7.4.3 dengan gaya – gaya gempa ditetapkan berdasarkan prosedur gaya lateral ekivalen dalam Pasal 7.8 atau prosedur analisis spektrum respons ragam dalam Pasal 7.9.

			Env may		
	Fi.Ω₀	Fpx.Ω₀	Fpx min	Max	грх тах
١.	(kN)	(kN)	(kN)	(kN)	(kN)

 Gaya – gaya yang dihitung menggunakan pengaruh beban gempa, termasuk faktor kuat lebih dalam Pasal 7.4.3 dengan gaya – gaya gempa ditetapkan berdasarkan Persamaan 2.1.

	Check Max for Collector					Con anon
	Fi.Ω₀	Fpx.Ω₀	1	px min	Max	грх тах
I	(kN)	(kN)		(kN)	(kN)	(kN)
1						

 Gaya – gaya yang dihitung menggunakan kombinasi beban dalam Pasal 7.4.2.3, dengan gaya gempa ditetapkan oleh Persamaan 2.2.

Gaya – gaya transfer, sebagaimana dijelaskan dalam Pasal 7.10.1.1, harus ditinjau.

Pengecualian :

 Gaya – gaya yang dihitung di atas tidak perlu melebihi gaya – gaya yang dihitung menggunakan kombinasi beban dalam Pasal 7.4.2.3, dengan gaya gempa ditetapkan berdasarkan Persamaan 2.3.

 Pada struktur atau bagiannya yang dibres secara keseluruhan dengan dinding geser portal ringan, elemen – elemen kolektor beserta sambungannya, termasuk sambungan – sambungan ke elemen – elemen vertikal hanya perlu didesain untuk menahan kombinasi beban sesuai Pasal 7.4.2.3, dengan gaya – gaya gempa ditetapkan berdasarkan Pasal 7.10.1.1.

Tabel 9 dan 10 adalah tabel perhitungan nilai Fpx dan Fpy kolektor pada setiap lantai.

Berikut analisa perhitungan tulangan balok kolektor pada lantai 15 yang dimodelisasikan sebagai elemen kolom.

Gambar 16. Tipe balok kolektor Sumber : Pengolahan Penulis, 2017

Gambar 17. Gaya Tarik maksimal pada balok kolektor tipe 1 Sumber : Pengolahan Penulis, 2017

Gambar 18. Gaya Tarik maksimal pada balok kolektor tipe 1 Sumber : Pengolahan Penulis, 2017

Gaya tekan pada balok kolektor Tipe 1 masih di bawah 0,1 fc' Ag. Namun pada balok tersebut terdapat gaya tarik maksimal sebesar 143,49 kN.

Gambar 19. Diagram interaksi dan tulangan balok kolektor terpasang tipe 1 Sumber : Pengolahan Penulis, 2017

Tulangan terpasang pada balok kolektor masih memenuhi dalam diagram interaksi.

5. KESIMPULAN

Analisa gedung pada jurnal ini yang menggunakan SNI 1726:2012 tentang gaya desain diafragma menghasilkan tulangan ekstra pada diafragma ke shearwall sebagai tulangan geser friksi, tulangan elemen kolektor ke shearwall dan tulangan kord pada balok. Besarnya jumlah tulangan esktra yang diperlukan tergantung dari tingkat irregular bangunan tersebut. Pada contoh kasus, penambahan jumlah tulangan tidak banyak yang disebabkan tingkat irregular bangunan yang rendah.

DAFTAR PUSTAKA

Alexander, N. & Sukamta, D. (2016, Agustus). Short Course HAKI 2016: Perencanaan diafragma, kord dan kolektor terhadap pengaruh gempa. Jakarta: HAKI (Himpunan Ahli Konstruksi Indonesia)

- American Concrete Institue (ACI). (2011). Building Code Requirements for Stuctural Concrete.
- American Society of Civil Engineers (ASCE). (2010). *Minimum Design Loads for Buildings and Other Structures. ASCE 7-10.* Reston, VA : ASCE.
- Federal Emergency Management Agency (FEMA). (2012). NEHRP Reccomended Seismic Provision Design Example. Washington, D.C.: FEMA.
- Hafifah, Vifi. (2016). Evaluasi pengaruh ketidakberaturan horizontal pada struktur bangunan dengan denah berbentuk U berdasarkan SNI 03-1726-2002 dan SNI 1726:2012. Tesis, Fakultas Teknik: Universitas Indonesia.
- National Institute of Standard and Technology (NIST). (2010). NEHRP Seismic Design of Cast-in-place Concrete Diaphragms Chord and Collector. NIST GCR 10-917-4. California.
- S. K. Ghosh. Significant Change from ASCE 7-05 to ASCE 7-10, part 1 Seismisc Design Provisions.
- Standard Nasional Indonesia (SNI). (2012). Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Banunan Gedung dan non Gedung. SNI 1726:2012. Bandung: Badan Standarisasi Indonesia.
- Standard Nasional Indonesia (SNI). (2013). Persyaratan Beton Struktural untuk Bangunan Gedung. SNI 2847:2013. Bandung: Badan Standarisasi Indonesia.