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Abstract

Ordinary Least Squares (OLS) is one method of parameter estimation in regression analysis.
However, the presence of outliers can cause estimation of regression coefficients obtained are not
exact. Act of throwing away an outlier is not a wise move, because sometimes outliers provide
significant information. Therefore, robust regression methods are needed to data contain outliers.
This paper will use robust regression estimation method by M-estimation. This estimation use
Iteratively Reweighted Least Squares (IRLS) method with weighting function by Huber and Tukey
Bisquare. IRLS is applied to the case of food security in Central Java in 2007 that is influenced by
the stock of rice, harvested area, average production, price of rice and the amount of consumption.
The purpose of this writing is to compare goodness of M-estimation IRLS using Huber and Tukey
Bisquare function in estimating the model parameters of food security in Central Java in 2007.
Based on the research results can be concluded that the M-estimation by the Tukey Bisquare is
better recommended than Huber function. This can be seen by value results of Mean Square Error
and determination coefficient.

Keywords: Robust Regression, Iteratively Reweighted Least Squares, Outlier, Huber Weighting
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1. Pendahuluan

Analisis regresi merupakan salah satu teknik analisis statistika yang paling banyak
digunakan. Analisis regresi baik yang linear maupun yang nonlinear. Pada kejadian sehari-
hari terdapat hubungan sebab akibat yang muncul, baik yang terjadi pada bidang sains,
sosial, industri maupun bisnis. Kejadian-kejadian tersebut dapat dimodelkan dalam bentuk
fungsi regresi. Secara umum, analisis regresi berkenaan dengan studi ketergantungan suatu
variabel dependen (tak bebas) pada satu atau lebih variabel independen (bebas), dengan
maksud ketergantungan model itu dapat dipergunakan sebagai alat prediksi kejadian untuk
waktu yang akan datang[1’3].

Salah satu tujuan dalam analisis regresi adalah mengestimasi koefisien regresi
dalam model regresi. Model regresi merupakan suatu cara formal untuk mengekspresikan
dua unsur penting suatu hubungan statistik, yaitu kecenderungan berubahnya variabel tak
bebas secara sistematis sejalan dengan berubahnya variabel bebas dan berpencarnya titik-
titik di sekitar kurva taksiran model itu. Metode yang biasa digunakan untuk mengestimasi
koefisien regresi yaitu metode kuadrat terkecil. Namun, metode ini mensyaratkan bahwa
distribusi data harus memenuhi asumsi klasik dari regresi, yaitu linear dalam parameter,
galat berdistribusi normal dengan rataan nol dan ragam konstan, antar galat tidak
berkorelasi, antar prediktor tidak bermultikolinearitas. Jika data tidak memenuhi salah satu
asumsi klasik regresi, maka penduga metode kuadrat terkecil tidak lagi efisien’®).

Pencilan merupakan data yang nilainya atau letaknya berbeda sangat signifikan
terhadap kumpulan data lainnya. Ada banyak cara pendeteksiannya, dan penyajiannya
dapat berupa grafik atau nilai. Adanya pencilan dalam data dapat mengakibatkan estimasi
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koefisien regresi yang diperoleh tidak tepat. Hal ini dapat ditunjukkan dengan nilai standar
error yang besar apabila menggunakan metode kuadrat terkecil. Namun demikian tindakan
membuang begitu saja suatu pencilan bukanlah tindakan yang bijaksana karena ada
kalanya pencilan memberikan informasi yang cukup berarti. Oleh karena itu, diperlukan
suatu estimasi yang bersifat robust atau tahan terhadap pencilan yang dikenal dengan
regresi robust. Suatu estimasi yang tahan adalah relatif tidak terpengaruh oleh perubahan
besar pada bagian kecil data atau perubahan kecil pada bagian besar datal®®! .

