
Proceedings of the 2nd IMT-GT Regional Conference on Mathematics, Statistics and Applications

Universiti Sains Malaysia

A VISUAL MODEL FOR COMPUTING SOME PROPERTIES OF U(n) AND Zn

Nor Muhainiah Mohd Ali, Deborah Lim Shin Fei, Nor Haniza Sarmin, Shaharuddin Salleh

Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim

muhainiah9119@yahoo.com, debra shinfei@yahoo.com, nhs@mel.fs.utm.my, ss@mel.fs.utm.my

Abstract. A computer program is developed using Microsoft Visual C++ in the Windows environment. This program

focuses on two specific finite Abelian groups, which are the group Zn under addition modulo n and the group U(n)
under multiplication modulo n, where n is any positive integer less than or equal to 120. Computations of the properties

of the two groups get more tedious and time consuming as the value of n increases. Therefore a program that could

assist in the computation would indeed be of great help. This program in C++ is written relating to some properties of

Zn and U(n). It enables the user to enter any positive integer n (n ≤ 120) to generate answers to some properties of

these two groups. A lattice diagram can be obtained for any groups of Zn and, for groups of U(n) which are cyclic.

1. Introduction

The term group was coined by Galois about 160 years ago to describe sets of one-to-one functions on finite

sets that could be grouped together to form a closed set [1]. Similar to the case of most fundamental concepts

in mathematics, the modern definition of a group that will be given in the following section comes from a long

evolutionary process. This definition was given by both Heinrich Weber and Walther von Dyck in 1882 [1].

C++, an extension of C, was developed by Bjarne Stroustrup in the early 1980s at Bell laboratories [4]. C++

provides capabilities for object-oriented programming and this is among the attractiveness of this programming

language, as object-oriented programs are easier to understand, correct and modify.

Working on Microsoft Visual C++ in the Windows environment gives the programmer the ability to simulate

as well as to visualize the problem that one is doing. Working in such environment also helps the users to have

better visualization of the problem, and the programs are more user-friendly.

Therefore, Microsoft Visual C++ in the Windows environment is used to simulate some properties of the

groups Zn and U(n) and to visualize the lattice diagram. This program enables the user to enter the desired value

of n, for n ≤ 120. Most properties displayed in the interface can be then obtained in the text file. The purpose is

to serve as a convenience for the user to print out the output.

Currently in the market, there are two popular softwares which are able to solve problems in group theory.

They are Groups, Algorithms and Programming (GAP) and the Magma Computational Algebra System. However,

there is not yet any available software in the market which is user-friendly and, that is able to solve problems and

finding properties of any groups written using Microsoft Visual C++ in the Windows environment. Therefore, this

program serves as a starting point for developing better programs using Microsoft Visual C++ in the Windows

environment.

2. The groups Zn and U(n)

Some related definitions on groups, properties of groups, as well as explanation on how to obtain some properties

of Zn andU(n) are included in this section.

Definition 2.1. [2] A binary operation ∗ on S is a function mapping S × S into S. For each (a, b) ∈ S × S, we

will denote the ∗((a, b)) of S by a ∗ b.

For simplification, a ∗ b can just be written as ab.

Definition 2.2. [1] Let G be a nonempty set together with a binary operation (usually called multiplication) that

assigns to each ordered pair (a, b) of elements of G × G an element in G denoted by ab. We say G is a group

under this operation if the following three properties are satisfied:

(1) Associativity. The operation is associative; that is (ab)c = a(bc) for all a, b, c in G.

(2) Identity. There is an element e (called the identity) in G, such that ae = ea = a for all a in G.

30 Nor Muhainiah Mohd Ali, Deborah Lim Shin Fei, Nor Haniza Sarmin, Shaharuddin Salleh

(3) Inverses. For each element a in G, there is an element b in G (called the inverse of a) such that ab = ba

= e.

A group is Abelian if the group has the property of ab = ba for every pair of elements a and b. In short, this

means that the group is commutative. Therefore, a group is non-Abelian if there is some pair of elements a and b

for which ab 6= ba.

Definition 2.3. [2] The number of elements of a group (finite or infinite) is called its order. The notation, |G| will

be used to denote the order of G.

Definition 2.4. [1] The order of an element g in a group G is the smallest positive integer n such that gn = e (In

additive notation, this would be ng = 0). The order of an element g is denoted by |g| .

Definition 2.5. [1] If a subset H of a group G is itself a group under the operation of G, we say H is a subgroup

of G.

Definition 2.6. [1] A group G is called cyclic if there is an element a in G such that G = {an|n ∈ Z}. Such an

element a is called a generator of G.

Definition 2.7. [3] Let a ∈ G. Then 〈a〉 = {an |n ∈ Z} =
{

e, a, a2, a3, ...
}

is called a cyclic subgroup of G

generated by a.

Definition 2.8. [3] This diagram is drawn to show the subgroups of a group. In such a diagram, a line running

downward from a group G to a group H means that H is a subgroup of G. Thus the larger group is placed nearer

to the top of the diagram.

