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Abstract. The effect of a time delay on the transmission on dengue fever is studied.  The time delay is due to the 

presence of an incubation period during which the virus replicates enough in the mosquito so that the viruses can be 

transmitted by the mosquito to a human.  The conditions for the existence of a Hopf bifurcation to limit cycle 

behavior are established.  A theorem for determining whether for a given set of parameter values which satisfies the 

mathematical conditions, the system will actually undergo a transition from a stable state into a limit cycle state is 

established.  It is found that for a set of realistic values of the parameters in the model, a Hopf bifurcation will not 

occur even when it is mathematically possible.  For a set of unrealistic values of some of the parameters, it is shown 

that a Hopf bifurcation can occur.  Numerical solutions using this set of values show the trajectory of two of the 

variables making a transition from a spiraling orbit to a limit cycle orbit. 

 

1  Introduction 
 

This paper is concerned with the transmission of diseases among humans.  These diseases fall in three 

categories:  I. Those transmitted directly from one human to another without the need of a third party.  II.  Those 

transmitted from one person to other through a third party, called a vector.  III.  Zoonotic diseases are those 

which are transmitted from an animal to a human.  Within this category, the animal-to-human can be direct 

(III.a) or indirect (III.b), i.e., through a third party.  Common examples of diseases belong-in to category I are 

SARS, HIV/AID, common flu, measles, TB, small pox, etc.  Examples of category II are malaria and dengue 

fever. Among sub-category III.a, the examples are rabies and chicken flu while among the sub-category III.b are 

Japanese encephalitis and West Nile Fever. 

 

Insights into the behavior of systems can often be achieved through a mathematical modeling of the system.   

The models are usually expressed as a set of differential equations obtained by noting that the time rate change 

of the number of members of any population group is equal to the numbers entering minus the numbers leaving. 

The models are based on separating the population into different groups.  Then each group is then divided into 

susceptible members (S), infected members (I) and recovered (R). The infected members may be sometimes 

divided in two groups; exposed (E), exposed to the disease but who are not infectious and infected members (I) 

who are infectious, i.e., they can transmit the disease.  Depending on the disease, the recovered individuals may 

revert back to the susceptible.  

 

Mathematical modeling has undergone a renaissance in recent years.  This has occurred in part to the 

availability of very powerful computers which can numerically simulate the solutions a model no matter how 

complicated the models must be in order to take into account all the different population groups which play a 

role in the transmission process.  For instance, the model introduced by Barth-Jones and Longini [1] to simulate 

the progress of HIV/AID over a 40 year period contains about 48 population groups.  The model being used to 

develop a public health strategy to contain a possible H5N1 pandemic contains 8 population groups based on 

age and their risk conditions.  The need for this arises from the realization by mathematicians that many factors 

in the transmission of diseases are age dependent and sex dependent.  Medical doctors and epidemiologist have 

long recognized this. 

 

 In this paper, we are interested in the effects of a time delay caused by an incubation period in the virus 

development in the mosquitoes on the transmission of dengue fever.  Dengue fever (DF) is an illness, which is 

characterized by a moderately high fever, extreme pain and stiffness in the joints, a rash and a reduction in the 

white blood cells [2].  These symptoms are caused by the toxins produced by one of the four serotypes of a virus 

belonging to the genus Flavirus, in the family Flavicidae.  In many cases, the illness is asymptomatic and an 

infection can only be determined through serologic tests.  A second infection by different strain of this virus can 

result in a more virulent form of the disease, dengue hemorrhagic fever (DHF).  From its first appearance in the 

Philippines in 1953, DHF has become the most important arthropod-borne viral diseases of human’s [3].   It has 
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been estimated that there are between 50 and 100 million cases of dengue fever (DF) a year, over 250,000 cases 

of dengue haemorrhagic fever (DHF) with approximately 10,000 infant deaths due to the latter form of this 

disease.   