Beberapa metode estimasi dalam regresi robust diantaranya adalah estimasi-M,
Least Trimmed Squares (LTS), Least Median Squares (LMS), estimasi S dan estimasi MM
(Method of Moment)'. Estimasi-M merupakan suatu metode regresi robust yang terkenal
dan paling luas digunakan daripada metode regresi robust yang lain, karena hasilnya lebih
teliti. Metode Iteratively Reweighted Least Squares (IRLS) merupakan salah satu metode
iterasi pada estimasi-M yang memerlukan 3 fungsi pembobot, yaitu metode kuadrat
terkecil, fungsi Huber dan fungsi Bisquare Tukey. Fungsi pembobot yang akan dipilih
adalah fungsi pembobot Huber dan fungsi pembobot Bisquare Tukey.

Masalah yang akan dibahas dalam tulisan ini adalah pengujian ketidakpenuhan
asumsi klasik, cara pendeteksian pencilan dan penaksiran model pada data ketahanan
pangan Jawa Tengah tahun 2007 menggunakan metode refresi robust hingga didapat
taksiran model terbaiknya. Tujuan dari penulisan ini adalah untuk menggunakan regresi
robust estimasi-M IRLS dengan fungsi pembobot Huber dan Tukey Bisquare pada
kumpulan data yang terdapat pencilan.

2. Tinjauan Pustaka
2.1 Cook’s Distance
Metode untuk mendeteksi adanya pencilan adalah menggunakan Cook’s Distance,

yaitu
b :((b—b(i))'X’X(b—bm)J
1 p MSE
dengan:
b = vektor koefisien regresi dengan semua pengamatan ikut dalam
pembentukan model regresi
bs = vektor koefisien regresi yang tidak mengikutsertakan pengamatan ke-i
dalam pembentukan model regresi
X = matriks variable predictor ukuran (n X p)
P = banyaknya parameter
MSE = Mean Square Error dari semua pengamatan dalam pembuatan model
regresi
2.
— =l
n

Suatu kumpulan data pengamatan dikatakan mengandung pencilan jika nilai pengamatan

D, > B, dengan n menyatakan ukuran sampel'®.
n
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2.2 Estimasi-M IRLS

Salah satu kelas estimasi robust yang paling penting dan paling luas digunakan
adalah estimasi-M yang diperkenalkan oleh Huber. Pada prinsipnya estimasi-M merupakan
estimasi yang meminimumkan suatu fungsi objektif p

n n k
min 3 ple;) = mgan(yi —ZXUBJJ
il i=I =0

Fungsi p merupakan representasi pembobot dari residual. Untuk memperoleh suatu
skala invariant dari estimator ini, biasanya dilakukan dengan menyelesaikan persamaan

n ZXUB
rngp( b= rngp

dengan B.B,....,, merupakan nilai estimasi-M dari B,,B,,...,B, yang meminimumkan

) . ) Yi _inij
Zp(ui>=2p[%)=2p — (1)

dimana p(u,) adalah fungsi simetris dari residual atau fungsi yang memberikan kontribusi
pada masing-masing residual pada fungsi objektif*!.

Pada umumnya, suatu estimasi skala robust perlu diestimasi. Pilihan estimasi yang
populer untuk s adalah

_ median {| e; — median(e,) |}
0,6745

Pemilihan konstanta 0,6745 membuat sedemikian hingga s merupakan suatu estimator
yang mendekati tak bias dari o, jika n besar dan error berdistribusi normal'.

2.3 Penyelesaian untuk Koefisien Regresi
Untuk meminimumkan persamaan (1), turunan parsial pertama dari p terhadap

B;» j=01,...k, harus disamakan dengan 0. Sehingga akan menghasilkan suatu syarat

perlu untuk minimum. Ini menghasilkan sistem persamaan (2):

o _y
oB,

k

X )
qu\v —= =0, j=0l....k

dengan y =p' dan x;; adalah observasi ke-i pada regresor ke-j dan xjo = 1.
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Didefinisikan suatu fungsi bobot
k

i~ Z X;iB;
=0

S

1

w(u,) =

K
Yi _ZXUBJ‘
=0

dan misal w, =w(u,). Maka persamaan (2) dapat ditulis sebagai

n k
injwi(yi _injﬁjj =0, j=01,....k
i=1 =0

Pada umumnya, fungsi  tidak linear dan persamaan (2) harus diselesaikan dengan metode
iterasi.

