
Kajian Estimasi-M … (Elen) 
 

1 

 

KAJIAN ESTIMASI-M IRLS MENGGUNAKAN FUNGSI PEMBOBOT 

HUBER DAN BISQUARE TUKEY PADA DATA KETAHANAN PANGAN 

DI JAWA TENGAH 

 
Elen Dwi Pradewi

1
, Sudarno

2
 

1Alumni Program Studi Statistika FSM Universitas Diponegoro 
2Staf Pengajar Program Studi Statistika FSM Universitas Diponegoro 

 
 

Abstract 
 
Ordinary Least Squares (OLS) is one method of parameter estimation in regression analysis. 
However, the presence of outliers can cause estimation of regression coefficients obtained are not 
exact. Act of throwing away an outlier is not a wise move, because sometimes outliers provide 
significant information. Therefore, robust regression methods are needed to data contain outliers. 
This paper will use robust regression estimation method by M-estimation. This estimation use 
Iteratively Reweighted Least Squares (IRLS) method with weighting function by Huber and Tukey 
Bisquare. IRLS is applied to the case of food security in Central Java in 2007 that is influenced by 
the stock of rice, harvested area, average production, price of rice and the amount of consumption. 
The purpose of this writing is to compare goodness of M-estimation IRLS using Huber and Tukey 
Bisquare function in estimating the model parameters of food security in Central Java in 2007. 
Based on the research results can be concluded that the M-estimation by the Tukey Bisquare is 
better recommended than Huber function. This can be seen by value results of Mean Square Error 
and determination coefficient. 
 

Keywords:  Robust Regression, Iteratively Reweighted Least Squares, Outlier, Huber Weighting 
Function, Tukey Bisquare Weighting Function 
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1. Pendahuluan 

Analisis regresi merupakan salah satu teknik analisis statistika yang paling banyak 
digunakan. Analisis regresi baik yang linear maupun yang nonlinear. Pada kejadian sehari-
hari terdapat hubungan sebab akibat yang muncul, baik yang terjadi pada bidang sains, 
sosial, industri maupun bisnis. Kejadian-kejadian tersebut dapat dimodelkan dalam bentuk 
fungsi regresi. Secara umum, analisis regresi berkenaan dengan studi ketergantungan suatu 
variabel dependen (tak bebas) pada satu atau lebih variabel independen (bebas), dengan 
maksud ketergantungan model itu dapat dipergunakan sebagai alat prediksi kejadian untuk 
waktu yang akan datang[1,3]. 

Salah satu tujuan dalam analisis regresi adalah mengestimasi koefisien regresi 
dalam model regresi. Model regresi merupakan suatu cara formal untuk mengekspresikan 
dua unsur penting suatu hubungan statistik, yaitu kecenderungan berubahnya variabel tak 
bebas secara sistematis sejalan dengan berubahnya variabel bebas dan berpencarnya titik-
titik di sekitar kurva taksiran model itu. Metode yang biasa digunakan untuk mengestimasi 
koefisien regresi yaitu metode kuadrat terkecil. Namun, metode ini mensyaratkan bahwa 
distribusi data harus memenuhi asumsi klasik dari regresi, yaitu linear dalam parameter, 
galat berdistribusi normal dengan rataan nol dan ragam konstan, antar galat tidak 
berkorelasi, antar prediktor tidak bermultikolinearitas. Jika data tidak memenuhi salah satu 
asumsi klasik regresi, maka penduga metode kuadrat terkecil tidak lagi efisien[8]. 

Pencilan merupakan data yang nilainya atau letaknya berbeda sangat signifikan 
terhadap kumpulan data lainnya. Ada banyak cara pendeteksiannya, dan penyajiannya 
dapat berupa grafik atau nilai. Adanya pencilan dalam data dapat mengakibatkan estimasi 
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koefisien regresi yang diperoleh tidak tepat. Hal ini dapat ditunjukkan dengan nilai standar 
error yang besar apabila menggunakan metode kuadrat terkecil. Namun demikian tindakan 
membuang begitu saja suatu pencilan bukanlah tindakan yang bijaksana karena ada 
kalanya pencilan memberikan informasi yang cukup berarti. Oleh karena itu, diperlukan 
suatu estimasi yang bersifat robust atau tahan terhadap pencilan yang dikenal dengan 
regresi robust. Suatu estimasi yang tahan adalah relatif tidak terpengaruh oleh perubahan 
besar pada bagian kecil data atau perubahan kecil pada bagian besar data[5,6] . 

