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Abstract

The one-dimensional carrier transport equations as they apply to the
semiconductor devices are governed by the one-dimensional drift-
diffirsion model. It is dehned by the Poisson's equation, the electron
continuity equation and hnally the hole continuity equation. The scaled
Poisson's equation is (under standard notations)

^' 
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The concentrations ofcarriers in a semiconductor are given by
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where .I, and J, are the current densities for the elecffons and holes

respectively.

When finite difference modelling for the partial differential equations is
employed, nonlinear relations of the nodes accrue. This system of
nonlinear equations is then solved by the Newton-Raphson method or by
the Gummel iterative procedure. These results enable us to gain insights
for the design of befier numerical techniques.
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l. Introduction

The standard transport theory has been based on the Boltzmann equation

ff +"srt+ffvp,f =I{s(li,k)/(r,Ii,0tl-f (r,Et)l

- s(k, k' )/(r, k, r)[ -/(r, k" r)]]
(l)

where r is the position, k is the momenfiun, /(r,k,r) is the distribution fimctioq V
is the group velocity, E is the electric field, ,S(k, k') is the tansition probability between

the momentum states k and k' , and [1- /(r, k',1) ] is the probability of non-occupation

foramomenfumstate k'.

Device simulations are normally based on the numerical solution of approximate models
which are related to the Boltzmann equation, coupled to Poisson's equation for self-
consistency.

In the simplest approach, the collision term on the right hand side of (l) is substituted wit}
a phe nomenologi cal lerm

Ieq - f (r'k't1
(2)

where f", indicates the (local) equilibrrium distribution functiorl and r is a microscopic

relaxation time. For computational ease ofelectrical current calculation, velocity is used.
In equilibrium and where degeneracy is absent, we may use lhe Maxwell-Boltzmann
distribution function

.feqtr,t) = r1r112*orT' r-''' l.'-li')"..e[- 
r/rsr; ,J 

,,

where z(r) is the carrier density, I is the lattice temperature, &o is the Boltzmann

constanl and m* is the effective mass. The carrier density, z(r) is

n(r)= lduf(r,v) (4)

If the electric field is switched offinstantaneously and a space-independent distribution is
considered, the resulting Boltzmann equation becomes

af -f*,f
dt

(5)



IRCMSA 2005 Proceedings rc1

*
Usingz v=hk, wehave

eEif Af fra -.f
'^ -- \u,,

m'}v de T

and using the genoral definition ofcurrent density which is given by

we obtain

J(r)=s 
lf<v,,lav

(7)

y=: I,r,qa,- [rt ,*'t*
(8)

The equilibrium distribution function is symmetric in u, and its integral is zero. Therefore,
we have

t1x)=-e\E|,**-",*!,'f{",,,a, (e)

Using elementary calculus and some simplifications, we are able to get the expressions for
the drift-difhtsion equations as given below. Details of the derivations of the drift diffusion
equations can be found in Selberherr (1984).

2. Continuous Drift Diffusion Equations

In this section we shall obtain the basic semiconductor equations which describe the
behaviour of a semiconductor device in terms of the elecffostatic potential, the carrier
concentrations and the current flow.

The fundamental physical equations for electomagnetic field calculations are the
Maxwell equations:

VxII=J+Q
At

VrB=-Q
At

Y.D-- p

v.B --0
where

E is the electric field strength vector, D is the electric flux density vector, B is the
magretic flux density vector, .EI is the magnetic field strength vector, J is the current
density vector and
p isthe charge density.

(10)

(1 l)

(12)

(13)
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Using equations ( l l ), (1 2) and (13), we are able to get the Poisson s equation

Vzty=q(n-p+C1 (14)

with

p= q{p-n+Cl (15)

C(r, t) is the &ping firnction but usually it is a function of position only.

The continuity equations are the conscrvation laws for the cariers, namely the electrons
and the holes. z and p arc the concentrations ofthe electron and hole rcspectively, and

Pn frd l, are their condrctivities. The current equations describe the carreir drift due

to external electric field E and their difrrsion due to the concentrdion gradient of the
charges which ue determined by their diffirsion constants D, and D, respectively.

R, and R, are the net generation-recombination rates.