Estimasi koefisien regresi dengan estimasi-M dilakukan dengan estimasi kuadrat
terkecil dengan pembobot iteratif. Prosedur estimasi ini membutuhkan proses iterasi

dimana w, akan berubah pada tiap iterasinya sehingga diperoleh ﬁO,Bl,...,Bk. Prosedur
tersebut dinamakan [Iteratively Reweighted Least Squares (IRLS). Untuk menggunakan
IRLS, anggap bahwa suatu estimasi awal [30 ada dan s adalah suatu estimasi skala. Untuk
parameter dengan p adalah jumlah parameter yang akan diestimasi, maka

n k
injw?[yi _injB?J =0, j=0l,....k
i=1 j=0

dengan

K

Yi— z XijB?
=0

W - -
S

k
W, = T , Jjikay, # ZXUB? (3)
Yi— injﬁ? =0

K
1, jikay; = injl‘))?
-0

Untuk kasus regresi berganda perhitungan parameternya dapat diperoleh dari persamaan
matriks

X' W'XB =X W'Y
W' adalah matriks diagonal berukuran (n x n) dari bobot dengan elemen-elemen diagonal
W?, Wg,. . Wg diberikan oleh persamaan (3). Maka dari itu, estimator satu langkah adalah
Bl = (X' W'X)"'X' W'Y
Pada langkah selanjutnya, dihitung kembali bobot dari w, =w(u,) tetapi menggunakan
ﬁl sebagai pengganti ﬁ" , dan seterusnya. Perhitungan iterasi ini dihentikan bila perubahan

yang terjadi pada koefisien regresi yaitu selisih antara ﬁ’“ dengan [3)’ lebih kecil dari
0,1%, dengan [ = 0,1, ... Estimasi regresi robust dengan estimasi-M IRLS dapat ditulis

g =(xw'x)' (xw'x)
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Estimasi kuadrat terkecil dapat digunakan sebagai nilai permulaan, ﬁo. Selanjutnya, untuk
[32 dapat dituliskan sebagai berikut
l":);z — (X’WIX):I XvwlY

2.4 Fungsi Pembobot
Fungsi pembobot dalam estimasi-M bergantung pada residual dan konstanta

tertentu. Fungsi pembobot yang digunakan adalah MKT, Huber dan Bisquare Tukey.

1. Fungsi pembobot Metode Kuadrat Terkecil

wis(u;,)=1

2. Fungsi pembobot Metode Huber
L, untuk|u, |<r
Wy (u;) = L untuk|u, [>r

|y, |

3. Metode Bisquare Tukey

) 2
u.
R L
wo(u,) = (1 (rj J ,untuk|u, |[<r

0, untuk|u, [>r

Pada persamaan di atas u; merupakan residual ke-i, sedangka nilai r dinyatakan
dengan tuning constant. Tuning constant dalam regresi robust menentukan kerobusan
penaksir terhadap pencilan dan efisiensi penaksir dalam ketidakadaan pencilan. Jika
diambil o = 5%, maka estimasi-M Huber akan efektif digunakan bilamana r = 1,345
sedangkan pada Bisquare Tukey bilaman r = 4,685. Permasalahan dalam estimasi regresi
robust adalah perlu dilakukan pemilihan funing constant agar estimasi yang diperoleh lebih
spesifik dan meminimumkan jumlah kuadrat residual®.

