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Abstract

The ideas introduced by Einstein General Relativity theory toward the
development of wormhole research field are reviewed namely, the
concept of spacetime, Riemarxrian geometry, cosmological constant
and the pioneering work of Einstein and Rosen on the subject.
Spherically slmmeEic spacetime metric that provides the wormhole
spacetime metric by the revival works of Morris and Thorne are

discussed. Concerning recent works on the subject a generalized
wormhole solution with cosmological constant introduced by the works
of Lemos, Lobo and Oliveira are also discussed. Finally, the rotating
wormhole solution as introduced by Khatsynovsky and Teo has
provided a more generalized solution compared with the Morris-Thorne
stafic solution. Based on these ideas, we proposed the spacetime metric
of a slowly rotating spherically s)rynmetric wormhole where we
constructed set ofEinstein equalions in term ofpressure and the energy
density of the wormhole.

Keyw ords; General Relatfuity; Cosmological constant; Einstein-Rosen
Bridge; Wormhole

1. Introduction

The possibility for the existence of wormhole has long been considered as topologically
non-trivial exact solution to the Einstein field equations. Einstein freld equations that me
derived from general relativrty theory shows the relation between space-time curvature and
tle energy momentrun tensor that represents gravitation [1] and matter or energy
respectively. The equations are nonlinear and are highly complicated to solve analytically.
However, Schwarzchild had considered a special case which provides an exact solution to
the equations, namely, the static spherically symmetric field produced by a spherically
symmetric body at rest [2]. Later it has been shown by Einstein and Rosen [3] that the
Schwarzchild solution has a singularity. The idea of singularity was then propagated
toward further research on black-holes. Not satisfied with the possibility of the existence
of singularity, Einstein and Rosen in their paper [3], attempted to build a geometrical
model of a physical elementary "particle" that was everyrhere finite and singularity-free.
This idea was put forward in order to oppose some of ideas exist during the era that the
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material particles were considered as singularities of the field. Einstein and Rosen
solutions provide the mathematical representation ofphysical space oftwo identical sheets
where a particle is represented by a "bridge" connecting these sheets. This model of
elementary particle however was considered a failure but it had generated the idea of
Einstein-Rosen bridge and as coined later by Wheeler [4] the term "wormhole" where the
ideas concerning the space-time foam, was then introduced. This was described as a
microscopic charged carrying wormhole.

2. Traversable wormhole

The idea of a traversable wormhole was originally introduced by Morris and Thorne [5].
Unlike the Einstein-Rosen-bridge [3], or the Wheeler's wormhole [4], a traversable
wormhole [6, 7, 8l permit the two ways travel of objects. Despite the still questionable
possibilities for the existence of such wormhole, their study had generated newly exciting
areas of research such as its fundamental propertieg the application for faster than liglrt
travel and the associated problems of causality violation as suggested in the Hawking's
paper concerning the chronology protection conjecture [9, l0].

Einstein-Rosen-bridge or the Schwarzchild wormhole discard the presence of singularity,
however, it contains an ev€nt horizon, which is non-traversable because there exist
constraints similar to the case of being trapped in a black-hole. Morris-Thorne revived a
new idea of traversable wormhole [5]. The minimum requirement for a wormhole to be
traversable is that there shall be no event horizon in the system. It is therefore a
traversable wormhole space-time containing no curvdure singularity. However, the
problem with the ffaversable wormhole is that, matter near the throat of the wormhole
violates the null energy condition (NEC). From classical perspective the violation ofthe
NEC is impossible, but some quanfum effects violafe the NEC [11].