Definition 2.9. [3] The set Zn = {0, 1, 2, ..., n − 1} for n ≥ 1 is a group under addition modulo n. For any i in

Zn, the inverse of i is n – i. This group is usually referred to as the group of integers modulo n.

The following is an example of a group Zn that is Z4 under addition modulo 4 with some of its properties.

Example 2.1. The elements Z4 are 0, 1, 2 and 3. Hence the order of the group is 4. The computations of the

order of the elements are as follows:

|0| = 1 since the order of the identity element is always 1.

|1| = 4 since 1 + 1 + 1 + 1 ≡ 0.

|2| = 2 since 2 + 2 ≡ 0.

|3| = 4 since 3 + 3 + 3 + 3 ≡ 0.

One way of getting the inverse of each element is we can use the formula n – i, where i is the element of Z4.

Therefore, 0−1 = 0, 1−1 = 3, 2−1 = 2, and finally 3−1 = 1. The generators of this group are 1 and 3 since

the order of these elements are the same as the order of the group. The cyclic subgroups of Z4 are obtained by

generating each element of the group. The following shows the cyclic subgroups of Z4:

〈0〉 = {0}, 〈1〉 = {0, 1, 2, 3}, 〈2〉 = {0, 2}, and 〈3〉 = {0, 1, 2, 3}.

Hence the lattice diagram of Z4 is:

Z4 = 〈1〉 = 〈3〉
|
〈2〉
|
〈0〉

Definition 2.10. [3] For each n > 1, we define U(n) to be the set of all positive integers less than n and relatively

prime to n. Then U(n) is a group under multiplication modulo n.

In the following is an example of a group U(n), that is U (5) under multiplication modulo 5 and some of its

properties.

Example 2.2. The elements of U (5) consists of 1, 2, 3, and 4. Hence the order of the group is 4. The computa-

tions of the order of the elements are as follows:

|1| = 1 since the order of the identity element is always 1.

A visual model for computing some properties of U(n) and Zn 31

|2| = 4 since 2 × 2 × 2 × 2 ≡ 1.

|3| = 4 since 3 × 3 × 3 × 3 ≡ 1.

|4| = 2 since 4 × 4 ≡ 1.

The inverse of each elements are: 1−1 = 1, 2−1 = 3, 3−1 = 2, and finally 4−1 = 4. To find the inverse,

say 2−1, we compute powers of 2 until we get the identity, that is 2 × 1 ≡ 2, 2 × 2 ≡ 4, 4 × 2 ≡ 3, 3 × 2 ≡ 1.

Therefore 2−1 = 3. Generators of this group are 2 and 3. The cyclic subgroups of U (5) are also obtained by

generating each element of the group. The following shows the cyclic subgroups:

〈1〉 = {1}, 〈2〉 = {1, 2, 3, 4}, 〈3〉 = {1, 2, 3, 4}, and 〈4〉 = {1, 4}.

Hence the lattice diagram of U (5) is as follows of U (5).

U(5) = 〈2〉 = 〈3〉
|
〈4〉
|
〈1〉

3. Some programming codes

We include in this paper some codes written for the program.

3.1. Some important codes. The following codes are to create a small box (called edit box) for the users to enter

the value of n, and to create a place for the users to select their desired groups (called radio buttons), as well as to

create a button that will start the computation of the properties for the selected group.

enterN.Create(WS_CHILD | WS_VISIBLE | WS_BORDER | SS_CENTER,

CRect(CPoint(55,55),CSize(50,25)), this, IDC_ENTER_VALUE);

btnGrpG.Create("Groups", WS_CHILD | WS_VISIBLE | BS_GROUPBOX |

WS_GROUP,CRect(CPoint(10,95), CSize(120,90)), this,

IDC_BTNGRP_GROUP);

btnOptZ.Create("Z(n)", WS_CHILD | WS_VISIBLE | BS_AUTORADIOBUTTON,

CRect(CPoint(15,125), CSize(100,30)), this, IDC_BTNOPT_Z);

btnOptU.Create("U(n)", WS_CHILD | WS_VISIBLE | BS_AUTORADIOBUTTON,

CRect(CPoint(15,145), CSize(100,30)), this, IDC_BTNOPT_U);

btnCalc.Create ("OK!", WS_CHILD | WS_VISIBLE | BS_DEFPUSHBUTTON,

CRect(CPoint(150,120),CSize(50,25)), this, IDC_CALC);

Below are the codes for generating positive integers relatively prime to n for the groups U(n).

int CMainFrame::gcd(int x, int y)

{

if (y==0)

return x;

else

gcd(y, x%y);

}

32 Nor Muhainiah Mohd Ali, Deborah Lim Shin Fei, Nor Haniza Sarmin, Shaharuddin Salleh

Next are codes written to enable most output in the interface to be displayed in the text file. The properties

that are displayed in the text file are the order of the group, the elements, generators and cyclic subgroups (if any),

as well as inverse and the order of the elements. The purpose of enabling the output to be displayed in the text

file is to allow the users to save the mentioned properties for the group that they have selected. Furthermore, these

properties can also be printed out when displayed in the text file.