 

2  Mathematical model of dengue fever transmission 
 

To formulate a model for dengue fever transmission, one needs to know what the transmission cycle of this 

disease is.  The infection in the human begins when an infectious mosquito bites a human and injects a large 

number of dengue viruses of one strain into the blood of the human.  There, the virus develops and causes either 

a symptomatic or asymptomatic infection in the person.  The illness resulting from the infection lasts for about 

one to two weeks.  During this time, the infected person is immune to further infection by all of the four dengue 

virus strains.  After the person recovers, he keeps his immunity to the infecting strain but losses the temporary 

immunity (after three or so months) he had to the other strains.  To simply matters, we have assumed in our 

model there is only one strain present.  If a susceptible mosquito bites a person while he has a high count of 

virus in his blood, the virus could enter into the mosquito and mosquito is then said to be infected.  It then takes 

from 3 to 14 days (the incubation period) for the virus to develop inside the mosquito before the mosquito is 

able to transmit the disease to a human by a subsequent bite. 

 

To represent the transmission process, we divide the human population into three classes, susceptible, infectious 

and recovered (S’, I’ and R’) and the mosquito population into two classes, susceptible and infectious, S’v and 

I’v.  The time rate of change in the number of subjects in each class is equal to the number of subjects entering 

into the group minus the number leaving the group.  This gives for the different human population classes  
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The time rate of change of the number of susceptible mosquitoes S’v is  
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In the above, NT is the total host population; A, the recruitment rate of female mosquitoes; O, the human birth 

rate; Ph (Pv), the death rate of the humans (mosquitoes); Eh (Ev), the probability that a bite by an infected 

mosquito (human) on a susceptible human (mosquito) will result in a new infection; r, the rate at which the 

infected human recovers; b, the biting rate of the mosquito and c is the number of other animals the mosquitoes 

can fed on.  The derivation of the contact term is given in ref. 9. 

 

Since we are interested in the time rate of change of the infectious mosquitoes at time t and since it takes W 
number of days for the infected mosquitoes to become infectious, we should be interested in the number of 

susceptible mosquitoes who bit an infected human at the time t - W. not at the time t.  Between the times t and t - 

W, a portion of these infected mosquitoes would have died.  Taking into account all of these additional 

considerations, we get  

                                                 
-� 2(t)v v v(t-2)v

T

dI' b�
S' I'(t-2)e � I'

dt N c
 

�
(t)v v� .     (1e) 

 

In this approach, the presence of an exposed class is taken care of by including a time delay and the inclusion of 

the exponential factor, exp{-�v2}.  If we assume that the total human and mosquito population remains constant, 
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we have O   Ph and NV = A/Pv.  Dividing the human classes by the total human population and the mosquito 

classes by the total mosquito populations, we get the densities for each class.  We also have S + I + R = 1 and Sv 

+ Iv = 1 where the absence of the prime denotes a density.  Because of these two constraints, only three 

equations are needed to define the model which is described by three variables only, e.g.  
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where , and where m is the ratio between the total number of mosquitoes and total number 

of humans.  In eqn. (2c), we have replaced I(t-W) by I(t) since the density of infectious humans is not expected to 

vary much over the period W which is much less then the life time of a human. 

� b� mh h � b�v  v

 

The equilibrium states are obtained by setting the RHS of eqns. (2a) to (2c) to zero.  Doing this, we get two 

equilibrium states, the disease free state, Eo = (0, 1, 0) and the endemic equilibrium state, E1 = (Iv*, S*, I*) 

where 
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where                                          
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is the basic reproduction number in the absence of any time delay.  As we see, S*, I* and Iv* are functions of the 

time delay, W.  Since I* t 0, we need 

 

                                                              Ro exp{-PvW} t 1         (5) 

For the equilibrium point E1 to exist, W must lie in the range 0 d W d 2* = {ln Ro}/Pv.  The factor R = Ro exp{-

PvW} is called the basic reproduction number and it is the number of secondary infections which could result 

from a single primary infection.  When it is less than one, the disease-free state is the equilibrium state; if it is 

greater one, then the endemic state is the equilibrium state. 
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3  Bifurcation conditions for the endemic equilibrium state 

 

The stability of the equilibrium point is established by studying the properties of the eigenvalues of the Jacobian 

of the systems of equations Eqns. (2a) to (2c) and see whether the eigenvalues met the conditions of the Hopf 

Bifurcation Theorem.  Diagonalizing the Jacobian matrix, we get 

 

   
-

vP( , ) Q( , )e 0
P W

O W O W�            (6) 