For mathematical convenience Morris-Thorne assumed that their traversable wormholes
were time independent non-rotating and spherically symmetric bridge between two
universes (inter-universe) or two distant places in the same universe (intra-universe). Both
conditions, even though there are differences globally but locally their behavior near the
wormholo throat are the same and they posses two asymptotically flat region. The proper
radial distance is denoted as /, and based on the Schwarzchild metric [2]

ds2 = -e" dt2 + e^ drz + r'de' + r' sinz 0dg2 (l)

the space time metric as proposed by Morris -Thorne can be written in general as

4r2 ^ -rzo(t) c'dt' + aP + r2 g1(a02 + sin' uq') (2)

where I e (-o,+oo). The two asymptotically flat regions occur at I x * * and the

radius of the wormhole throat is defined by r, = minlr(/). Morris-Thome then

reduced the functional dependency of the metric, to obtain a simpler expression for further
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calculation of Reimanrl Ricci and Einstein tensors. The Morris-Thorne expression in

Schwarzchild (ct,r,O, g\ coordioates [5] then becomes

trrz - *"2@(rr"rOr, *fi1+r2(d02 +sinz Hez\
l-_

where O(r) is called the red shift fimction, while D(r) is called the shape function. The

choice of the shape function was based on the embedding diagram (Fig.l) that is used to
represent a wormhole spatial geomefry, which result in the equation of the embedding
surface [5]

Figurel; The profile ofthe embedding diagram

This equalion (4) displays the manner in which the fimction D = D(r) shapes the

wormhole spatial geometry. The equation (3) shows two coordinate gatches where each

one covering the range of r e [%,+*). Thus, a coordinate patch is representing a

universe. The two patches (universe) join at the throat [12] of the wormhole defined by ro

where the geometry has a minimum radius r = a(.) = r;. To avoid the presence of event

horizon and the curvature singularity, @(r) must be everywhere finite [5]. The equation

(4) also represent a flare-out condition of a wormhole that shows a vertical embedded

surface when r -+ roalthe throat whel:e dzf dr -+ o and a horizontal embedded surface

when ,, J co at a distance place far from the mouth of awormhole where dz / dr -+ 0 .

(3)

(4)4=(r-r\n
dr \D )
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As the solution to Einstein field equations, and after some calculatious of Ricci
and Einstein tensors, the solution result yield non-zero components of the stress.energy

tensor p, t and p denoted as energy density, radial tension and tangential pressur€

respectively:

b'c'
P= gffir* (5)

,=*l*-,{,-:}+] (6,

These components in the shess energy tensor generate the space-time curvature of a
wormhole.

3. Morris-Thorne wormhole with cosmological constant

It is known that the inflationary phase of the very-early universe and the currenfly

accelerating and expanding universe demand the presence of cosmological constant; A,
and from recent astronomical observation [3,14] it seems that we indeed live in a

universe with A. Following the method of Morris-Thorne paper, [rmos et al. [15]
nalyznd the spherically symmetric and static taversable wormhole based on the space-

time metric of Morris-Thome (3) and tJre inclusion of A in the Einstein field equation
where it can be rewritten as

Gr, + l\gr, =ffro,. (8)

Finally, after solving (8) with calculation of the Einstein curvature tensor the following set

ofEinstein equations of state were obtained

, = *{(,-:)[."..'(..i)]-#0,,-a{**i)} e)

p(r)=*(#-^) (e)

,(r)=*l*-,(,-ri-{ and (,0)

#ffia-#i:h.T].n) ,,',*{(,-:['udP(r) =
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These are the energy densrty, radial tension and tangential pressure respectively that
geoerate the space-time curvafure of a traversable wormhole in a universe with
cosmological constant, A. The works by Lemos, lobo and Oliveira [15] were indeed a
generalization attempt ftom the works of Morris-Thorne.

4. Rotating wormhole

An extension of the Morris-Thome traversable wormhole in term of its dyramical
properties is to consider a stationmy and a<ially symmetical model as proposed by Teo
[6] and Khatsymovsky [3]. The stationary and axially s5rrnmetric generalization would
physically describe a rotation. Stationary space-time posses a time-like Killing vector field

6" = (a t atf generating invariant time translation while the anially syrnmetric space-

time posses a space-like Killing vector field ry" =(alOg)'generating invariant

rotations with respect to the angular coordinate.