3. Hasil dan Pembahasan
3.1 Sumber Data

Pada tulisan ini akan dilakukan estimasi regresi robust pada model rasio
ketersediaan beras di Jawa Tengah pada tahun 2007. Data yang digunakan adalah data
sekunder yang bersumber dari Badan Pusat Statistik Jawa Tengah. Adapun untuk
hubungan variable rasio ketersediaan beras di Jawa Tengah dipengaruhi oleh stok beras,
luas areal panen, rata-rata produksi padi, rata-rata harga beras, dan jumlah konsumsi beras,
yang disajikan pada Tabel 1 berikut.
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Tabel 1. Data Ketahanan Pangan di Jawa Tengah Tahun 2007"

Kab/Kota Produksi Stok Luas | RataProd Harga Jmlkons | Rasio
(ton) (ton) (Ha) (ton/ha) (Rp/ton) (ton)

Cilacap 622,442 | 20.974.997 | 111.725 5,571 4.510.000 | 183.418 3,39
Banyumas 351,340 | 21.348.038 | 64.989 5,406 4.519.000 | 169.045 2,08
Purbalingga 188,644 | 13.006.013 | 35.590 5,300 4.354.000 92.871 2,03
Banjarnegara 145,025 | 13.902.979 | 27.132 5,345 3.950.000 97.648 1,49
Kebumen 360,331 | 16.287.499 | 67.959 5,302 3.981.000 | 136.584 2,64
Purworejo 284,618 | 8.192.333 | 52.729 5,398 4.283.000 81.291 3,50
Wonosobo 156,034 | 10.553.640 | 29.793 5,237 4.908.000 85.252 1,83
Magelang 280,093 | 14.826.134 | 53.481 5,237 4.574.000 | 131.224 2,13
Boyolali 225,248 | 11.705.054 | 41.717 5,399 4.827.000 | 105.394 2,14
Klaten 327,522 | 14.769.888 | 58.505 5,598 4.923.000 | 127.560 2,57
Sukoharjo 267,230 | 9.032.458 | 46.176 5,787 4.572.000 92.617 2,89
Wonogiri 269,556 | 10.626.106 | 54.622 4,935 4.748.000 | 110.754 2,43
Karanganyar 243,685 | 8.375.952 | 42.826 5,690 4.857.000 91.017 2,68
Sragen 493,681 | 10.782.643 | 90.833 5,435 2.562.000 96.936 5,09
Grobogan 571,485 | 20.731.709 | 101.994 5,603 4.938.000 | 149.884 3,81
Blora 320,851 | 11.108.962 | 63.513 5,052 5.036.000 94.005 3,41
Rembang 132,025 | 8.961.480 | 26.895 4,909 4.896.000 64.735 2,04
Pati 385,164 | 15.549.600 | 76.608 5,028 4.948.000 | 131.941 2,92
Kudus 127,543 | 4.373.232 | 24.992 5,103 5.652.000 87.556 1,46
Jepara 198,981 | 9.978.677 | 38.020 5,234 5.326.000 | 121.320 1,64
Demak 502,407 | 14.459.342 | 91.516 5,490 4.835.000 | 115.868 4,34
Semarang 170,787 | 9.225.898 | 32.862 5,197 5.396.000 | 101.747 1,68
Temanggung 177,551 | 7.588.949 | 32.624 5,442 4.643.000 79.195 2,24
Kendal 214,111 | 9.074.419 | 40.063 5,344 4.712.000 | 106.006 2,02
Batang 207,477 | 9.762.173 | 40.265 5,153 4.720.000 76.716 2,70
Pekalongan 223,888 | 11.454.328 | 44.457 5,036 4.841.000 95.397 2,35
Pemalang 357,467 | 14.188.973 | 70.694 5,057 4.865.000 | 153.561 2,33
Tegal 298,062 | 11.056.435 | 55.898 5,332 4.566.000 | 159.362 1,87
Brebes 458,518 | 28.133.467 | 84.696 5,414 4.299.000 | 200.681 2,28
Kota Magelang 2,513 848.309 484 5,192 4.640.000 14.936 0,17
Kota Surakarta 1,782 | 3.264.077 347 5,138 4.784.000 58.483 0,03
Kota Salatiga 7,134 | 1.124.184 1.385 5,151 5.121.000 19.740 0,36
Kota Semarang 24,689 | 10.172.117 5.046 4,893 4.711.000 | 168.216 0,15
Kota Pekalongan 11,835 | 2.819.165 2.315 5,112 4.729.000 30.887 0,38
Kota Tegal 7,135 | 1.964.309 1.347 5,297 4.934.000 27.104 0,26