Beberapa metode estimasi dalam regresi robust diantaranya adalah estimasi-M, 
Least Trimmed Squares (LTS), Least Median Squares (LMS), estimasi S dan estimasi MM 

(Method of Moment)[2]. Estimasi-M merupakan suatu metode regresi robust yang terkenal 
dan paling luas digunakan daripada metode regresi robust yang lain, karena hasilnya lebih 
teliti. Metode Iteratively Reweighted Least Squares (IRLS) merupakan salah satu metode 
iterasi pada estimasi-M yang memerlukan 3 fungsi pembobot, yaitu metode kuadrat 
terkecil, fungsi Huber dan fungsi Bisquare Tukey. Fungsi pembobot yang akan dipilih 
adalah fungsi pembobot Huber dan fungsi pembobot Bisquare Tukey. 

Masalah yang akan dibahas dalam tulisan ini adalah pengujian ketidakpenuhan 
asumsi klasik, cara pendeteksian pencilan dan penaksiran model pada data ketahanan 
pangan Jawa Tengah tahun 2007 menggunakan metode refresi robust hingga didapat 
taksiran model terbaiknya. Tujuan dari penulisan ini adalah untuk menggunakan regresi 
robust estimasi-M IRLS dengan fungsi pembobot Huber dan Tukey Bisquare pada 
kumpulan data yang terdapat pencilan. 
 
 
2. Tinjauan Pustaka 

2.1 Cook’s Distance 
Metode untuk mendeteksi adanya pencilan adalah menggunakan Cook’s Distance, 

yaitu 
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dengan: 
b = vektor koefisien regresi dengan semua pengamatan ikut dalam 

pembentukan model regresi 
b(i)  = vektor koefisien regresi yang tidak mengikutsertakan pengamatan ke-i 

dalam pembentukan model regresi 
X  =  matriks variable predictor ukuran (n x p) 
p  =  banyaknya parameter  
MSE  = Mean Square Error dari semua pengamatan dalam pembuatan model 

regresi 
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Suatu kumpulan data pengamatan dikatakan mengandung pencilan jika nilai pengamatan 

n

p
Di  , dengan n menyatakan ukuran sampel[4]. 
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2.2 Estimasi-M IRLS 
Salah satu kelas estimasi robust yang paling penting dan paling luas digunakan 

adalah estimasi-M yang diperkenalkan oleh Huber. Pada prinsipnya estimasi-M merupakan 
estimasi yang meminimumkan suatu fungsi objektif   
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Fungsi   merupakan representasi pembobot dari residual. Untuk memperoleh suatu 

skala invariant dari estimator ini, biasanya dilakukan dengan menyelesaikan persamaan 
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ˆ,,ˆ,ˆ    merupakan nilai estimasi-M dari k10 ,,,    yang meminimumkan 
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dimana )u( i  adalah fungsi simetris dari residual atau fungsi yang memberikan kontribusi 

pada masing-masing residual pada fungsi objektif[2].  
Pada umumnya, suatu estimasi skala robust perlu diestimasi. Pilihan estimasi yang 

populer untuk s adalah 
 
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Pemilihan konstanta 0,6745 membuat sedemikian hingga s merupakan suatu estimator 
yang mendekati tak bias dari  , jika n besar dan error berdistribusi normal[4]. 
 
2.3 Penyelesaian untuk Koefisien Regresi 

Untuk meminimumkan persamaan (1), turunan parsial pertama dari  terhadap 

k,,1,0j,j  , harus disamakan dengan 0. Sehingga akan menghasilkan suatu syarat 

perlu untuk minimum. Ini menghasilkan sistem persamaan (2): 
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dengan '  dan xij adalah observasi ke-i pada regresor ke-j dan xi0 = 1. 
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Didefinisikan suatu fungsi bobot 
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dan misal )u(ww ii  . Maka persamaan (2) dapat ditulis sebagai 
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Pada umumnya, fungsi  tidak linear dan persamaan (2) harus diselesaikan dengan metode 

iterasi. 
 Estimasi koefisien regresi dengan estimasi-M dilakukan dengan estimasi kuadrat 
terkecil dengan pembobot iteratif. Prosedur estimasi ini membutuhkan proses iterasi 

dimana iw  akan berubah pada tiap iterasinya sehingga diperoleh k10
ˆ,,ˆ,ˆ   . Prosedur 

tersebut dinamakan Iteratively Reweighted Least Squares (IRLS). Untuk menggunakan 