From the work of Papapetrou [8] and Carter [19] the most general metric of a stationary
and axially symmetrical model can be uritten as

4sz = grdtz +2g,rdtdp+ grrde'+ godxidxi . (12)

By this general space-time metric (12), Teo [16] introduced a general metric with a
rotational identity

dsz = *Nzdt' + epdr' + r'K'1d0' + sin' O(drp - atYl (13)

where the metric tensor g* representing the four gravitational potentials that are r and

d dependent. The quantity a, is the angular velocity a = dqldt of a particle that falls

freely from inhnity to the point ( r,d ). From (13), specifically, the canonical metric for a
stationary, axially-symmetric and traversable wormhole can be written as [16]

ds2 = -Nzdt' .(r-l)-' *' +r'K'fdr2 +sin2 o(dq- rdD'l (r4)

where N,b,K and ar are onty (r,d) dependent and regular on the symmetry axis

e efO,nl. This metric describes two identical asymptotically flat regions joined together

at the throat where r = b . N is analogous to the red-shift function in equation (3) where
it must always be finite and non-zero to ensurc there is no event horizon or curvature

singularity. The shape function b must satisff b < r andat the throat dbl d0:0 which is
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independent of 0 and obey flare-out condition dbfdr < I to satisfu the equation

d'rf dz' > 0 derived from (4), K determined the proper radial distance R = rK, while

al govems the angulm velocity of the wormhole.

Khatq,rnovsky proposed a rather similar space-time metric of (14) in a case of slow

rotation where higher order of angular velocity is negligible i.e., toz -+ 0 , therefore, the
space-time metric (14) reduced to a metric with small non-diagonal polar-angle-time

components. Theq by taking g, =e2@c2 as of Monis-Thorne, Khatsymovsky [17]
proposed for the self-maintained stationary and slowly rotating wormhole space-time
metric to be

ds' = -e'@c'dt' + dpz +r27d02 +sin2 0(dp' +zoilrfit)). (15)

Khatsymovsky had considered the metric as the sum of spherically symmetric spacetime
with small non-diagonal components, which describe small rotation a .lf r -+ p as

p -+ @, [7] thus, one can also speciff as of Morris-Thome that

r2ardD'=' |-blr (16)

5. Slowly rotating spherically symmetric wormhole with cosmological
constant

A study of a wormhole solution is to be attempted based on the works of Morris-Thome
[5], Lemos et al. [5], Teo [6] and Khatsymovsky [7]. Even though Teo's metric tensors

that represent the gravitational potentials N,p, andhis angular velocity a *" (r,0)
dependent, we would suggest" based on Morris-Thome original metric that atl poteutials

and angular velocity are independent of d due to the conservation of red-shift function
@(r),shapefunction b(r) and a{r)regardlessofthevariationof d andthereforeonly
dependent on r which is the spherically symmetric characteristic. Then by taking the

potentials to be N(r) = -e2a(') afi p(r)= -ln(| -b(r)l D *of the Morris-Thome
metric potentials, the general space-time metric with the characteristic of slow rotation
reduces to

ds' - (-e"c' + K'r'a)'sin'z e)dt'z + /'i+ r'r'dr' + Kzr2 sin2 0drp2

r -- (17)

-K2r2rosinz 1dcpdt
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which is our proposed space-time mehic for the slowly rotating spherically symmetric
wormhole.

