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Abstract

This paper presents the mathematical modeling of combustion in a two-
stroke linear combustion engine incorporating combustion and kickback
chambers. A thermodynamics simulation is performed using a Weibe
flrnction that applied to linem engine. The computer program is
developed to compute the instantaneous velocity and temperature in the
combustion chamber. The fuel is gasoline and the cylinder bore sizes to
be considered are of 50mm and 76mm. From the computation, the
results show that the peak temperatures are 870 K and 995 K, the mean
velocities during expansion are 3.8mls and 5m/s, the mean velocities
during compression 2.9mls and 4.4m./s, respectively.

Keywords: matlrcmatical modeling combustiorl linear engine

l. Introduction

Linear intemal combustion engines may find application in the generation of electrical
power using linear motion- The operation of this engine is distinct from that of a
conventional slider-crank mechanism engine, insofar as the motion ofthe two horizontally
opposed pistons is not extemally conshained [10]. This technology is advantageous
because it is mechanically simpler and allows for a great deal more freedom in deflning a
piston motion profile, enabling the use of novel combustion regimes [11].

The most importanl process taking place in an engine is the combustion process. In
addition to its obvious importance in the generation of power, it provides a key driving
input to the heat transfer that originates in the in-cylinder gasses. Thus, modeling of
combustion is an important part of engine simulation cddes in order to understand the
mechanism of the quick and complete combustion in an intemal combustion engrne [8].

Temperature measurements in the thermodynamics analysis are important for the
determination of the parameters that characterize inlemal combustion engine. A hnite heat
release model can determine the temperature during combustion process in the intemal
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combustion engine [4]. Through the pressure measurements, the principal approaches are
the calculation of mass fraction bumed in the engine using crankshaft for the
determination of the characteristic crank angles in the combustion stroke, and the heat
release analysis [9].

The mean piston speed is an indicator ofhow well an engine handles load such as friction,
inertia and gas flow resistance. In a free piston configuration, the relationship between
engine speed, operating couditions, and design parameters is much more complicated [].
On the other hand, the engine speed is one of important parameter to compute the
instantaneous heat transfer [a]. The pupose of this paper is to determine the mathematical
modeling of heat transfer in the combustion chamber of a linear combustion engine
incorporating a combustion chamber and a kickback chamber. The result is important in
determining the temperature distribution in whole engine.

2. Thermodynamic model

In this paper, it is considered a two-stroke incorporates combustion and kickback chamber
model is depicted in Figure 1. The thermodynamic model of such engine has been
performed by the authors in [12]. The piston traverses horizontally with the stoke of
5Omm.

Combustion Chamber Ki:kback Chamber

Fig.l Schematic view of the linear engine

The force balance for the left-to-right (expansion) shoke can be written as equation (l)
with, positive inthe left-to-right direction.

rr(x'),e" - 4(x)n* - Fr(x) = *,# (l)

where Ps and P6 are the instantaneous pressure in the combustion and kickback cylinder,
As and Ay Ne the areas of the piston in combustion and kickback chambsr, respectively, .Q
is the frictional force, and n, is the mass oftranslator. On the other hand, the force balance
for the right-to-left can be expressed by exchanging the sign ofequation (1) by the fust
and second terms.
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According to the combustion heat addition, Qi", &rng the compression stroke and the
ideal gas law, and using adiabatic Otto cycle process, the force balance can be described as
the Equations (2) and (3) for t}re compression and the expansion stroke, respectively.

, (r. +r,')" ( *l\_, [.r. +r, )" ( *'r\''"1.*. +* )l + ) "'(.r, -. )\ o )

*g,,t,-DE#-F,(x)=.,# (2)

,.[t+)" S-,,,(t'::')" *-,,,.)= *,# (3)

Using the force balance for the whole strokes, the displacement x, and the velocity, v, as a
fimction of time, /, have been computed to arto.lyze the instantaneous temperature.