3.2 Identifikasi Variabel
Berikut adalah data-data yang diperlukan dalam penelitian.
1. Variabel Tak Bebas

Variabel tak bebas berupa rasio ketersediaan beras di Jawa Tengah pada tahun 2007.
Nilai rasio diperoleh dari perbandingan antara produksi dan konsumsi beras di tiap

daerah.

2. Variabel Bebas

Beberapa variabel bebas yang digunakan dalam penelitian ini berupa data faktor-

faktor yang diduga mempengaruhi rasio ketahanan pangan di Jawa Tengah, meliputi:




Kajian Estimasi-M ... (Elen)

1. Stok beras (X;)

2. Luas panen padi (X3)
3. Rata-rata produksi (X3)
4. Harga beras (X4)

5. Jumlah konsumsi (Xs)

3.3 Metode Kuadrat Terkecil

Setelah diolah menggunakan bantuan Software Minitab 14 diperoleh taksiran
model regresi dengan metode kuadrat terkecil yaitu

¥, =1,32-0,000045 x,, +0,000048 x,, +0,0188 x, —0,000237 x,, —0,000007 X5

Selanjutnya akan dilakukan pengujian asumsi klasik yang bertujuan untuk melihat apakah
taksiran model yang diperoleh terdapat penyimpangan klasik atau tidak. Ternyata setelah
dilakukan uji asumsi klasik yang meliputi uji asumsi: normalitas, nonmultikolinearitas
adalah dipenuhi, tetapi untuk asumsi nonautokorelasi dan homoskedastisitas tidak
dipenuhi. Sehingga perlu dilakukan penanganan lebih lanjut agar diperoleh estimasi regresi
yang tepat, yaitu dengan menggunakan estimasi-M pada regresi robust dengan fungsi
pembobot Huber dan Bisquare Tukey. Hal ini dimungkinkan terdapat pencilan pada data
tersebut. Oleh karena itu, untuk langkah selanjutnya perlu dilakukan pendeteksian
pencilan.

3.4 Pendeteksian Pencilan

Untuk mendeteksi pencilan dari data dideteksi menggunakan metode Cook’s
distance. Berdasarkan hasil perhitungan didapat hasil bahwa data ke-1,yaitu Kabupaten
Cilacap, data ke-14, yaitu Kabupaten Sragen dan data ke-33 yaitu Kota Semarang
merupakan pencilan karena mempunyai nilai yang lebih besar dari 6/35 = 0,17143, yaitu
masing-masing 0,222554; 0,220494 dan 0.400533.

3.5 Estimasi-M IRLS

Adanya pencilan pada data ketahanan pangan tahun 2007 menyebabkan taksiran
model regresi belum bisa dikatakan baik. Karena terdapat asumsi klasik yang tidak
dipenuhi. Sehingga perlu dilakukan alternatif lain untuk mengestimasi parameter-
parameter yang tidak peka terdapat pencilan yaitu dengan metode regresi robust dengan
IRLS. Akan dipergunakan metode estimasi-M IRLS menggunakan fungsi pembobot Huber
dan Bisquare Tukey. Prosesnya menggunakan cara iteratif.