From (17), the metric tensors are

goo=-e2oc2 + K2r2a2 siri 0, gr,=(l-bfr)-', gu= K2r2, (18)

gzt = Kzrz sirf 0 , Su = -K2rza sirf e ,

and the conjugate mefic tensors are

o* =--l - . .srr =l-blr, g" =+ ,E_er@cr,Ef_

s33 =---]- -*, sB =--3 ^. (re)u K'r' sin' o ez'bcz ' 6 
ezo c2

Then we derive the affrne sonnection that govems the acceleration of a freely falling
particle inthe gravitational field of the wormhole bythe Chdstoffel symbol expression

r;, = +b o1w * a,g o, - o pE o,). (20)

Let us consider a slowly rotating wormhole that has a very small but significant magnitude

of angular velocity ar which we assumed *ata2 = 0 . Considering also the spherically
sym.metric wormhole of Morris'Thorne where K = I , we obtained fourteon nonzero terms
as the following

flr=ALIN'
no rzol'sinz 0
^ 13 

2eroc,

r[ = (e2@c2(D'- 12 ,,,,'sin' E(r -i),

.t =(,-i)(+.,,)sinzo,
nr b'r -brr=[@,

rl, =(b-r)sinz0,

fL=b-',
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r?,= I
r

fL= asinecosd ,

fl = -sindcosd,

l3oz=*ocot?,

f'u=cote 
'

ri, =r[o'- ) +
The others are null affine connections whose metic tensors are independent to the
dynamic parameters of the test particles.

From all these we can construct the Ricci tensor in which represent the differencs of
acceleration between test particles dtre to the space-time curvature given by the expression

Ro, = o ,1f,, - o ,r;,, +r f,rfu -f kf h . e2)

The Ricci tensor is syrnmetical where R , = Rur, so it has ten different componeRts,

theyare;Roo, Ror, ftor, 1t03, fill,4r, Rrr, R22, R23 and,Rrr.Byalltheaffrne
connection fourteen terns, wo have calculated all the ten components of the Ricci tensor.
Ther contracting the conjugate metric tensor we obtained the Ricci scalar

R= gP" Rrrwherc,

,t = gooR* + g"R,, + g" R.,+ g"l?r, +2go3 Rr, . (23)

From the Ricci tensors and Ricci scalar we can construct the Einstein tensor which is

known as the curvature tensor Q, that represenl the space-time curvature which also

reprresenting the graviktional field of the worrrhole. The Einstein tensor relationship with
Ricci tensor and Ricci scalar are grven by

n3 r'oal'sin'? . Irn=@+l

(21)

Go,= Rru-lr** . (24)

Einstein field equations show the proportional relationship between the space-time

curvature Go, zurd the energy momentum tensor Trrwhich represent the gravitational

field and the energy-matter respectively by Go, = 8tGcaTo,.
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with the inclusion of the cosmological constant the relationship then become

Gur+ Lgor=\nGcaTp,. From the equation of perfect fluid the energy momentum

tensor is given by T o, = (p + ph ,u, * pg p, . Combining the Einstein field equation

with the perfect fluid equation we will have

(p* p)rru, * pg p,=*@r, + ttgu,) es)

. dxo dxu dt . dt (- ,r)-l
where u.. a-----!- =--;_ and --:-=/ where f =ll- " I .Thevelocityofu dr dt dt -- dr 

"')
test particle is regarded to be very much smaller than the light speed y << c o therefore

T = | . The test particle's reference frame follows the geodesic of the wormhole and thus

does not necessarily by itself rotate therefore we can consider that def dt=O.
Withxr =(ct,r,O,g\, thus a, =(c,0,0,0) or we can write uo =c, ut=00
Uz=O andUr=9.

From (25) we derive the Einstein equations of state that we for the energy density, radial
tension and the tangential pressure of the wormhole by analping the energy momentum
tensors [o , Trr, and Tn which are related to the calculation of the equations. Finally,

we obtained the expression ofthe energy densityp, the radial tension ? and the

, = *(* -,+(, -i)- 
^- *('-l)(,''.ei)"^"), Q7)

., (b,r-bl -. b,r-b *,.], = *(('- i) 
[. 

". .' - 

ff$**,ffi. + 
J. 