3. Weibe function

In the conventional engines the Weibe function is defined as follows.

x.(e)=,_*[_"(?).] (4)

where 9is crank angle, f. is start ofheat release, da is duration ofheat release, n is Weibe
form factor, and c is Weibe efficiency factor. In the linear engine cases, the Weibe
function must be expressed as a function of time, t, as follows [3]

r,(,)=1-"*[-,(*)'"] (5)

where Cd is the combustion duratioq r" is the start of the combustion, a and 6 are
frmctional shape parameters and are adjustable. According to Helrrood [5], the actual
mass fraction burned curves ue well fitted with a = 5 and D : 2, while varying a arrd, b
changes the shape of the curve signihcantly. For the Weibe function using in the
conventional engine, the piston positions have a relationship with the crankshaft angle.
Comparing with the Weibe function using in the conventional engine, the Weibe function
using in the linear engine considers start timss of combustion at any fix piston positions in
each cycle.

Minimizing the combustion duration in an engine requires a high turbulence intensity, a
flame area that increases with distance from the spark plug, and a centrally located plug to
minimize flarne fravel. As one expects, minimizing the combustion duration maximizes
the work done, since the combustion approaches constant volume, and it also lowers the
octane required.
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4. Heat generated by combustion

Consider a closed system differential energy equation in the combustion chamber,

Q-PiV =mcudT (6)

where nr is the mass of gas in the cylindeq and c, is the constant volume specific heat. Per
unit time, the energy equation can be written as:

Q= p{*^r..dr (7)
dt dt "dt

The rate ofheat release for usual engine is obtained by differentiating the cumulative heat
release Weibe function [4], and for the linear engine can be formulated as

*=a^* (s)
ildt

The mass fraction burned rate is the derivative of the Equation (5) and has the following
form

The heat release rate can be written as a function of time as

#="#(#)'*,[-'(#)'.'fn. ('I,)

Using the chain rule to the Equation (7) and substituting the result to the Equation (6), it
will be obtained the following equation

o &o 
=pdv *o dr

-- dt dt "'T (ll)

The finite heat release model can be modified to include the differential heat ffansfer dQo
to the cylinder walls, ifthe instantaneous average cylinder heat transfer coeffrcient &r(t)
and engine speed N are known. The finite heat release equatiog Equation (ll), with the
addition ofwall heat transfer is

*=.#(*),".,[-.(+i"] (e)

o,-gL-@.=pdv **" {--dt dl dt "dt (12)

The heat addition in the engine cycle is calculated with the lower heating value of the fuel
based on per mass of air [6]. Based on the fuel air ratio, the heat addition can be calculated
using the following formula

9,, =(r1,t)*(tutt) (13)

where (F/A) is the frrel air ratio, n is the mass of the mixture of air and fue[ and LIr'Z is
the lower heating value.
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5. Heat transfer in the combustion chamber

The heat transfer rate at any time unit to the exposed cylinder wall at an engine speed -M is
determined with a Newtonian convection equation

*= h,Q)A-k)@rQ)-rJx (r4)

The eylinder wall temperature 4, in the above equation is the area-weighted mean of
temperatures of the exposed cylinder wall, the head" and the piston crown. The heat
transfer coefficient hs(r) is the instantaneous area averaged heat transfer coefficient. The
exposed cylinder arca A*(t) is the sum of the cylinder bore are4 the cylinder head are4
and the piston crow[ area.

The characteristic gas velocity in the Woschni correlation is proportional to the
mean piston speed during intake, compression, and exhaust. During combustion and
expansion, it is assumed that the gas velocities are increased by the pressure rise resulting
from combustioq so characteristic gas velocity has both piston speed and cylinder
pressure rise terms.

U =2.Z8Op+O.00324ToYo 
M" 

(15)
Yo Po

where 7, is the mean piston speed (m/s), Is is the temperature at intake closing (K), ,ro

is the cylinder volume at intake closing (m'), V, is the displacement volume (m3),
AP" is the instantaneous pressure rise due to combustion (lfa), & is pressure at inlake
closing (kPa).