IRLS, anggap bahwa suatu estimasi awal 0̂  ada dan s adalah suatu estimasi skala. Untuk 

parameter dengan p adalah jumlah parameter yang akan diestimasi, maka 
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Untuk kasus regresi berganda perhitungan parameternya dapat diperoleh dari persamaan 
matriks 
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0W adalah matriks diagonal berukuran (n x n) dari bobot dengan elemen-elemen diagonal 
0
n

0
2

0
1 w,,w,w   diberikan oleh persamaan (3). Maka dari itu, estimator satu langkah adalah 
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Pada langkah selanjutnya, dihitung kembali bobot dari )u(ww ii   tetapi menggunakan 
1̂ sebagai pengganti 0̂  , dan seterusnya. Perhitungan iterasi ini dihentikan bila perubahan 

yang terjadi pada koefisien regresi yaitu selisih antara 1lˆ  dengan l̂  lebih kecil dari 

0,1%, dengan          Estimasi regresi robust dengan estimasi-M IRLS dapat ditulis 
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Estimasi kuadrat terkecil dapat digunakan sebagai nilai permulaan, 0̂ . Selanjutnya, untuk 
2̂  dapat dituliskan sebagai berikut 

 YWXXWX l1l2 ')'(ˆ   

 
2.4 Fungsi Pembobot 

Fungsi pembobot dalam estimasi-M bergantung pada residual dan konstanta 
tertentu. Fungsi pembobot yang digunakan adalah MKT, Huber dan Bisquare Tukey. 

1. Fungsi pembobot Metode Kuadrat Terkecil 
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2. Fungsi pembobot Metode Huber 
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Pada persamaan di atas ui merupakan residual ke-i, sedangka nilai r dinyatakan 

dengan tuning constant. Tuning constant dalam regresi robust menentukan kerobusan 
penaksir terhadap pencilan dan efisiensi penaksir dalam ketidakadaan pencilan. Jika 
diambil α = 5%, maka estimasi-M Huber akan efektif digunakan bilamana r = 1,345 
sedangkan pada Bisquare Tukey bilaman r = 4,685. Permasalahan dalam estimasi regresi 
robust adalah perlu dilakukan pemilihan tuning constant agar estimasi yang diperoleh lebih 
spesifik dan meminimumkan jumlah kuadrat residual[4]. 
 
 
3.   Hasil dan Pembahasan 

3.1 Sumber Data 
Pada tulisan ini akan dilakukan estimasi regresi robust pada model rasio 

ketersediaan beras di Jawa Tengah pada tahun 2007. Data yang digunakan adalah data 
sekunder yang bersumber dari Badan Pusat Statistik Jawa Tengah. Adapun untuk 
hubungan variable rasio ketersediaan beras di Jawa Tengah dipengaruhi oleh stok beras, 
luas areal panen, rata-rata produksi padi, rata-rata harga beras, dan jumlah konsumsi beras, 
yang disajikan pada Tabel 1 berikut. 
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Tabel 1. Data Ketahanan Pangan di Jawa Tengah Tahun 2007[7] 

Kab/Kota Produksi 

(ton) 

Stok  

(ton) 

Luas 

(Ha) 

RataProd 

(ton/ha) 

Harga 

(Rp/ton) 

Jmlkons 

(ton) 

