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Approximation of irrational numbers by the rationals has been studied
for decades and one of the methods to approximate the irrationals is by
usrng the diophantine approximation and the convergents of its
continued fractions expansion Many results pertaining to this area of
research has been developed and documented. In 1963, Niven [Niv] in
his monograph had shown a sketch proof of several results related to
this problem. Now, in this paper we attempt to write a more
comprehensive and well sfuctured proofs. Given a real number 0,
how closely can it be approximated by rational numbers?. To make this

more precise, for any given positive a is there a rational number I
b

within r of 0, so that the inequality le -, t nl < e is satisfied?. The

answer is yes because the rational numbers are dense on real line. In
fact, we proved that given any irrational number 0, there are infinitely

many rational nurnbers {, where a and b > 0 are integers, such that'b

le - o t nl < 1 / D 
2. Although the exponent carmot be improved, this result

can be strengthened by a constant factor. Specifically { can be'b2
1-

replaced by 
- 

and no larger constzurt tfran 16 can be used. In
{s'D

addition to this, an attempt also has been made to improve this constant,
though it is not in generalized form.

Keywords: Diophantine approximatioq continued fractions, irrational
number, and rational number.
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1. Introduction

To 15 decimal places, lt is given by 3.141592653589793... For simple calculations, it is
widely knovm that 2217 = 3.142857... is a good approximation of n, valid to 2 decimal
places. It is also true that 355/ll3 :3.14159292... is accurate to 6 decimal places. For a
relatively small denominator 113, rwe obtain accurary up to a large nurnber of decimal
places. This kind of consideration is an example of the problem of Diophantine
approximation: How close can irrational numbers are approximated by rational numbers.
For instance, giveo any irrational numbers d , how close can it be approximated by rational
numbersp/4? Mathematically we can conclude this statement as follows, for any e > 0,
is there any ralional number p/q approximates the irrational numberd, so that the

inequality le - p t ql < e is satisfied and the distance between these two numbers is less

than e ? This paper explores this question. We first introduce the most useful theorem in
Diophantine apptoximation which is the Hurwitz Theorem. We give a detailed proof of the
Hurwitz Theorem, which has filled the gaps to minimize complexity. We then give a

precise approximatioq which considers the extension results.

2. The Approximation of Irrationals by The Rationals

In 1918, Hurwitz proved a useful result in approximating irrational numbers by rational
numbers. Before urc go frrther, some basic results are needed.

2.1 Farey Sequencc.

Given any positive number 11 the Farey sequence Fn is a sequence ordered in size, ofall

rational fractions in lowest terms with0 < b 1 n -For instance
ct

b

I I tttt22t
Fb = ..',--,--,0,-,-,-,-,-,-,-,r..

7 8 876 5873

The following theorem mentions two properties of Farey sequence which is required in our
discussion.

ac^a
Theotem 2.1:lt i and i are two consecutive terms in d, ttren presuming I to be a

b d f'' 'b
small and bc - ad =1.lf 0 is any given inational number and r is any positive integer,



then for all n suffrciently large, rhe tw'o fractions 
I 

*O 
|uhir**to 

0 n F, have

denominators larger than r, that is D > r and d > r .
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Lemmo 2.f: There is no positive integers x nd y wtrich satis$ simultaneously the
inequalities

r r(r r) r r(t r'\
r=r[.P.7)*0,1,*,1'EL7.GI 2'')

Proofof Theorem2.I andkmma2.I referto [Niv].

2.2 Thc Thcorcm of Hurwitz

Theorcm 2.2 (Eurwig): Given any irrational number0 there exist infinitely many rational

numbers Z in bwest terms such that
q

(2.2)

Ttre value G is the best constant. This inequality become false if 6 is replaced by any

larger constant.

Proof.

Two parts will be proved here rvhich are:

i) There exist infinitely many rational numbers Z in burcS terms such that the
q

l,l r
inequality l0 - 1< :; is satisfied.

I cI "lsq"
ii) Thisinequalitybecomefalseif 16 isreplacedbyanylargerconstant.