 

where 

                                                  P(O�W) = O3 + ao(W)O
2 + bo(W)O + a2(W)       (7a) 

 

and 

                                                       Q(O�W) = a1(W)O
2 + b1(W)O - a3(W)                   (7b) 

 

with 

 

                         ao(W) = 2Ph + Pv + r + JhIv*         ,        (8a) 

 

                   a1(W) = JvI*exp{-PvW}      ,    (8b) 

 

                       a2(W) = (Ph + JhIv*)(Pv(Ph � r) – JvJhS*exp{-PvW}) + JvJh
2 S*Iv*exp{-PvW} ,    (8c) 

 

                     a3(W) = - exp{-PvW}((Ph + JhIv*)�Ph � r)JvI* + PhJhJvS*Iv*)    ,    (8d) 

 

                   bo(W) = (Ph +  JhIv*)exp{-PvW}(Ph � Pv � r) + Pv(Ph � r) – JvJhS*exp{-PvW},    (8e) 

 

and 

 

                          b1(W) = ((2Ph + r + JhIv*)JvI*
 + JvJhS*Iv*)exp{-PvW}      .    (8f)  

 

Whether the equilibrium point of the given system undergoes a Hopf bifurcation to a limit cycle behavior is 

determined by whether the eigenvalues of the Jacobian for the system of equations satisfy the two theorems.  

The usual method to find the value of the critical point is to find the value of 2 for which the real part of the 

eigenvalue u(2) = 0 (condition i. of  Hopf's Theorem).  Since we do not have an explicit expression for u(2), we 

instead use the method developed by Tam and by Ruan and Wei.   

 

To show the stability of the equilibrium state, we first look at the case where 2 = 0.  For this case, the 

characteristic equation for the Jacobian becomes  

 

                                                                                   (9) 
3 2� +A� +B�+C=0

 

where  

 

                 A = ao(2 = 0) + a1(2 = 0)  , 

 

                 B = bo(2 = 0) + b1(2 = 0) 

 

and 

 

                 C = a2(2 = 0) - a3(2 = 0)       (10) 
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where the definitions of the a’s and b’s are given by eqns. (8a) to (8f).  According the Routh-Hurwitz theorem 

[10], all the roots of eqn. (9) will have a negative real part if A > 0, AB > C and AB > C.  If these conditions are 

met, then u(2 = 0) < 0 and the equilibrium states, eqns. (3a) to (3c), are stable when 2 = 0.  By continuity u(2) < 0 

for sufficiently small 2.  Therefore the steady state would remain stable for values of 2 less than some positive 

value of 20.  Suppose u(2) = 0 for 2 > 20, then u(2) < 0 for 2 00, )W�  and the equilibrium states are stable for 

time delays less than 20. 

 

To determine what the critical value 2c is and then whether u(W) and v(W), the imaginary part of the eigenvalues, 

satisfy the conditions of Hopf's Theorem, we substituting O = u + iv into eqn. (6), and then separating the 

resulting equation into its real and imaginary parts.  We get 

 

                           3u(W)v(W)2 - u(W)3 - ao(W)(u(W)2 - v(W)2) - bo(W)u(W) - a2(W) = 

                             [{a1(W) (u(W)2 - v(W)2) + b1(W)u(W) - a3(W)}cos(v(W)W) + 

                                         {2a1(W)u(W)v(W) + b1(W)v(W)}sin(v(W)W)]e-uW                            (11) 

 

and 

 

               v(W)3 - 3u(W)2v(W)-2ao(W)u(W)v(W) - bo(W)v(W) = 

                                           [{2a1(W)u(W)v(W) + b1(W)v(W)}cos(v(W)W) –  

                                 {a1(W) (u(W)2 - v(W)2) + b1(W)u(W) - a3(W)}sin(v(W)W)]e-uW                (12) 

 

It should be noted that u and v are real numbers or functions.  The critical point, Wc is the point at which u(Wc) = 

0, i.e., Wc = 20.  

