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Abstract

The Quadratic assignment problem is a combinatorial problem of
deciding the placement of facilities in specified locations in such a way
as to minimize an function expressed in terms of distances between
locations and flows between facilities. The approach presented in this
paper is to treat is as a large quadratic programming problem with
integer restrictions on the variables. The integer requirements are
initially relaxed, and the nearest feasible solutions in then sought.
Schemes for accomplishing this are described, and their applicability to
more general problems is discussed.

1. Introduction

It is well know the quadratic assignment problem (QAP) can be used for tackling problems
which frequently occur in facilities location, plant layout and backboard wiring. However,
the QAP has proved to be much more difficult to solve than the linier case. This difficulty
has made it an area of investigation by numerous researchers such as Steinberg (1961),
Nugent et.al(1968), Gaschutz and Ahrens (1968), Elshafei (1977), Burkard and Stratman
(1978) and Murtagh et. al. (1982). Most of these researchers treated the QAP as
combinational problem. State of the art on QAP can be found in Burkard et. al(1998) and
Commander (2003).

The significant success of the large-scale optimization software, MINOS developed by
Murtagh and Saudferss (1977,1978,1980) suggests that the QAP should be treated as large
quadratic program rather than use a combinational method. This paper describes research
result in approaching the solution of the QAP using the MINOS nonlinear programming
system. The approach adopted is to relax the integer requirements initially and once a non-
integer optimal solution is found, the nearest integer feasible solution is then sought.
Strategies for finding the integer feasjble solution are based on computational experience
on a variety solution dominated by the constraints.

To obtain a good feasible starting paint a heuristic procedure proposed by Murtagh et.al
(1982) could be used. Nevertheless, other results obtained from the literature could be very
fruitful in providing a good feasible starting point.

The following gives a brief description of MINOS non-linier optimization system. The
quadratic assignment problem and computational experience with it are presented in
section 3 and sectiond, respectively. Generalization to other problems are discussed is
section 5.
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2. The MINOS Nonlinear Optimization System

MINOS is a in-core, fortran-based optimization system for the solution of large-scale linier
and nonlinear programming problems involving sparse linier or nonlinear constraints.

In many real-life problems it turns qut most of the variables are linier and only a small
percentage of the variables are involved non linearly in the objective function and/or the
constraints. Therefore, the standard problem to be solved by MINOS is expressed in the
form

Minimize fOx)+cx+ QTX @1a)
Subject to f + Ax (o) (2.1b)
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were f(x) = [f '(x),...f ™(x) ]". Then n, - nonlinear” variables are designed by x and
occur nonlinearly in either the objective function f° ( x ) or the first m,constraints. The n,”
linier* variables y will generally include S full set of m slack variables, so that the equality
and inequality constraints can be accommodated in ( 2.1b,c )by appropriate bounds in
(2.1d). Despite the problem being expressed in that manner, the MINOS code is still very
effective for large problems which are entirely nonlinear. The solution process consists of
sequence of “major iterations “ At the start of each major iteration, the nonlinear
constraints are linearized at some base point x y and nonlinearities are adjoined to the
objective function with lagrange multipliers.

Define  f(x,x ) =f (X ) +J(x)(E X&) (22
Where J(x ) is the m; x n; Jacobian matrix whose i yth element is
o' lox,.

Where kth major iteration of the process, the following linearly constrained subproblem is
formed:

Fr@+c +d y=4 (f = 1)

Minimise L(x, y,Xx, 4,,p) = ~ (2.3a)
- +2 p(f =N (f-F)
Subjectto f + A4,y =b, (2.3b)
A, x+ A4,y =b, (2.3¢)
X
< <u (23d)
y

The objective function L is a Modified augmented lagrangian. The vector A,is an
estimate of the Lagrange multiplier for the nonlinear constraints and modified quadratic
penalty function. The latter parameter enhances the convergence properties if X, is far

remove from the optimal, and the A, are taken as the optimal values at the solution of
previous subproblem. As the sequence of major iterations approaches the optimal as
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measured by the relative change is successive estimates of A, and the degree to which the

nonlinear constrains are satisfied at x « ) the penalty parameter p is reduced to zero and
quadratic rate of convergence of the subproblem is achieved.