We start our proof witt the first ptrt. Irt ", ; 
* 

3 *"*adjacent fractions in

Fareysequence, Fn arrtd d isbetweenofthesetwo fractionswithD > 0and d > 0. So,

V 1-#
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9.e .9bd

consider two cases wtrich are either , ,G * ") or 0 <Ci-d . In case one, prove that
(b+d\ (b+d)

not all ofthe following inequalities

a I a+c I c I0-->-;;, 0 -- ) --;---- ^ and -- 0 >--;-;are salisfied. Add theb ,t st' b + d ,,1 Sp * a1" d ,lSa'
fust and the third inequality, then add the second and third inequality, ue will get ( 2.1)
with I=b atfly =d(tom Lemma 2.1). ln case two, prove that not all of the tluee
inequalities

a I a+c I c I
0 -->--i-Tt 0 >--;--------;, md -- 0>--;--; hold. If we add theb ^lSt' b+d ^lS@+a)' d .lSa'
first and third, then add the second and third inequality we get (2.1) with x = b

zrrtdy=d. Hence, the inequality (2.2) holds if we replace 
g ty u, least one of !,L
s bd

*d94. Then we will prove there are infinitely many solutions Z which satisS the
Q+a) q

inequality (2.2). we argue by contradiction Suppose there are fmitely many solutions to
inequalrty (2.2), urd let r denote the manimum denominator among these solutions. For

sufficiently largen,Theorem 2.1 guarantees the consecutive fractions I *rA I adjacentbd
to d in $ have denominators greater than r. The solution of 4 to ( 2.2 ) is one of the

q

a c G*r\ a c
three forms-,- or+---<. By definition of Farey sequences] and I is in the lowest

b d (a * a) --a------- b ''- d '" ""

G* ")terms. Also H ir in the lowest terms because 
"(t 

+ a\ - a(" + c) = 6s - ad = L

@+a)
What will happen if rE is replaced by any larger constart? This is impossible, becawe if
rF is replaced by any larger constant the result become false. There exist finitely many

rational numbers 4 in lowest terms that satisS the inequalrty ( 2,2 ). This can be seen in
q
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the following argument. Now define ,o=tS and;1=d, such thar2^2
(x - eg[x - e1) = 12 - * - L Hence, for any integers p iltd q,with q > 0, we find thar

l: ',ll:-,,1=l(r' : l+o 
and

(2.3)

ot =oo-G = l;,41:,0 .nl =L#,;
Using applications of the triangle inequality gives

j=l;-',1{l; ,,l.n}

Forsome />0,thereexistinfinitelymarysolrrions a o,hurc j =l,2,3,...suchthat

,"Pi I I
' 'eol<-. As7 + o a 8i +o, from inequality (2.3), we found tlut4i I tu;

r r(, -) r r
4'414+{sJ+ P'*-*l'

Whenj -+ o = e j - *,++ 0. Hence, the largest constanl wB canus€ ir"6. Ifni
6 i"pt.ced by any largcr constan! we can see that j actually is finite. so that there

exist finite sol'tions 
o j 

*uihis contradict the rrl,pothesis in the Theorem. Note that theei

exponcnt two on the a2 in inequaity (2.3) is thc best value. If any real number rdrich is
Iarger than 2 is replaccd, then the result become fahe. That mcans there exist finit'ly manysolutions to inequality (2.3 ). These complete the proororth. trror". ori*ni]r. .
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3. An Extension Result

Can the uA,re 16 be replaced by any larger constant? The answer is yes. The uaue rf
can be replaced by any larger constant ifwe use certain constraint to the irrational numbers

tEeel.

3.1 Morr Prccisc Appnorimetion.

The constant 6 "* be replaced by any larger constant if the irrational number

r-G
0 = 

- 

is omitted from consideration. In [Nat] small changes in Cohn's proof was
2

made a much stonger result was obtained. Consider fr > I and let F(/r) be the sct of all

real nrunbers x such that 0(x<1 andthe continued fractions forx has no partial

quotient greater than & and f (O) = f .

Thearcm 3.1: l-c/- & > I and x be a real inational number aud not equivalent to the

element in 17(e - 1) . Then there exists infrnitely many rational numbers Z such that
q

l.-;l' (3.1)

G2 * 4Y2 ,2
I

The constant 

W 
is the best possible. Given & 2l and x be a real inaional

number and not equivalent to the element inF(e -1) . We need to show tha! there exists

infinitely many rational numbers P ,r"h
q

I
constant 

W 

is the best Possible'