 

To determine whether there is a Wc, we set 2 = Wc and set u(2) = u(Wc) = 0. Denoting v(Wc) as v*, eqns (11) and (12) 

become  

 

                ao(Wc)v*2 - a2(Wc) = b1(Wc)v*sin(v*Wc) - (a1(Wc)v*2 + a3(Wc))cos(v*Wc)                (13a) 

 

              v*3 - bo(Wc)v* = b1(Wc)v*cos(v*Wc) +(a1(Wc)v*2 + a3(Wc))sin(v*Wc)                       (13b) 

 

Squaring both equations and adding them together, we get 

 

f(Z) = Z3 + c1(Wc�Z
2 + c2(Wc�Z�c3(Wc�   �    (14) 

 

where Z = v*2 and 

 

                                              c1(Wc�   ao(Wc�
2 - a1(Wc�

2 - 2bo(Wc�
2         ,               (15a) 

 

      c2(Wc�   bo(Wc�
2 - 2ao(Wc�a2(Wc� - b1(Wc�

2 - 2a1(Wc�a3(Wc�               (15b) 

 

and 

c3(Wc�   a2(Wc�
2 - a3(Wc�

2            .                 (15c) 

 

It should be noted that the coefficients c1(Wc�, c2(Wc� and c3(Wc� are real. 

 

The problem is reduced to determining whether eqn. (14) has at least one positive real root.  The necessity of 

root being positive and real comes from the fact the imaginary part of the eigenvalues is the square root of &, 

i.e., Im{�} = v* = Z .  If & were negative or complex, then Z  would be imaginary or complex, which 

would be a contradiction since Im{�} has to be a real number.  To determine under what conditions eqn. (12) 

has at least one positive real solution, we establish the following theorem: 

 

Theorem 1.   Let D and E be the two turning points of f(Z), i.e., the roots of  df(Z)/dZ = 3Z2 + 2c1(W)Z + c2(W) = 

0 and let ' = f(D)f(E). 
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If either 

i. 3(W) < 0 or 

ii. c2(W) < 0 and '(W) <0, for all W � [0, (lnRo)/Pv), 

then a Hopf bifurcation can arise as W passes through Wc where Wc is the critical time delay 

that satisfies conditions i, ii, and iii of Theorem 2. 

 

The fact that c2, c3 and ' are functions of W leads to some new consequences.  To see why, we note that it is 

possible to find a value of W (W**) in the interval [ 0, 2* ) for which either c2(W**) = 0 or  c3(W**) = 0 or '(W**) = 

0.  One of these W** will divide the interval into two sub intervals, [0, W**) and [W**, 2*) in which different 

conditions can hold.  We can then ask, “What are the conditions that we can impose on the two regions which 

will affect the stability or instability of the endemic state?”  This question has been touched on by Xiao and 

Chen [5].  The answer is given by the following theorem. 

 

Theorem 2   Suppose the interval [0, (lnRo)/Pv) is divided into two sub intervals by W**, [0, W**) and [W**, 2*).  

If in the interval [0, W**), only conditions i. or ii. (at least one positive real root of eqn. (12) exist) of the Lemma 

is satisfied and in the interval  [W**, 2*), only condition iii. (there is no positive real root) is satisfied, then there 

is no critical value of W in the interval [0, 2*) at which a bifurcation occurs. 

 

4  Numerical results and conclusions 
 
Our bifurcation analysis begins with picking the values of the parameters in our model.  The endemic 
state will be a stable spiral node if the basic reproduction number R > 1 (defined by eqn. (6)).  Its 
actual value can be determined from observations.  If T2 is the observed doubling time during the 

initial stage of the epidemic, then R = {(ln T2)/Pv+1}.  Based on the measured doubling times in the 
growth of infected people during the 1990-91 dengue fever endemic in Sao Paulo State, Marques et al., 
[10] determined the basic reproduction numbers for twelve cities in the state to be between 1.6 and 
2.5.  The values of the parameters picked should be such that if we substitute the values into the 
expression for the basic reproduction number, eqn. (6), we should obtain a value of R of the same 
magnitude as the values observed in nature, i.e., in the range 1 < R < 10. 
 