^

- *? - i)(* " - 
o':') .'"',) (28)

The above equations consist of the non-rotating Morris-Thome terms and the rotating
terms. Thus, it can be shown that if the rotation comes to a halt or if there is no rotation at

tangential pressure p as fhe following:

'=*l+-*1r)f@"-*"
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all, then all the expressions above will reduce to that of the non-rotating Morris-Thome
wormhole with cosmological constant as proposed by kmos et al. These eqrurtions
represent the governing physical state ofthe wormhole and it is usefirl for the detail study
of regions in the wormhole namely, the interior, the junction condition (mouth) and the
exterior.

We can now derive the spacetime metric or the line element for the exterior solution of the
wormhole which we define the line element as what an observer would view the wormhole
extemally. Comparing (14) with the Schwarzchild line element (1) and we may write in
general the line element as

4c
U:-' 8zG

(31)

(32)b,=r-r@-"-^
dr

#ry =;(,-,#-"J-^-(' -i)#*, (33,

Therefore let y =2@ and u-^ =l-L. Since
r

reduces significantly at the extemal region (ar -+ 0 as r -+ @), a' must be

significant. Hence, to this at radii near the mouth we }ove aot = 0 and aa" 
= 

0 which
defines a slim wormhole. We approximate (26) the density close to the mouth to be

ds' = -e'c2dt' + e^dr' + ,'(de' + sn' lldp - atatf) eg)

the rotating effect of the wormhole

#-^-(,-i)#"^,,) (30)

Takng p = mlY that is the mass over the volume of the wormhole and considering the

spherically symmetric nature of the worrnhole we can consider V = 4zrt b. From

m = 4tpr' 13 we can write m = +ry Ir'd, and therefore d(zm) = Stpr'dr .

Thus

stzc ^_ c a(z.m)

"^ 
u- r'r' d,

As e-^ =t-! , therefore
r

Bycombining (30), (31) and (32) we have

In term of e-u we have
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, - 2mG Lrz sin=0 l[- b\.
"-^ 

=t-j- 3 --F l\l--|a"dr 
(34)

Exknding to the exterior region and since the spacetime is almost flnl b",, 
= 

0, we have

"-^ 
4_\ + # !,,at,,*,d,.

-_T_+#W_+!,rn4 (3s)

Considering lhat a" o, is finite in this exterior region albeit a small value as o)exr -+ 0 ,

and Lot", --> da.o 
= 

0 as r -+ € (35) reduces to

^-t - 1 LmG L"of' a''* rn sin' 0E -r- ,i - 3 - lG"'

"^ =(;2*9 _l\u,r' _at'?oro sin= o\-'
\ ,"* 3 --:i67- ) 

(36)

Since,

,,q =#+Gror),-4r,*

With 4",, 
= 

0, (29) can be written as

N =4Cd' ad+s*f wf) (37)

We can now solve for the expression of e" by using the contracted Bianchi identities for
analyzing all the non zero Einstein tensors. Recall ttrat the contracted Bianchi identities are

Y r4 =0where the mixed Einstein tensor is defined asG{ = g*Go,. Applying the

identities, then

VoGj + V,G) +Y rGj + V3G; = 0. (38)

With the fact that ong Gf , G:, q , G: , G: and Gj are the non-zero mixed Einstein

tensorswehavefor y=0.

VoGf +V,Gj =0. (3e)

, btfr L*f ata*rosin'e
'- n-- 3 - l1r'

N
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=ff*c$,,+c;rl +Gff, +cfrl, -G;4. -cir; -e,rl-c;r{* =0, (40)

therefore

VoGf = g.

vrcl = 0.

Y2G: =0.

VoGf +VrGj =0.