Rasio 

Cilacap 622,442 20.974.997 111.725 5,571 4.510.000 183.418 3,39 
Banyumas 351,340 21.348.038 64.989 5,406 4.519.000 169.045 2,08 
Purbalingga 188,644 13.006.013 35.590 5,300 4.354.000 92.871 2,03 
Banjarnegara 145,025 13.902.979 27.132 5,345 3.950.000 97.648 1,49 
Kebumen 360,331 16.287.499 67.959 5,302 3.981.000 136.584 2,64 
Purworejo 284,618 8.192.333 52.729 5,398 4.283.000 81.291 3,50 
Wonosobo 156,034 10.553.640 29.793 5,237 4.908.000 85.252 1,83 
Magelang 280,093 14.826.134 53.481 5,237 4.574.000 131.224 2,13 
Boyolali 225,248 11.705.054 41.717 5,399 4.827.000 105.394 2,14 
Klaten 327,522 14.769.888 58.505 5,598 4.923.000 127.560 2,57 
Sukoharjo 267,230 9.032.458 46.176 5,787 4.572.000 92.617 2,89 
Wonogiri 269,556 10.626.106 54.622 4,935 4.748.000 110.754 2,43 
Karanganyar 243,685 8.375.952 42.826 5,690 4.857.000 91.017 2,68 
Sragen 493,681 10.782.643 90.833 5,435 2.562.000 96.936 5,09 
Grobogan 571,485 20.731.709 101.994 5,603 4.938.000 149.884 3,81 
Blora 320,851 11.108.962 63.513 5,052 5.036.000 94.005 3,41 
Rembang 132,025 8.961.480 26.895 4,909 4.896.000 64.735 2,04 
Pati 385,164 15.549.600 76.608 5,028 4.948.000 131.941 2,92 
Kudus 127,543 4.373.232 24.992 5,103 5.652.000 87.556 1,46 
Jepara 198,981 9.978.677 38.020 5,234 5.326.000 121.320 1,64 
Demak 502,407 14.459.342 91.516 5,490 4.835.000 115.868 4,34 
Semarang 170,787 9.225.898 32.862 5,197 5.396.000 101.747 1,68 
Temanggung 177,551 7.588.949 32.624 5,442 4.643.000 79.195 2,24 
Kendal 214,111 9.074.419 40.063 5,344 4.712.000 106.006 2,02 
Batang 207,477 9.762.173 40.265 5,153 4.720.000 76.716 2,70 
Pekalongan 223,888 11.454.328 44.457 5,036 4.841.000 95.397 2,35 
Pemalang 357,467 14.188.973 70.694 5,057 4.865.000 153.561 2,33 
Tegal 298,062 11.056.435 55.898 5,332 4.566.000 159.362 1,87 
Brebes 458,518 28.133.467 84.696 5,414 4.299.000 200.681 2,28 
Kota Magelang 2,513 848.309 484 5,192 4.640.000 14.936 0,17 
Kota Surakarta 1,782 3.264.077 347 5,138 4.784.000 58.483 0,03 
Kota Salatiga 7,134 1.124.184 1.385 5,151 5.121.000 19.740 0,36 
Kota Semarang 24,689 10.172.117 5.046 4,893 4.711.000 168.216 0,15 
Kota Pekalongan 11,835 2.819.165 2.315 5,112 4.729.000 30.887 0,38 
Kota Tegal 7,135 1.964.309 1.347 5,297 4.934.000 27.104 0,26 
 
 
3.2 Identifikasi Variabel 
Berikut adalah data-data yang diperlukan dalam penelitian.  

1. Variabel Tak Bebas 
Variabel tak bebas berupa rasio ketersediaan beras di Jawa Tengah pada tahun 2007. 
Nilai rasio diperoleh dari perbandingan antara produksi dan konsumsi beras di tiap 
daerah. 

2. Variabel Bebas 
Beberapa variabel bebas yang digunakan dalam penelitian ini berupa data faktor-
faktor yang diduga mempengaruhi rasio ketahanan pangan di Jawa Tengah, meliputi: 
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1. Stok beras (X1)  
2. Luas panen padi (X2)  
3. Rata-rata produksi (X3)  
4. Harga beras (X4)  
5. Jumlah konsumsi (X5)  

 
3.3 Metode Kuadrat Terkecil 

Setelah diolah menggunakan bantuan Software Minitab 14 diperoleh taksiran 
model regresi dengan metode kuadrat terkecil yaitu 

 5i4i3i2i1ii x000007,0x000237,0x0188,0x000048,0x000045,032,1ŷ   

Selanjutnya akan dilakukan pengujian asumsi klasik yang bertujuan untuk melihat apakah 
taksiran model yang diperoleh terdapat penyimpangan klasik atau tidak. Ternyata setelah 
dilakukan uji asumsi klasik yang meliputi uji asumsi: normalitas, nonmultikolinearitas 
adalah dipenuhi, tetapi untuk asumsi nonautokorelasi dan homoskedastisitas tidak 
dipenuhi. Sehingga perlu dilakukan penanganan lebih lanjut agar diperoleh estimasi regresi 
yang tepat, yaitu dengan menggunakan estimasi-M pada regresi robust dengan fungsi 
pembobot Huber dan Bisquare Tukey. Hal ini dimungkinkan terdapat pencilan pada data 
tersebut. Oleh karena itu, untuk langkah selanjutnya perlu dilakukan pendeteksian 
pencilan. 
 