The values of some of the parameters in the model are dictated by reality, e.g. the death rates of the 
humans and mosquitoes, the duration of the infectious period in the human, etc.  As we have pointed 
out, a person infected with the dengue virus is only infectious during the viremia period, which lasts 
around three days.  The recovery rate should be equal to 1/3 per day and not the inverse of the  

length of the illness.  The values of the parameters determined by nature are Ph = 0.000039 per day, 

corresponding to a life expectancy of 70 years; Pv = 0.059 per day, corresponding to a mosquito mean 
life of 17 days and b = 1.  While one full bite provides enough blood meal for three days, the eating 
habits of the Aedes aegypti and Ae. albopictus mosquitoes are such that the meal can be interrupted by 
the slightest movement of the blood provider.  Therefore, it takes more than one bite per three days to 
get a full meal.  We have assumed it takes three bites to get a full meal, giving b = 1.  The values of 
the other parameters must be such their substitution into eqn. (5) yields a R in the desired range.   

Since we will be treating W as the bifurcation parameter, we first look at the case of W = 0.  The basic 

reproduction number would now be given by eqn. (5d), Ro.  Using the following values of Eh, Ev and 
m,  0.5, 0.75 and 0.1, respectively, we get a R = 1.91.   
 

We will now determine whether the system can undergo a Hopf bifurcation to a limit cycle as W is 

increased.  As we just showed, the endemic state is stable when W = 0.  Theorem 2 will be used to 

establish whether a critical value Wc (the point at which the stable endemic state loses its stability and 
trajectory becomes a limit cycle) exists in the interval [0, 11.02).  The number 11.02 is just the value of 

(lnRo)/Pv.  In Figure 1, we have plotted the values of c2(W), c3(W) and '(W) as a function of W, using the 

same numerical values for the other parameters.   As we see from Figure 1, c3(W) t 0 for W � [0, 11.02), 

c2(W) < 0 for W � [0, 11.014) and '�W�� 0 for W � [0, 4.48) and [11.018, 11.02.  Looking at Figure 2, we can 

identify W** as being 4.48.  This will given us two sub intervals I1 = [0.4.48) and I2 = [4.48, 11.02).  In I1, 

c2 < 0 and ' < 0 while in I2, condition iii. of the Lemma holds, i.e., no positive real root of eqn. (15) exist 

[Note that for W � [4.48, 11.018), ' > 0 and c2 < 0 and for W � [11.018, 11.02), ' < 0 and c2 > 0].  Therefore 
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by Theorem 2, there is no critical delay time in the interval [0, (lnRo)/Pv) when the above values of the 
parameters are used. 

 

5  Discussion 
 
The annual cycle seen in the incidence of dengue fever (dengue Hemorrhagic fever) in Bangkok, 
Thailand between 1966 and 1998 by Hay et al.,[13] is not indicative of a limit cycle.  We have shown 
that the appearance of a limit cycle in the transmission cycle of dengue fever is highly unlikely.  The 
annual cycles arise from the seasonal variations, which occur in many of the parameters in the model.   

   
 

                                                    1a. 

                                                              1b. 

                                1c. 
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Dependence of c2(W), c3(W) and  '(W) on the time delay W using realistic values of the parameters.  The values 

used are {Eh = 0.5, Ev = 0.75,Ph = 0.000039, Pv= 0.059, r = 0.33, b = 1 and m = 0.1}.  The incubation period W is 

varied between 0 and 11.02 which is the value of (ln 1.91)/Pv.  As is seen, c2(W) is negative for W < 11.01, c3(W) is 

positive over the entire range of W  and '(W) is negative in the range [0, 4.48), positive in [4.48, 11. 018) and 

negative again in [11.018, 11.02).  The point W* divides the entire interval into two sub intervals, I1 and I2.  In I1, 

the conditions for a positive real root of eqn. (12) while in I2, the conditions for eqn. (12) to have no positive real 

roots hold. 

 
Dowell [14] has classified the causes of these cycles into three groups: pathogen appearance and 
disappearance, environmental changes and host behavior changes.  Statistical significant correlation’s 
between epidemic cycles and cycles of temperature, humility, rains or winds have been found.  Dowell 
has pointed out that the seasonal variations should be distinguished from the periodic behaviors, 
which would be intrinsic to the model.  Hay et al., also drew attention to this when they remarked that 
the focus of future research on mosquito borne diseases should be on combining the extrinsic (climate 
changes) determinants with the intrinsic determinants. 
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