VrGj =6. (46)

For y=1,

Fot v =2,

For v=3,

(41)

(43)

(42)

(44\

Since

VoGro = $- * 6iy'r, - Girr*ur dt

= # * q**+ Qr,", + cl4, + qq, - q4, - qr; * q*- qf, = 0, (+s)

therefore

Thus from (a1) to (aQ it can also be suggested that all the previously nonzero mixed

Einstein tensors vanish that ls, Gf , G: , G: , G , Ci and Gj are all now equal to zero.

We can derive the relationship between e) and e" for the exterior solution by analyzing

cf ana cl.
For Gf = 0, where Gj = g@G* and 6 = b*tnthe external regioq it can be shown

ttrat

_%*(r*!*\t,? sin2 d = o. (47)
r' [' ,) 4cL

By (33) and taking 
"-t' =1-bor we have

r

+-+.4-e ^r..'?''* 
"in2 

o =0. (48)
r' r' r 4c'

For Gl =0,where Gr'=gttG, itcanbeshownthat

-+.Y(,-!*l.[,- !*)++sin2d=0. (4s)
r" r\ r) \ r)4c'

Agatu! by (33) taking e-' =l-!g-and v' = 2(D' we have
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I e'^ e-tv' 
"-!-r_''-, 

"in, 
e =, (jo)------l--- k,

Adding (a8) and (50) we get

e-12' +e-,v' _o 
. (51)rr

Thus,

)"'+v'=0 (52)
and integrating gives

1+v = h(t) (53)

or by exponential function we can rtite
e^e"_eu{,). (54)

To eliminate &(l) we transform to a newtime coordinate t', i.a. t -+ I' where

; = I'o"r^'0, (55)

and & isan arbitary constant

As the result of eliminating & (f ) we g* h(t\= 0 and thus eo(') =1, therefore

e' = e-^
Finally we get

", =l_2*g _t*rz *at,2*-tlslnz 0 . (56)rco 3 l6c2

Thus, (37) can be written as

ar, =_(t_?nfr _I\*rz _a,*ro 1n'2\"raf *
\r"-31tu') , ?f,ltc L*f' o''*ro strn'?

'- rc- 3 - 16"'

+r'(ae2+sin'oda'). 67)
This is a unique extemal solution for a slowly rotating spherically symmetric wormhole
with a cosmological constant.

6. Conclusion

The space-time metric for the spherically symmetric wormhole derived from the
combination of Morris and Thorne, Khatsynovsky, and Teo is considered stationary and

&2
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thus, is time independent. The spacetime metric has a simplistic character of Morris-
Thorne wormhole and rotating character of slowly rotatinB wormhole space-time metric of
Khatsymovsky, and at the foundation of it, me the more generalized character of rotating
wormhole space-time metrics by Teo. In the framework of classical general relativity we
have introduced the slowly rotating spherically symmetric wormhole with cosmological
constant. It is indeed the generalaation of the pioneering works from Einstein and Rosen
until the recent works i.e., of Lemos et al. and Teo. From the equations of perfect fluid
representing the energy momenhun tensors an important stage in these derivations is
executed with the inclusion of the cosmological constant. Relating the energy momentum
tensors with the Einstein tensors, we have derived Einstein equations of state. These
equations can be separated nicely between the non-rotating terms and the rotating term and
thus show that ifno rotational effect occurs the character ofthe equations will reduce to
thal of Morris-Thorne wormhole with cosmological constant as proposed by Lemos et al..
Finally from the energy densrty equation and comparing with the the Schwarzchild line
element we derived the unique external solution for the slowly rotating spherically
symmetric wormhole with a cosmological constant. The equation (57) above shows that, at
the extemal region of vacuum with no mass and cosmological constant, the spacetime
metric reduce to that of Minkowski flat spacetime. With the presenc€ of matter but without
cosmological constant then the spacetime meffic reduces to that of Schwarzchild
spherically symmetric spacetime. If there is a presence of cosmological constan! but with
no rotatio4 then the spacetime metric reduce similarly to that of Morris-Thome wormhole
with A.
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