3.4 Pendeteksian Pencilan 

Untuk mendeteksi pencilan dari data dideteksi menggunakan metode Cook’s 
distance. Berdasarkan hasil perhitungan didapat hasil bahwa data ke-1,yaitu Kabupaten 
Cilacap, data ke-14, yaitu Kabupaten Sragen dan data ke-33 yaitu Kota Semarang 
merupakan pencilan karena mempunyai nilai yang lebih besar dari 6/35 = 0,17143, yaitu 
masing-masing 0,222554; 0,220494 dan 0.400533. 
 
3.5 Estimasi-M IRLS 

Adanya pencilan pada data ketahanan pangan tahun 2007 menyebabkan taksiran 
model regresi belum bisa dikatakan baik. Karena terdapat asumsi klasik yang tidak 
dipenuhi. Sehingga perlu dilakukan alternatif lain untuk mengestimasi parameter- 
parameter yang tidak peka terdapat pencilan yaitu dengan metode regresi robust dengan 
IRLS. Akan dipergunakan metode estimasi-M IRLS menggunakan fungsi pembobot Huber 
dan Bisquare Tukey. Prosesnya menggunakan cara iteratif. 
 
3.5.1 IRLS dengan Fungsi Huber 

Proses iteratif dimulai dengan menentukan estimasi awal koefisien regresi yang 
diperoleh dengan metode kuadrat terkecil. Taksiran model yang diperoleh adalah 
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Kriteria pemberian bobot pada fungsi Huber berdasarkan nilai skala residualnya 
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Pada iterasi pertama menggunakan WLS dengan pembobot )0(
iw  diperoleh taksiran model 

regresi linear sebagai berikut: 

 5i4i3i2i1ii x000007,0x000235,0x0231,0x000049,0x000048,012,1ŷ   

 Nilai residual dari model iterasi 1 digunakan untuk iterasi ke-2. Itetrasi akan terus 

berlanjut hingga diperoleh nilai ̂  yang konvergen atau sama dengan hasil iterasi 

sebelumnya. Ternyata hasil perhitungan ̂  untuk tiap iterasi berhenti pada iterasi ke-8, 

karena nilai ̂  yang baru sama dengan nilai ̂  sebelumnya, seperti yang tertulis di bawah 

ini. 
 

Tabel 2. Hasil Iterasi Estimasi Parameter menggunakan Fungsi Huber 

Iterasi 
Huber 

0̂  1̂  2̂  3̂  4̂  5̂  

MKT 1,32 - 0,000045 0,000048 0,0188 - 0,000237 - 0,000007 
1 1,12 - 0,000048 0,000049 0,0231 - 0,000235 - 0,000007 
2 1,03 - 0,000048 0,000048 0,0253 - 0,000232 - 0,000007 
3 1,03 - 0,000048 0,000048 0,0261 - 0,000233 - 0,000008 
4 1,08 - 0,000048 0,000048 0,0260 - 0,000234 - 0,000008 
5 1,14 - 0,000047 0,000048 0,0252 - 0,000235 - 0,000008 
6 1,17 - 0,000047 0,000048 0,0248 - 0,000236 - 0,000008 
7 1,17 - 0,000047 0,000048 0,0247 - 0,000236 - 0,000008 
8 1,17 - 0,000047 0,000048 0,0247 - 0,000236 - 0,000008 

 
Jadi dengan menggunakan estimasi-M IRLS memakai fungsi pembobot Huber diperoleh 
taksiran model regresi linier sebagai berikut 

5i4i3i2i1ii x000008,0x000236,0x0247,0x000048,0x000047,017,1ŷ   

 
3.5.2 IRLS dengan Fungsi Bisquare Tukey 

Jika menggunakan metode IRLS dengan fungsi pembobot Bisquare Tukey. Proses 
iteratif dimulai dengan menentukan estimasi awal koefisien regresi yang diperoleh dengan 
metode kuadrat terkecil. Model yang diperoleh adalah 

 5i4i3i2i1ii x000007,0x000237,0x0188,0x000048,0x000045,032,1ŷ   

Selanjutnya, dihitung nilai residual ii
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Kriteria pemberian bobot pada fungsi Bisquare Tukey berdasarkan nilai skala residualnya 
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Pada iterasi pertama menggunakan WLS dengan pembobot )0(
iw  diperoleh taksiran model 

regresi linear sebagai berikut 

 5i4i3i2i1ii x000007,0x000234,0x0244,0x000048,0x000048,006,1ŷ   

 Nilai residual dari model iterasi 1 akan digunakan untuk iterasi ke-2. Iterasi akan 

terus berlanjut hingga diperoleh nilai ̂  yang konvergen atau sama dengan hasil iterasi 

sebelumnya. Dalam kajian ini hasil perhitungan ̂  untuk setiap iterasi ternyata berhenti 

pada iterasi ke-8, yaitu dengan dihasilkannya nilai ̂  yang baru sama dengan nilai ̂  

sebelumnya, seperti yang tertabelkan berikut ini. 
 