The linearly constrained subproblem constrain matrix equations is the from of Ax = p_, in
which we may partition the variables by introducing the notion of superbasic as follows:

X

2B

AX[B 'S N]|x, |=b 24

&=

XN
The nonbasic variables X, are at one other of their bounds and stay there for the next
step AX . The superbasic variables x s are free to move in any direction and provide the

driving force to minimize the function, while the basic variables X p must follow to satisfy
the equation

-B7's
Ax = I |Axg [2.6]
(0]
the matrix on the right-hand side of(2,6) serves as a “reduction” matrix and premultiples

the gradient vector, and also pre-and post-multipliers the hessian matrix to yield a Newton
step over the subspace of superbasic variables.

For optimization of the reduced function a factorization RTR (R upper triangular) of a
quasi-Newton approximation to the reduced hessian is used. Stable numerical methods
based on orthogonal transformations are used, and sparsity is the constraints is maintained
by storing and updating an LU factorization of B.

Apart from the usual revision and restart options, MINOS also allows the user to specify
starting point.

3. The Quadratic Assignment Problem

this is a combinatorial problem of deciding the placement of facilities in specified
locations in such a way to minimize a quadratic objective function. Consider the problem
of locating n facilities in n given locations. If the flow f ; between each pair of facility 1
and facility k and the unit transportation cost (or distance) d;; between locations j and € are
known, then the problem is defined to be.

n n n
Minimize @ ="2%" Y 37,777, (3.1)

=l k=l (=1

n
Subject to Z xij :1 ) £ - n (32)

j=1
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inj =1 =lL.....n (33)
i=l1

0<y<' (34)
X, integer

Matrices [x,.k] and ld ﬂ] are assumed to be symmetric. The assignment variable x;; has

a value 1 facility i is at location j, and is zero otherwise. The constraints reflect the fact that
each location can be assigned to only one facility, and each facility can be assigned to only
one location.

In order to solve the problem using MINOS effectively we ignore the integrality
requirement and then examine any variables which take non-integer values at the solution.
This means we treat the problem (3.1)-(3.4) above as a large quadratic programming
problem and the code exhibits a superlinear rate of convergence. Obviously, there are n*
nonlinear variables in the problem but the constraints are particularly sparse, therefore the
MINOS can tackle the problem easily.

Generally the QAP is a non-convex problem so any solution obtained will necessarily be a
local optimum and non a global optimum.

A simple heuristic (Murtagh et. al, 1982) ranks the facilities in decreasing order of
frequency of use and locations in increasing order of distance and makes an initial
assignment by pairing them literature (Gaschutz and Ahrens, 1968 ; Elshafei, 1977) and
these should approach using MINOS.

4. Computational Experience

We have investigated several large QAP problems and the results are significantly
successful. The size of the problems range from the 19x19 hospital layout problem cited
by Elshafei(1977), the 20x20 facility location problem of Nugent(1968) to the 36x36
backboard wiring problem cited by Steinberg (1961). Despite the fact that the problems are
large, the number of superbasic variables present at the optimum solution are small. For
example, the Elshafei problem had the potential for 323 superbasics, but only 6
superbasics were present at the optimum. The Nugent problem had 8 superbasics at the
optimum, whereas there should potentially be 360. Similarly, the Steinberg problem had
the potential for 1224 superbasics but only had 3 present at the optimum.

Firstly, by using MINOS we had the optimum “ Continuous™ solution as shown in Table 1
the 20x20 Nugent’s problem and in the Tables 2 and 3 for the 36x36 Steinberg’s problem
with different measures Of distance. The starting point for the search process was the
solution obtained by Nugent et. Al (1968) for nugent’s problem and the solution obtained
by Gaschutz and Ahrens (1968) for Steinberg’s problem.

