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Abstract

The one-dimensional carrier transport equations as they apply to the
semiconductor devices are governed by the one-dimensional drift-
diffusion model. It is defined by the Poisson’s equation, the electron
continuity equation and finally the hole continuity equation. The scaled
Poisson’s equation is (under standard notations)

0% yx$)
2 —
A “ox n(xp) + p(xf) + C(x)=0
The concentrations of carriers in a semiconductor are given by
o on on d’
n ld
-—-R=0, Jy=p,(—-np)
ox Ot ox dx
and
oJ o 2
e 9P op d'y
== p =i R=ll, of,=—p - F—)
ox ot P P ox T dx?

where J, and J, are the current densities for the electrons and holes
respectively.

‘When finite difference modelling for the partial differential equations is
employed, nonlinear relations of the nodes accrue. This system of
nonlinear equations is then solved by the Newton-Raphson method or by
the Gummel iterative procedure. These results enable us to gain insights
for the design of better numerical techniques.
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1. Introduction

The standard transport theory has been based on the Boltzmann equation

VY, N =SSR - k)]
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where 1 is the position, K is the momentum, f(r,k,t) is the distribution function, Vv
is the group velocity, E is the electric field, S(k,k')is the transition probability between
the momentum states k and K', and [1- f(r,k',#) ] is the probability of non-occupation
for a momentum state K'.

Device simulations are normally based on the numerical solution of approximate models
which are related to the Boltzmann equation, coupled to Poisson's equation for self-
consistency.

In the simplest approach, the collision term on the right hand side of (1) is substituted with
a phenomenological term

feq "'f(l',k,t)
T
where feq indicates the (local) equilibrium distribution function, and 7 is a microscopic

v

relaxation time. For computational ease of electrical current calculation, velocity is used.
In equilibrium and where degeneracy is absent, we may use the Maxwell-Boltzmann
distribution function
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where n(r) is the carrier 'dcnsity, T, is the lattice temperature, & is the Boltzmann
constant, and m" is the effective mass. The carrier density, n(r) is
)= [dvf.v) @

If the electric field is switched off instantaneously and a space-independent distribution is
considered, the resulting Boltzmann equation becomes
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*
Using m v = #k, we have

el:;af_'_v.i:feq—f ©
W o ox T
and using the general definition of current density which is given by
I(x)=e _[ f(v, x)dv
M
we obtain
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The equilibrium distribution function is symmetric in v, and its integral is zero. Therefore,

we have

~_, T o . d -
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Using elementary calculus and some simplifications, we are able to get the expressions for
the drift-diffusion equations as given below. Details of the derivations of the drift diffusion
equations can be found in Selberherr (1984).

2. Continuous Drift Diffusion Equations
In this section we shall obtain the basic semiconductor equations which describe the
behaviour of a semiconductor device in terms of the electrostatic potential, the carrier

concentrations and the current flow.

The fundamental physical equations for electromagnetic field calculations are the
Maxwell equations:

VxH=J+2 (10)
ot
TR = an
ot
V.D=p (12)
V.B=0 (13)

where

E is the electric field strength vector, D is the electric flux density vector, B is the
magnetic flux density vector, H is the magnetic field strength vector, J is the current
density vector and

P is the charge density.
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Using equations (11), (12) and (13), we are able to get the Poisson's equation
Vy=q(n-p+0C) (14)
with
p=q(p—n+C) 13

C(x,1)is the doping function but usually it is a function of position only.

The continuity equations are the conservation laws for the carriers, namely the electrons
and the holes. n and p are the concentrations of the electron and hole respectively, and

H, and u, are their conductivitics. The current equations describe the carreir drift due
to external electric field E and their diffusion due to the concentration gradient of the
charges which are determined by their diffusion constants D, and D , Tespectively.

R,and R, are the net generation-recombination rates.

on 1
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The problem (one-dimensional) is then completely defined with the assignment of
boundary conditions.:

n(x,0)) = n;,
p(x0)=pp
y(x0)=yp, xedQ
A A A A

Vyu=J,.u=J,.u, uedQy (20)
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A
w is the unit normal vector to the boundary .The boundaries consist of ohmic contacts

,0Q,, and physical or artificial surfaces oQ .

3. On Newton-like Gummel’s Solution Procedures

Direct numerical methods for device simulation become more restrictive when the
equations become more complex as its dimension increases. The complete 3-D time-
dependent form requires seven independent variables for time, space and momentum. We
may simulate using Monte Carlo technique which involves the simulation of particle
trajectories or may solve the partial differential equations directly, Bank et. al (1981),
(1982). Finite difference modelling imposes a uniform mesh and approximations are made
at each interior node by a finite difference formula. The finite difference scheme gives
relations of the nodes such as
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where, B(x) = __({)_1 is the Bernoulli’s function. Yielding from this finite difference
exp(x) —

modelling is a large sparse nonlinear system of equations. The equations (21) — (23) are
written in the residual formF, (y,n,p) =0,F,(y,n,p) =0,F;(y,n,p)=0. The large

sparse system of equations is then solved using Newton-like Gummel’s iteration scheme.
In the method,
i)a guess at the | is made,

ii)solve for hole quasi-Fermi potentials from the linearized continuity equations:
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where
WV new =‘|’+d\|’
n,, =n+dn (26)
P new =p+dp

iii)obtain a better approximation for y from Poisson’s equation
A2Ady + A2Ay* —(dn-dp-C)=0 Q@7

4. Some Numerical Simulations

We have simulated a one dimensional pn-diode on the interval [-1,1]. The scaled doping
profile has an abrupt pn-junction at x = 0 which is defined as

6 1 -1<x<0
X)= P
-107% o0<=x<l

In equilibrium condition, no recombination and generation of the carriers are assumed.
Computations are made for the forward bias of 30Volts. Dirichlet conditions hold at the
boundaries othmic contact while Neumann conditions hold at x = -1 and x = 1. Figure 1
shows how electric potentials vary with distances. Figure 2 shows the variation of electron
concentrations with distances. Figure 3 gives the plot for variation of holes concentrations
with distances. The results are obtained using the Newton-like Gummel’s method after the
nonlinear system has been linearized using the Newton-Raphson’s linearization procedure
In the simulation we note to

e conserve the total number of particles inside the device simulated.

o respect local positivity of carrier density where negative density is unphysical.

e respect monotonicity of the solution (i.e. it should not introduce spurious space

oscillations).

5. Conclusions

The equations (21) — (23) are written in the residual form F,(y,n,p)=0, F,(y,n,p)=0,
F;(y,n,p) = 0. Newton-Raphson’s linearization is made at (y*, nf ,p") which is
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reasonably close to the solution, and is in the neighborhood where the solution is unique,
Ithnin Abdul Jalil and Rio Hirowati Shariffudin (2005). The corrections dy ,dnand
dp are then calculated from the Jacobian system but in blocks after the matrix is split into
blocks for the potential nodes, blocks for the electron concentration nodes and the blocks
for the hole concentrations. For each block, finite difference modelling gives a tridiagonal
system for a one dimensional problem. It is interesting to note that when two dimensional
problem is to be solved the matrix may be decomposed such that we can have sets of
potential nodes, sets of electron concentration nodes and sets of hole concentration nodes,
Tthnin Abdul Jalil and Rio Hirowati Shariffudin (2004). Here, parallel computing fits in
naturally and also communication issues that usually prevail in parallel computing are
negligible or absent.
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Figure 1: Variation of electric potential with distanc
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Figure 2: Variation of electron concentration with distance
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Figure 3: Variation hole concentration with distance
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