3.5.1 IRLS dengan Fungsi Huber

Proses iteratif dimulai dengan menentukan estimasi awal koefisien regresi yang
diperoleh dengan metode kuadrat terkecil. Taksiran model yang diperoleh adalah

y; =1,32-0,000045 x,, +0,000048 x,, +0,0188 x,; —0,000237 x,, —0,000007 X5

Selanjutnya, dihitung nilai residual e” =y, —§. dengan i=1,2,...,35, dan dihitung pula
nilai s dari 35 kabupaten/kota, yaitu
median {efo) —median (efo) }}
s = =0,44
0,6745

Skala residual untuk semuanya menggunakan
©)

€ )
ui(o) =——, 1=12,...,35
s©
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Kriteria pemberian bobot pada fungsi Huber berdasarkan nilai skala residualnya

1, [u® <1345
) _ T —
Wi = 1,34‘5 ’| u(o) |> 1,345 , 1= 1,2,...,35
1"

Pada iterasi pertama menggunakan WLS dengan pembobot w'” diperoleh taksiran model
regresi linear sebagai berikut:
¥, =1,12-0,000048 x;, +0,000049 x,, +0,0231 x, —0,000235 x,, —0,000007 X 5
Nilai residual dari model iterasi 1 digunakan untuk iterasi ke-2. Itetrasi akan terus
berlanjut hingga diperoleh nilai [_3) yang konvergen atau sama dengan hasil iterasi

sebelumnya. Ternyata hasil perhitungan ﬁ untuk tiap iterasi berhenti pada iterasi ke-8,

karena nilai ﬁ yang baru sama dengan nilai ﬁ sebelumnya, seperti yang tertulis di bawah
ini.

Tabel 2. Hasil Iterasi Estimasi Parameter menggunakan Fungsi Huber

I . Huber

terast |5 B, B, B, B, B,

MKT 1,32 -0,000045 0,000048 0,0188 -0,000237 | -0,000007
1 1,12 - 0,000048 0,000049 0,0231 -0,000235 | -0,000007
2 1,03 -0,000048 0,000048 0,0253 -0,000232 | -0,000007
3 1,03 -0,000048 0,000048 0,0261 -0,000233 | -0,000008
4 1,08 - 0,000048 0,000048 0,0260 -0,000234 | - 0,000008
5 1,14 -0,000047 0,000048 0,0252 -0,000235 | -0,000008
6 1,17 - 0,000047 0,000048 0,0248 -0,000236 | - 0,000008
7 1,17 -0,000047 0,000048 0,0247 -0,000236 | -0,000008
8 1,17 - 0,000047 0,000048 0,0247 -0,000236 | - 0,000008

Jadi dengan menggunakan estimasi-M IRLS memakai fungsi pembobot Huber diperoleh
taksiran model regresi linier sebagai berikut
y; =1,17-0,000047 x,, +0,000048 x;, +0,0247 x,, —0,000236 x,, —0,000008 x5

3.5.2 IRLS dengan Fungsi Bisquare Tukey

Jika menggunakan metode IRLS dengan fungsi pembobot Bisquare Tukey. Proses
iteratif dimulai dengan menentukan estimasi awal koefisien regresi yang diperoleh dengan
metode kuadrat terkecil. Model yang diperoleh adalah

¥, =1,32-0,000045 x,, +0,000048 x,, +0,0188 x,; —0,000237 x,, —0,000007 X5
Selanjutnya, dihitung nilai residual e!” =y, —¥. dengan i=1,2,...,35, dan dihitung pula
nilai s dari 35 kabupaten/kota, yaitu

median ﬂei(o) — median (ei(o) l}
0,6745

Skala residual untuk semuanya menggunakan
©)

NON

=0,44

1=12,...,35
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Kriteria pemberian bobot pada fungsi Bisquare Tukey berdasarkan nilai skala residualnya

0@ Y ’
_ i 0)
Wi(O) = : (4,685] , | . |S 4,085 , 1=12,...,35

0, |u” >4,685

Pada iterasi pertama menggunakan WLS dengan pembobot w'” diperoleh taksiran model
regresi linear sebagai berikut
¥, =1,06—0,000048 x;, +0,000048 x,, +0,0244 x,, —0,000234 x,, —0,000007 x
Nilai residual dari model iterasi 1 akan digunakan untuk iterasi ke-2. Iterasi akan

terus berlanjut hingga diperoleh nilai [_3) yang konvergen atau sama dengan hasil iterasi
sebelumnya. Dalam kajian ini hasil perhitungan B untuk setiap iterasi ternyata berhenti

pada iterasi ke-8, yaitu dengan dihasilkannya nilai ﬁ yang baru sama dengan nilai B
sebelumnya, seperti yang tertabelkan berikut ini.

