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Abstract. The Sumatra-Andaman earthquake of magnitude 9.3 on the Richter scale occurred on 26 December 2004. It 

triggered off a series of tsunami waves that caused tremendous damage to the properties and lives along the affected 

coastal areas. The earthquake was located where the India Plate dives under the Burma Plate, and was extremely 

large in geographical extent, beginning off the coast of Aceh and proceeding northwesterly over a period of about 

100 seconds. An estimated fault length is about 800 km, with a fault width of about 85 km and an initial vertical 

displacement of 11 m. There were no tsunami warning systems in the Indian Ocean to detect tsunamis, nor to warn 

the general populace living around the ocean. Thus, there is a need for early warning systems to predict the 

characteristics of tsunami propagation, including tsunami wave heights and arrival times. There are three phases of 

tsunami evolution, which are generation, propagation and runup. Tsunami is generated by the disturbance associated 

with seismic activity, explosive volcanism, and submarine landslide phenomena. Propagation of tsunami waves 

transports seismic energy away from the earthquake source. During the deep ocean propagation stage, the wave 

height is small compared to the wavelength and the ocean depth. Therefore, the linear wave theory can be applied. 

Tsunami runup is the most destructive phase of tsunami evolution. The wave behavior at the shoreline depends on 

such characteristics as the relationships between wavelength and water depth and between the wavelength of the 

wave and its height. This paper will present the simulations of these tsunami propagations in the Indian Ocean and 

discuss wave height characteristics near the coast of Sri Lanka, Bangladesh and India to highlight tsunami hazards 

and coastal vulnerability. The need for an early warning system in the Indian Ocean would appear urgent. The 

simulation is performed by means of an in-house tsunami numerical simulation model TUNA-M2 that solves the 

shallow water equation by the staggered finite difference method. 

 

 

1 Introduction : Tsunami numerical models 
 

There are several numerical models available for simulating the propagation of tsunami waves. TUNAMI-N2 

developed by Imamura of Tohoku University [2] is one of these models. Another well-known model is the 

method of splitting tsunami model (MOST) developed by Titov and Gonzalez [12]. The MOST model, which will 

be used to develop tsunami hazard mitigation tools for the Pacific Disaster Center (PDC) has been used 

successfully to simulate the tsunami generation by a source near Alaska, propagation across the Pacific Ocean, 

and subsequent runup onto the Hawaiian shoreline. However, TUNAMI-N2 and MOST models will not be used 

in this paper. An in-house tsunami propagation model in two dimensions, TUNA-M2 will be used in this paper. 

The relevant features and characteristics of tsunami propagations in deep oceans are simulated by means of 

TUNA-M2. 

 

2 TUNA-M2 model 
 

TUNA-M2 is developed based upon the shallow water equations (SWE) [11]. This model has been used to 

simulate the propagation of the Dec 26, 2004 tsunami waves towards the coastal regions of Malaysia and 

Thailand [7, 15]. An enhancement of the open sea boundary condition has been implemented for TUNA-M2 to 

improve its capability for the current paper.  

 

2.1. Shallow Water Equations (SWE) 

 

Under certain assumptions typically applicable to tsunami propagation in the ocean, hydrodynamic equations 

that describe the conservation of mass and momentum can be depth averaged [1]. They can be written in flux 

form [3, 4] as follow. 
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The x and y are the rectangular Cartesian coordinates; M and N are the discharge fluxes terms in the x- and y- 

direction respectively. The fluxes M and N can be expressed as M = u (K+h) = uD and N = v (K+h) = vD; where 

h is sea depth, K is water elevation above the mean sea level (MSL) and D is the instantaneous depth. 

 

2.2. Numerical model 

 

A staggered scheme is employed for TUNA-M2 as illustrated in figure 1 [6, 15] where the computational 

locations of the three variables, which are K, u and v (or their associated fluxes M and N) are illustrated.  