The original intention was to adopt a branch-and-bound approach for obtaining an optimal
integer-feasible solution. Using this approach a sequence of problems are solved in which
a selected variable that was not integer-valued at the solution would have integer bounds
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placed either side of its value, giving rise to two further problems with one of these new
bounds in each. Clearly good heuristics for variable selection and deciding which problem
to solve and which to place in a “master list” of unsolved problems are necessary in such
an approach in order to reduce what could become a massive computing load. Also, with
zero —one variables as present in this particular problem imposing such bounds on a
specific variable at a definite value and optimization takes place with the others.

Computational experience on the three large problems obvioted the need for such an
approach however. A glance at the continuous solutions obtained by MINOS for the
Steinberg problem in Table 2 and 3 suggests that the integer-feasible solution is
“obvious”in that variables (x;) that are not integer-valued occur generally in pairs for any
facility (i), with such values that it is clear which of the pair should be rounded to unity
and which to zero. The continuous solution obtained for the nugent problem show in table
1 also exhibits this behaviour, except that four facilities (i=10,12,15 and 20) have more
than two non-zero associated variables. A heuristic approach used to resolve this difficulty
was to rank the variables in increasing order of “integer infeasibility” (i.e. their proximity
to one or zero) and make the assignment in this order.

The results obtained using this approach are shown in tables 4, 5 and 6. it can be seen that
the results compare well with the best published value; improving on them in one instance
and being slightly worse in another. It should be noted that the computing times involved
were approximately one tenth that of the combinatorial approaches in the previously
published results.

5. Generalization to other Non-linear Integer Problems

The danger in using heuristics in secking an optimum is that any solution obtained is “sub-
optimal” and there is no easy way of measuring how much one is sub-optimal. It can be
argued that they branch-and-bound approach used in linier programming is rigorous, in
that eventually the optimal integer-feasible solution is found. However in practice the
branching process is usually terminated before the exact optimum is reached, but at least it
is possible to determine a bound on how far the current best solution is from the optimum
(Murtagh, 1981).

In the case of nonlinear programming the problem is generally non-convex. Heuristics the
are used in the branch-and-bound approach in selecting the variable on which to perform
the branching operation by imposing upper and lower bounds, and also in selecting the
problem to be solved. The non-convex nature of the problem means that the heuristics
used in the branch-and-bound approach have no guarantee of eventually providing a global
integer-feasible solution, so there is an argument for using simpler and more direct
heuristics in the nonlinear case.

It cannot be expected that the nearest integer-feasible solution can be so easily found in the
general case as it is for the QAP problems examined in this paper. The difficulty of solving
a single nonlinear program (as compared to a linear program) suggests that implementation
of a branch and bound approach would consume an excessive amount of computing
resources, quite apart from there being no assurance that the global integer optimum would
be found. We are currently investigating the following approach which we see as a
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compromise between the two extremes of simple heuristic rounding and branch and
bound.

1. Obtain the “continuous” optimum using MINOS.

2. With the Lagrange multipliers of the problem held fixed at their values at the
solution of step 1., minimize the Lagrangian function using discrete steps on the
variables required to be integer. (This is an unconstrained problem.)

3. perform a local ( constrained) search on the integer variable which have a high
reduced cost.

The last two of the above steps are expressed in quite general terms, and the specifics of
how each is to be accomplished is the object of our research. Preliminary results on
separable nonlinear functions have been encouraging, and we intend to pursue the use of
structure further.

6. Conclusions

Computational experience with the QAP problems described in this paper indicates that
efficient solution- s of large problems can be obtained by combining large-scale nonlinear
programming capability with appropriate heuristics. Although the use of heuristics gives
no assurance of yielding the optimal integer-feasible solution, it is possible to measure the
deterioration from the optimum continuous solution. The results obtained for this class of
problem show near-optimal solutions were obtained in minimal computing time.
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Tabel Results for 20x 20 QAP (NUGENT et. al)

VARIABLE ACTIVITY VARIABLE __ ACTIVITY
Az 0.75195 * L1 0.51949
X 0.24805 Xl 0.06818
B 1.0 Xioia 0.51949
R 0.62792 X218 0.41233
X 0.37208 A 0.67861
%1 0.48051 X 0.32139
Xad 0.54949 X a1 1.0
X 1.0 Xso 0.48596
e 0.32139 X510 0.12930
e 0.67861 s 0.38774
ig,; 1.0 i‘ﬁ 50 1.0