Tabel 3. Hasil Iterasi Estimasi Parameter menggunakan Fungsi Bisquare Tukey

I . Bisquare Tukey

terast 13, B, B b, b b,

MKT 1,32 | -0,000045 | 0,000048 0,0188 | -0,000237 | - 0,000007
1 1,06 | -0,000048 | 0,000049 0,0244 | -0,000234 | - 0,000007
2 0,93 | -0,000049 | 0,000048 0,0269 | -0,000232 | - 0,000007
3 0,91 | -0,000049 | 0,000048 0,0280 | -0,000232 | - 0,000008
4 0,94 | -0,000049 | 0,000048 0,0282 | -0,000234 | - 0,000008
5 0,99 | -0,000048 | 0,000048 0,0277 | -0,000235 | - 0,000008
6 1,03 | -0,000048 | 0,000048 0,0270 | -0,000235 | - 0,000008
7 1,04 | -0,000048 | 0,000048 0,0268 | -0,000236 | - 0,000008
8 1,04 | -0,000048 | 0,000048 0,0268 | -0,000236 | - 0,000008

Jadi dengan menggunakan estimasi-M IRLS memakai fungsi pembobot Bisquare Tukey

diperoleh taksiran model regresi linear

§. =1,04—0,000048 x., +0,000048 x., +0,0268 x., —0,000236 x., —0,000008 x..

3.5.3 Model Terbaik

Kriteria yang dipakai

2

menggunakan R diustea

untuk menentukan model
dan MSE. Hasil perbandingan antara R

adjusted

regresi

pembobot Huber dan Tukey Bisquares disajikan pada Tabel 4 berikut ini

Tabel 4. Hasil Kriteria Model Berdasarkan Fungsi Pembobot

terbaik adalah
dan MSE pada fungsi

Fungsi Pembobot Ri iusted (%) MSE
Huber 85,7 0,17
Bisquare Tukey 86,1 0,1573

Berdasarkan hasil di atas, dapat dikatakan bahwa metode yang paling baik untuk
mengestimasi model ketahanan pangan di Jawa Tengah pada tahun 2007 adalah
menggunakan metode fungsi pembobot Bisquare Tukey, dengan tingkat kepercayaan
model sebesar 86,1 % bahwa rasio ketersediaan beras dipengaruhi oleh stok beras, luas
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panen, rata-rata produksi, harga beras, jumlah konsumsi. Sedangkan 13,9% dipengaruhi
oleh faktor lain atau kesalahan yang bersifat random.

4.

Kesimpulan

Berdasarkan pembahasan yang telah dilakukan, dapat disimpulkan bahwa:

1. Pendeteksian pencilan yang dilakukan menggunakan Cook’s distance menduga
bahwa data ke-1, ke-14 dan data ke-33 masing-masing sebagai pencilan, yaitu
kabupaten Cilacap, Kabupaten Sragen dan Kota Semarang.

2. Taksiran model regresi pada data ketahanan pangan di Jawa Tengah tahun 2007
adalah sebagai berikut
a) Menggunakan fungsi pembobot Huber
¥, =1,17-0,000047 x,, +0,000048 x,, +0,0247 x,, —0,000236 x,, —0,000008 x ;5
b) Menggunakan fungsi pembobot Bisquare Tukey
¥, =1,04-0,000048 x;, +0,000048 x;, +0,0268 X, —0,000236 x,, —0,000008 X

3. Berdasarkan nilai MSE dan koefisien determinasi dapat dikatakan bahwa metode
estimasi-M IRLS dengan fungsi pembobot Bisquare Tukey lebih baik dipilih dari
pada menggunakan fungsi pembobot Huber untuk taksiran model ketahanan pangan
di Jawa Tengah tahun 2007.
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