 

 
 

Figure 1. Computational points for a staggered scheme 
 

Partial derivatives are replaced by finite differences as shown in (4), while time step 't is restricted by the 

Courant criterion (5) to ensure stability of the numerical scheme.  
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K is water elevation above mean sea level, h is water depth, u and v are the velocities in the x and y direction 

respectively, g is gravity and t is time. In this paper, distance is measured in meter (m) and time in second (s). 

 

2.3. Open Sea Boundary Conditions  
 

For a study domain containing open sea boundary such as the Indian Ocean, appropriate radiation boundary 

condition should be implemented in the numerical scheme to allow wave disturbances to pass through the open 

boundary without reflection. This means that the wave energy can pass through the boundary and travel away 

from the system to avoid wave reflection, which would otherwise induce disturbances inside the computational 

domain [5, 7, 10].  
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2.3.1. Simple Radiation Boundary Condition 

 

A simple radiation boundary condition proposed by Jensen [5] as given by (6) is applied in TUNA-M2 model. 

By averaging (6a) and (6b), we derive the equation in (6c). 
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A two dimensional numerical implementation of (6c) can be expressed in (7), 
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2.3.2. Modified Orlanski Radiation Boundary Condition 

 

The Modified Orlanski radiation boundary condition is also tested in TUNA-M2. It is observed that this type of 

radiation boundary condition appears to work well for storm surge simulations [10]. The Modified Orlanski 

radiation condition is given as (8) and (9). 
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3 Numerical Testing: Radiation Boundary Condition 
 

A numerical experiment on the two types of radiation boundary condition is tested in a square domain of 

dimension (0, 40000) by (0, 40000) m2 in the middle of the ocean. With a depth of 1000 m and the gravitational 

acceleration of 10 m/s2, the wave celerity is 100 m/s. An initial displacement defined by the Gaussian hump K=a 

exp-(x/V)2uexp-(y/V)2  in the form of a circle (figure 2 and figure 3) with given zero initial velocity is created in 

the middle of the domain. The amplitude of the initial displacement is 10 m whereas V is 2000 m. 

 

    
(a) (b) (c)  (d) 

 

 (e) 

Figure 2: Tsunami propagation in a square with simple radiation condition 

 

 
(a) 

 
 (b) 

 
 (c) 

 
 (d)   (e) 

 
Figure 3: Tsunami propagation in a square with Modified Orlanski radiation condition 
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As shown in figure 2, the simple radiation boundary condition allows the disturbances to propagate out of the 

domain through the boundary. However, there are some residual waves remaining inside the study domain after 

the waves have passed out of the computational domain, due to dispersion of the waves. Similarly, the Modified 

Orlanski radiation boundary condition also allows the waves to pass through the boundary (figure 3). Compared 

to the case of figure 2, residual waves remain longer inside the computational domain after the waves have 

passed out of the computational domain. Hence, simple radiation boundary condition will be used in the study in 

this paper. 

 

4 December 26 Asian Tsunami in Indian Ocean 
  

Numerical tests have been presented in Teh et al. [11] to indicate that TUNA-M2 simulates hypothetical tsunami 

propagation correctly and accurately. After some enhancement of radiation boundary condition, TUNA-M2 is 

then used in the simulation of December 26 Asian tsunami in the Indian Ocean for a computational domain of 

1600 km by 2500 km and dx of 2000 m, comprising of 1 million nodes. The contour of the tsunami propagation 

waves is plotted by MATLAB 6.5. It should be noted that it is time consuming to produce the contour plots for 1 

million nodes due to the PC limitation. For computer efficiency, the grid size must be chosen properly in order 

to obtain adequate resolutions and yet not to impose excessive demand on memory and computational time [11]. 