Tabel 3. Hasil Iterasi Estimasi Parameter menggunakan Fungsi Bisquare Tukey 

Iterasi 
Bisquare Tukey 

0̂  1̂  2̂  3̂  4̂  5̂  

MKT 1,32 - 0,000045 0,000048 0,0188 - 0,000237 - 0,000007 
1 1,06 - 0,000048 0,000049 0,0244 - 0,000234 - 0,000007 
2 0,93 - 0,000049 0,000048 0,0269 - 0,000232 - 0,000007 
3 0,91 - 0,000049 0,000048 0,0280 - 0,000232 - 0,000008 
4 0,94 - 0,000049 0,000048 0,0282 - 0,000234 - 0,000008 
5 0,99 - 0,000048 0,000048 0,0277 - 0,000235 - 0,000008 
6 1,03 - 0,000048 0,000048 0,0270 - 0,000235 - 0,000008 
7 1,04 - 0,000048 0,000048 0,0268 - 0,000236 - 0,000008 
8 1,04 - 0,000048 0,000048 0,0268 - 0,000236 - 0,000008 

 
Jadi dengan menggunakan estimasi-M IRLS memakai fungsi pembobot Bisquare Tukey 
diperoleh taksiran model regresi linear 

5i4i3i2i1ii x000008,0x000236,0x0268,0x000048,0x000048,004,1ŷ   

 
3.5.3 Model Terbaik 

Kriteria yang dipakai untuk menentukan model regresi terbaik adalah 

menggunakan 2
adjustedR  dan MSE. Hasil perbandingan antara 2

adjustedR  dan MSE pada fungsi 

pembobot Huber dan Tukey Bisquares disajikan pada Tabel 4 berikut ini 
 

Tabel 4. Hasil Kriteria Model Berdasarkan Fungsi Pembobot 
Fungsi Pembobot 2

adjustedR  (%) MSE 

Huber 85,7 0,17 
Bisquare Tukey 86,1 0,1573 

 
Berdasarkan hasil di atas, dapat dikatakan bahwa metode yang paling baik untuk 
mengestimasi model ketahanan pangan di Jawa Tengah pada tahun 2007 adalah 
menggunakan metode fungsi pembobot Bisquare Tukey, dengan tingkat kepercayaan 
model sebesar 86,1 % bahwa rasio ketersediaan beras dipengaruhi oleh stok beras, luas 
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panen, rata-rata produksi, harga beras, jumlah konsumsi. Sedangkan 13,9% dipengaruhi 
oleh faktor lain atau kesalahan yang bersifat random. 
 
4. Kesimpulan 

Berdasarkan pembahasan yang telah dilakukan, dapat disimpulkan bahwa:  
1. Pendeteksian pencilan yang dilakukan menggunakan Cook’s distance menduga 

bahwa data ke-1, ke-14 dan data ke-33 masing-masing sebagai pencilan, yaitu 
kabupaten Cilacap, Kabupaten Sragen dan Kota Semarang.  

2. Taksiran model regresi pada data ketahanan pangan di Jawa Tengah tahun 2007 
adalah sebagai berikut 
a) Menggunakan fungsi pembobot Huber 

5i4i3i2i1ii x000008,0x000236,0x0247,0x000048,0x000047,017,1ŷ   

b) Menggunakan fungsi pembobot Bisquare Tukey  

5i4i3i2i1ii x000008,0x000236,0x0268,0x000048,0x000048,004,1ŷ   

3. Berdasarkan nilai MSE dan koefisien determinasi dapat dikatakan bahwa metode 
estimasi-M IRLS dengan fungsi pembobot Bisquare Tukey lebih baik dipilih dari 
pada menggunakan fungsi pembobot Huber untuk taksiran model ketahanan pangan 
di Jawa Tengah tahun 2007. 
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