*1.-;l .G,fu and the
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Ptoatr,l-et &denote the rth convergentof the continued fractions frg,n1,o2,...lof ,
8n

atd 0n =luzr* - Onlnl, ,, = min(0o-1,0r,0n+t). Hence

?. T =l4l*#4=1, - 
rl. l. ffilQn ln+l I qn

0n On+l t
2'2 -

4n Qn+l 4nQn+l

onqS*t +eraloj I

22
4n4n+l QnQn+l

oncl*t + enale] I

z :-
QnQn+l 44

{ orql*t + onapl 4n+t
2

Qn Q4

:) ,,(^)'+on*1-!d=s
\qn ) 4n

4nQn+l

(3.2)

The equation (3.2) is a qtradratic equation. So, we can get the solutions ofthis equation by
usingthe formula

8n+l

-=

-b+
4n 2a

and the solutions are

9n+l 
- 

lt{l-4en

q20-nn
From orr solution we can say that,

- (-l) r ,lt - 40r0n*1
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(3.3)un

l+

en+t -t*S-uren1

o*ro'-@nt* .'*'[':ynt* andsn+t =an+t*en-t .Zen 2en 44 en

as.o 4, 
--tx',,[l-lere*, : en-r: 2orrr

ln-t un-t qn E $- tgre,*t'
It is obvious that

- 
Ur*a Drl---:._--:.

t+,lt-unobt t-,lt-Mnebr'

. 4rrl -

= an+l Zan+l . 2o*-l

t-,fi-+enen-1

20,
,Qn+l = dn-r *Qn-l 2 an+r * --L.4n 4n l-{l- 4qnen_r

In Theorem 3. I, given that ) 4 = min(0 n_1, 0 n, 0 na1),wc have 2l na n+l 3 20 ra r*1,

and it has already been shovm above that 
t*$-+e'e*t 

rln+l - ^ . Ln-l

'?% 
'; = an+t*;'

hence I * (tr - +enen*r)"' a 21nan+r + z1nW,
Qn

= | + Jr:qor+r - 20 nlEJ- 2 2ona r*1.

+ {- 4o,s; . Fd: 2 20,a,*1.

Given/, = mm(0n_1,Or,0n+l), we have

- 2l na n+t s 20 ro r,,1 < (t - u re n*r)''' * (t - w re,*1)r, 
r r ri - n*l''
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- rnan+t =fr- n*l''
-(t,or*1)2 =(-"i)
=Q,on1)2 *e3 <r

.2. 2+ Qnla;*1 + 4) < I

=l:= 't '(aj*1 + 4)

=,?nsAW
Thsrc are tw'o possiblc conditions wtrich are i, = .7\ and

, L 
(af,*r+4)t

r" r;fu'Br*ir i'= rlf implies 0n=0n+t=Q,.From

(3.3) uie have ,n+l !xJ@;, (undefined). sq it is impracticabre to4n zen

hwe 0, = 9n+l = /r. Therefore for all valrcs of r I
t, ln<, .Ifxisnot

equivaleft to thc elemem in F(t_r), ,hus for infinitely many 4 an+l 2fr and the

conrinned fractions for r= G' *n]f'' -o
2

ir [Ut,f,f,...]. The smalesr value of
anay is t, so that the distance betq,Een bo& tm armben is less than or equal to

I

VW' 
Note that (" .;Ifu + rn < rTfu L€t say

in = ?n,bence



=l'- *l'
for n=1,2,3,.-.

For infinitely many solutionrZ, ,fr.
q

irrational number.x is at most

8'*ol''
Theorem. For t = 2, the constant * *,{r

I
largest constant is-and so on.

"tn

0-

G' . o)'' ,'

Q' . o|''
I
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o, =1n1. - r*rl'

an dthese impries, =1. _ 
tl. 6fuT

largest distance between rational number 
P *d
lt

. For ,t = l, this theorem gives Hurwitz's
2

q

& = 3, the constant is ,for &=4,the
I

G

4. Conclusion

The largest and the best const nt can be chosen depends on the form of the irrational
number. From our discussion above, the form of th€ irational numbers are

h' *o'l'' -o t

Y =fo*,t ,tr,...1, for inreger t ) I andthe largesr constant for such

irrdional numbers are of 
It"* 

tot4* 
' wtrere&>1' B,t wtrat happen to other

constants or other irrational nunabers that is not in the mentioned form?. That is part of the
firture works. We expect the constant would change if we modiS tbe form of the irrational
numbers. That means it requires anottrer form of irrational numbers to obtain different
constants.
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