The main focus of this simulation is on the wave heights offshore in the vicinity of Sri Lanka, India and 

Bangladesh (figure 4a). The computational domain chosen is a square of dimension (0, 1600) km x (0, 2500) 

km, with a grid size of 2000 m, giving rise to a computational grid of dimension 800 by 1250 nodes. The source 

of initial displacement is composed of an elliptical hump defined by K=a exp-(x/Vx)
 2uexp-(y/V y)

 2 where 

Vx=42.5 km and Vy=400 km, indicating a rectangle of dimension 85 km by 800 km [1, 3], with the major axis of 

800 km defined by Vy=400 km in the vertical direction. The initial velocity is given by u=v= h2/g K with 

average Indian Ocean depth, h=3500 m. 

  

 
(a) 

 
(b) 

 
Figure 4: (a) Map of study domain and (b) Time series of tsunami height at different location in Indian Ocean 

 

Figure 4b shows the time series of tsunami heights at several locations in the Indian Ocean. The coastal areas in 

Sri Lanka experience the maximum tsunami impact with maximum wave heights of about 4.3 m off the coast in 

deep water. The simulated wave heights in the offshore coastal areas of India receive waves of less than 1.0 m. 

The wave height offshore of Chennai is about 0.7 m. On the other hand, Bangladesh only receives refracted 

waves as it is not located in the main propagation path of the tsunami source. Hence, the tsunami wave height 

offshore of Bangladesh is about 0.1 m. The reason that Sri Lanka receives the maximum impact is that Sri 

Lanka lies directly along the path of the main tsunami propagation axis.  

 

The runup heights along beaches may amplify by a factor typically in the range of 2 to 6 [8] depending on a 

number of contributing factors such as bathymetry and slopes. Table 1 shows the measured runup heights and 

inundation distances for several locations along the affected regions. For Sri Lanka, the runup height varies from 

3 m to 12 m, which is in general agreement with the wave heights offshore of Sri Lanka simulated by TUNA-

M2. The runup heights for Chennai are in the range of 1.4 m to 4.8 m, which are consistent with the simulated 

wave heights of 0.7 m offshore of Chennai. 

 

A series of contours for the propagation of tsunami waves plotted by MATLAB 6.5 is shown in figure 5. The 

tsunami wave is initiated in figure 5a, propagates westward towards Sri Lanka (figure 5b, c and d) and finally 

arrives offshore of Sri Lanka (figure 5e) after a travel time of 1.7 hours, with the focus of the wave propagation 

directed towards Sri Lanka. This is the main reason why Sri Lanka receives the maximum adverse impact of this 

tsunami. Also quite clear from this diagram is the observation that the tsunami wave propagation hardly reaches 
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Bangladesh, which is located in the northern most regions in the computational domain. 

 
Table 1. measured runup height 

 

Location Runup (m) Inundation distance (m) Reference 

Sri Lanka <3 to > 12 50 to > 1000 [13] 

Chennai 1.4 to 4.8 45 to 200 

Nagapattinam 3.9 750 

Santhankuppam 3.5 80 

 

 [9] 

 

Sri Lanka 2.5 to 10 N/A [14] 

Pulicat 3.2 160 

Pattinapakam 2.7 145 

Kovalam 4.3 180 

Kalpakkam 4.1 360 

Periakalapet 3.9 170 

Puttupatnam 2.6 N/A 

Devanaampatnam 2.5 340 

Parangipettai 2.8 700 

Tarangambadi 4.4 400 

Vedaranniyam 3.6 N/A 

 

 

 

[15] 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) (e) 

 

Figure 5. contour of the propagation of tsunami wave (left to right) 

 

5 Conclusion 
 

This paper has presented numerical simulation by TUNA-M2 for tsunami that occurred on 26 December 2004 in 

the Indian Ocean. A satisfactory radiation boundary condition has been implemented in TUNA-M2 to allow 
tsunami waves to propagate out of the computational domain through the open boundary. Further, it helps to 

reduce some numerical defects due to over-dampening especially at coastal boundary. It is hoped that this paper 

will contribute towards further research on tsunami modeling in future. 
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