void CMainFrame::save_file(int input, char g, int *el, int *gen, int

*subGen, int OrderGroup, int numGenGroup, int numGenSub) { int i,

q=0;

ofstream output;

output.open("Output.txt");

output << "Order of the group " << g << "(" << input << ") = " <<

OrderGroup << endl; if(g==’U’)

{

q=1;

OrderGroup++;

}

output << endl << endl << "Elements of " << g << "(" << input <<

"):" << endl;

for(i=q; i<OrderGroup; i++)

output<< el[i] << "\t";

output << endl << endl << endl <<"Generators for "<< g << "(" <<

input << "): (if any)" << endl;

for(i=1; i<=numGenGroup; i++)

output<< gen[i] << "\t";

output << endl << endl << endl << "Generators of cyclic subgroups:

(if any)" << endl;

for(i=1; i<=numGenSub; i++)

output<< subGen[i] << "\t";

output<< endl << endl << endl << "ELEMENTS:" << "\t" << "INVERSE:"

<< "\t" << "ORDER:" << endl;

if(q==1)

{

for(i=q; i<OrderGroup; i++)

output << el[i] << "\t\t" << inv[i] << "\t\t" << order[i] << endl;

}

else

{

for(i=0; i<OrderGroup; i++)

output << el[i] << "\t\t" << (N-a[i])%N << "\t\t" << Sum[i] << endl;

}

output.close();

}

4. The output

This section shows how the interface of the program looks like and also displays some outputs.

4.1. Interface. The figure below shows the interface for the written program.

4.2. Some outputs. Figure 2 shows the outputs displayed in the interface when the user keys in n = 18 and selects

the group under addition modulo n, meaning that Z18 is selected.

The outputs on the group U (81) is shown in Figure 3.

A visual model for computing some properties of U(n) and Zn 33

Figure 1

Figure 2

As mentioned, some outputs displayed in the interface can also be obtained from the text file, as shown in

Figure 4.

4.3. Message boxes. This program is written with message boxes that will appear in different situations. One of

the message boxes is used to warn the user when the user enters values of n less than or equal to 0 and values of

n greater than 120, meaning that the value entered is out of range. The following figure shows how this message

box looks like.

Another message box (see Figure 4.6) informs the user about the display, that is, cyclic subgroups and lattice

diagram will only be displayed if the selected group is cyclic.

34 Nor Muhainiah Mohd Ali, Deborah Lim Shin Fei, Nor Haniza Sarmin, Shaharuddin Salleh

Figure 3

Figure 4

Figure 5

Figure 6

A visual model for computing some properties of U(n) and Zn 35

5. Conclusion

This program can be used to determine all elements of the group, order of the group, inverse and order of the

elements, generators of the group, cyclic subgroups as well as the lattice diagram, if any, for the groups Zn

andU(n) that are cyclic. By just entering the desired value of n and selecting a group, a click of the button “OK!”

will display the properties of the group.

The writing of this program is hoped to be able to facilitate in the study of group theory for the groups Zn

andU(n) in the undergraduate level of tertiary studies. Although the program may not be able to provide with all

the properties of these two groups, it is served as a starting point for developing better and sophisticated programs.

6. Suggestions

The input value of n for this program is limited to positive values of n up to 120. Therefore our suggestions

would be eliminating this restriction on the value of n. This program can also be improved by letting the user to

specifically choose the desired property to be displayed one by one, instead of having everything displayed in the

interface all at once.

Apart from that, an improved program to find other cyclic subgroups of U(n) for non-cyclic groups can also

be developed. Furthermore, this program can also be extended to find some properties of other groups such as

permutation groups and quaternion groups.

References

[1] Gallian, J. A. Contemporary Abstract Algebra, 3rd ed. D. C. Heath and Company, Canada, 1994

[2] Fraleigh, J. B. Abstract Algebra, 6th ed. Addison-Wesley Publishing Company, Inc. United States of America, 2000

[3] Sarmin, N. H. Lecture Notes: Modern Algebra SSM4113, Preliminary Edition, Department of Mathematics, Faculty of Science, Universiti

Teknologi Malaysia, Malaysia, 2005

[4] Deitel, H. M and Deitel, P. J. C++ How to Program, 2nd ed., Prentice Hall, United States of America, 1998

[5] Jones, R. M. Introduction to MFC Programming with Visual C++, Prentice Hall, United States of America.

[6] Salleh, S. SSM3323 Lecture Notes: C to C++ Transition, Department of Mathematics, Faculty of Science, Universiti Teknologi Malaysia,

Malaysia.

[7] Salleh, S. SSM3323 Lecture Notes: C++ Programming with MFC, Department of Mathematics, Faculty of Science, Universiti Teknologi

Malaysia, Malaysia.