The instantaneous pressure due to combustion in the Equation (15) is determined as the
pressure difference between the motoring pressure, prc,or and the pressure calculated from
the ideal gas law,p, [7], as follows

LP" =(p- P,^,,)
where

Pmotor

The Woschni correlation is

hs =3.26Po'8(Jo'8b4274's5 (tB)

where the units of lrs, P, U, b and Tare in W#I( kPq m/s, m and K, respectively.

6. Results and I)iscussion

A nunerical computation has been performed using the following values of parameters:
(i) combustion chamber bore 50mm, kickback chamber bore74mm" stroke 50mm,
(ii) combustion chamber bore 76mm, kickback charnber bore 10lmm, stroke 76mm

The bore sizes ofkickback chambers are calculated using an algorithm by author in [2].
Pressure at the beginning of compression stroke is l00kP4 compression ratio is 10, and

=(&)'^

(16)

(17)
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specific heat ratio is 1.3. Using these values ofparameters applied to Equations (2) and (3),
the graphic of the displacement and velocity versus time for the type of parameter (i) are
depicted in the Figure 2. Figure 2 (a) shows that the piston need 0.03 seconds for one cycle
moving. By using this result, the engine speed is around 2000 cycles per minute (cpm).
Figure 2 (b) shows that the maximum piston velocity in the expansion stroke is 5.5 m/s
and in the compression is 4 m/s. The mean velocify during expansion is 3.8m/s and during
compression is 2.9m/s. The piston needs more time to get one stroke for compression then
for expansion.

li
I

\i

offs o{
Tire(s)

(b) Velocify

a6
Tim(5)

(a) Piston displacement
Fig.2 Piston displacenent and velocily vs. time, cylinder bore 50mm

1.m
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Fig3 The pressure vs. timefor tariation in combwtion dwation compring with
measutement

Figure 3 shows the in-cylinder pressure versus time for the variation in the combustion
duration and the comparison with the mean pressure of tlre measurement. The mean peak
pressuro from measurement is 2.83 MPa. This peak pressure is appropriate with the
pressure resulting from the combustion duration of 4.5 ms.
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Figure 4 presents the piston displacement and velocity versus time for the linear engine
with cylinder bore of 76mm. Figure 4 (a) shows thal the engine need 0.034 seconds time to
get one cycle. Figure 4 (b) shows that the maximum velocity, 7 .2 m/s, occurs in expansion
shoke. The mean velocity during expansion is 5m/s and during compression 4.4mls.

n@(e) Tire(s)

(b) Velocity(a) Piston displacement
Fig. 4 Piston displacement and velocity vs. time, cylinder bore 76mm

The following values of parameters are required to calculate the instantaneous temperature
in the combustioq chamb€r. The temperature at the beginning of compression is 298K, and
the wall temperature is set 373K. In the next computatiorl the combustion duration of 4.5
ms is applied. Figure 5 presents the curve of mass fraction bumed and the temperature
versus time. Figure 5 (a) shows that for the engine with cylinder bore of 50mm, the peak
temperature in the combustion chamber is 870 K. After one cycle, the temperature at the
next start of compression is 360 K Figure 5 (b) shows that for the engine with cylinder
bore of 76mm, the peak temperaflre is 995 K After one cycle, the temperature at tle next
start of compression is 375 K.
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(a) cylinder bore 50mm
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(b) cylinder bore 76mm
Big.5 The massfraetion burned and temperalure vs. time
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7. Concluding Remarks

The combustion in a linear combustion engine can be modeled to analyze piston
movement and the instantaneous temperature in a cycle. A numerical algorithm for the
calculation of the instantaneous temperature problem has been developed. For the linear
engine cases, the Weibe function can be derived by time variable. By using a number of
parameter values, it is obtained the instantaneous temp€rature in the combustion chamber
of a linear engine. The peak temperature and the position of piston that obtained above are
very important to evaluate the heat transfer problem in the whole englne.
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