. 0.48051 17,5 1.0
Xa13 0.48051 X s 1.0
X 1 1.0 e 0.42774
X b 0.37208 X010 0.57226
i 0.17987 X i 0.05277
X007 0.37987 Y 0.51404
X018 0.06818 ey 0.29845
X1 0.48051 *oid 0.13474

OBJECTIVE VALUE 796.79
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Tabel 2 Results for 36x36 QAP

Tabel 3 Results for 36x36 QAP

Case A: dim(x;x)" + (yi=y)* Case : di=[x; x>+ lyi-y;?
VARIABLE ACTIVITY VARIABLE ACTIVITY
o 0.035568 » 0.38889
%5 0.96432 X, a5 0.30111
;(2,18 1.0 zm 0.31000
. 1.0 - 1.0
et 10 a8 1.0
o 1.0 Taa 1.0

» 1.0 5 1.0
X 0.962132 X s 1.0
X2 0.03568 Xes 0.61111
;‘m 1.0 17’2“ 0.38889
- 1.0 s 1.0

2“’ 25 0.96432 :w 1.0
i 0.03568 o 0.31000
2“’5 0.51950 i“’ 25 0.69000
IRy 0.48050 us 0.60005
53 0.48050 ¥iid 0.39995
% 0.51950 X s 0.39995
;(13,1 5 1.0 :12,14 0.60005
14,13 1.0 13,15 1.0

X 55 0.03568 ® Az 1.0
;‘,5,3., 0.96432 ’;,5,,3 1.0
1636 1.0 1635 0.869557
x1 727 1 0 x16,35 0. 13043
zls,zs 1.0 i” - 0.12043
Xl 922 1.0 X1 736 086957
- 0.67533 1827 0.86957
le,ll 032467 x13,35, 0 13043
i‘(zz . 0.67533 )’:,9 21 0.82271
Y23 0.32467 o 0.17729
12312 1.0 2023 1.0

iw 1.0 a1 0.25326
2252 0.32467 X 0.74674
. 0.67533 - 0.74674
;‘zs,w 1.0 zz"” 0.25326
2 1.0 28 1.0
Xzs,;;z’ 1.0 XMJ 0783 1 5
2231 1.0 2410 0.21685
3030 1.0 252 0.21685
X31’29 10 Xzs’w 0.17212
22 1.0 2Sh 0.61103
33,19 1.0 25,10 0.61103
)’iu 20 1.0 zzi“ 0.38897
I 1.0 274 1.0

il 1.0 g 0.17729
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VARIABLE ACTIVITY VARIABLE ACTIVITY
* s 0.82271
® o0 0.35704
X29,31 0.64296
* 0.64296
X301 0.35704
X s 0.73684
s 0.26316
X32,10 1.0
Xse 0.49211
X3 0.26316
g 0.24474
X010 0.50789
X34,29 0.49211
2359 1.0
36,1 1.0
Optimal ¢  7777.89 Optimal ¢ 4627.00
Table 4 Test Example NUGENT

Dimension : 20

Best Published Objective value :1287 (1)
Present method objective value : 1361
Solution :

Seti 1234
Assignedj1 2 8 11

9 10 11 12 13 14 15 16 17 18 19 20

5678
426731617 18 13 1 19 14 20 5 15 10 9

Table 5

Dimension : 36 case A: d;; =(x;-x)*=(y;-y;)?
Best published objective value :7926 [1]
Present method objective value :7929

Solution :
24 22 21 27 11 6 5 3 -
26 25 23 14 12 13 4 8 2
33 34 32 19 20 7 10 18 17
- 31 30 29 28 1 15 9 16
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Table 6

Dimension : 36 Case B : d; = ;x| > eyl
Best published objective value :4802 [1]
Present method objective value :4784
Solution :

31 33 30 29 14 15 16

- 24 22 27 11 6 5 3 -

26 25 21 23 12 13 4 8 2

34 32 19 28 20 7 1 10 18
9

17
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