9=f or, *&otq

oP --l n, -odq'

tro=qnpnE+qDnYn

J o =%ttltrL+1DpYP

The problem (onedimensional) is tten completely defincd with the assignment of
boundary conditions.:

(16)

(r7)

(18)

(1e)

z(r,0)) = 2,
n@,o)= p,
VQ-o)=11,ro, xe0C2p

A/\AN
Yyr.tt=Jr.u =Jr.u, u e dQ, (20)
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u is the unit normal vector to the boundary .The boundarie s consist of ohmic contacts

,60, and physical or artifrcial surfaces 0(lr'

3. On Newton-like Gummel's Solution Procedures

Direct numerical methods for device simulation become more restictive when the

equations become more complex as its dimension increases. The complete 3-D time'

dependent form requires seven independent variables for time, space and momentum. We

may simulate using Monrc Carlo lechnique which involves the simulation of particle

trajectories or may solve the partial differential equations directly, Bank et al (1981),

(1932). Finito diffirence modeliing imposes a uniform mesh and approximations ane made

it 
"".t 

interior node by a finite difference formula. The finite difference scheme gives

relations ofthe nodes such as

i) Potential

2*/\212t
ffi. r@,., -v,)-ffi* n,l(w' -w'-')-n' +p'+c' =o (21)

ii) Electrons

ffi q*., - v,,h., - m)dv, - w uh -
(22)

ffin* - v, -rh . ffiy(v, :- wh^- x(4, pi ) = o

iii) Holes

ffi Nr, - rtr, *r)p, *r - m'(w *, -'v,)p, -

#:6 B(w,_, - w,\p, . #, B(w, -,y,-,)p,-, + R(n,, p ) = o

(23)

where, B(r) = ._* -, 
is the Bernoulli's fturction. Yielding from this finite difference

modelling is a large sparse nonlinear system of equations. The equations (21) - (23) are

written in the residual formFr(y,n,p)=0,F2(V,n,p)=0,F3(V,n,P)=0. The large

sparse system of equations is then solved using NewtonJike Gummel's iteration scheme.

Inthe metho4
i)a guess at the tg is made,

ii)solve for hole quasi-Fermi potentials from the linearized continuity equations:
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divf- p onY ityl + p, (Y dn - nYvart - $ o. - $ ae + anti; - n t = o

drv[- p 
o 
pY dy- (Vrlp + zV rldp;1 + $ ap + ff an + at t ko + nk = g

(24)

(25)

where
r[* =V+dy
trm =[*dn
P*, =P*dP

iii)obtain a bettcr approximation for y from Poisson's equation

12 Ldy + 12 Lytt -1d, -dp -c1 = o Q7)

4. Some Numerical Simulations

We have simulated a one dimensional pn-diode on the interval [-l,l]. The scaled doping
profile has an abrupt pn-junction at x = 0 which is defined as

-1<x<0
0<x<l

In equilibrium conditiorL no recombination and generation of the cariers are assumed.

Computations are made for the forward bias of 30Volts. Dirichlet conditions hold at the
boundaries othmic contast while Neumann conditions hold at :r = -l and .r = L Figure I
shows how electric potentials vary with distances. Figure 2 shows the variation of elecfion
concentrations with distances. Figure 3 gives the plot for variation ofholes concentrations
with distances. The results are obtained using the Newton-like Gummel's method after the
nonlinear system has been linearized using the Newton-Raphson's linearization procedure
In the simulation we nota to

. cons€rve the total number of particles inside the device simulated

. respect local positivity ofcarrier density where negative density is unphysical.

. respect monotonicity ofthe solution (i.e. it should not infroduce spurious space

oscillations).

5. Conclusions

The equations (21) - (23) are writien in the residual form X', (y, n, p) = 0, F, (tp, n, p) = 0,

Fr(v,n,p)=0. Newton-Raphson's linearization is made at (vt, nt ,pr; which is

(26)

cr.r = 
{_rl-.
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reasonably close to the solutioq and is in the neighborhood where the solution is unique,

Ithnin Abdul Jalil and Rio Hirowati Shariffudin (2005). The colrections dry , dn and

dp are then calculated ftom the Jacobian system but in blocks after the maffix is split into

blocks for the potential nodes, blocks for the electron concenfiation nodes and the blocks

for the hole concenffations. For each block, finite difference modelling gives a tridiagonal

system for a one dimensional problem. It is interesting to note that when two dimensional

problem is to be solved the matix may be decomposed such that we can have sets of
pokntial nodes, sets of electon concentation nodes and sets of hole concentration nodes,

ittroir, RUAU Jalil and Rio Hirowati Shariftudin (2004). Here, parallel computing hts in

naturally and also communication issues that usually prevail in parallel computing are

negligible or absent
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Figuro 3: Variation hole concentation with distance
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