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Abstract

One of the basic problems of applied finance is the optimal selection of
stocks, with the aim of morimizing future returns and minimizing the
risk using a specified risk aversion factor. Variance is used as the risk
measure in classical Markowitz model, thus resulting in a quadratic
prograrnming. As an altemative, mean absolute deviation was proposed
as a risk measure to replace the original risk measure, variance. This
problem is a straight-forward extension of the classic Markowitz mean-
variance approach and the optimal portfolio problem can be formulated
as a linear programming problem. Taking the downside tisk as the risk
leads to different optimal portfolio. The effect ofusing only downside
risk on optimal portfolio is analyzed in this paper by taking the mean
absolute negative deviation as the risk measure. This method is
applied to the opimal selection of stocks listed in Bursa Malaysia and
the return of the optimal portfolio is compared to the classical
Markowitz model and mean absolute deviation model. The result show
that the optimal portfolios using downside risk measure outperforms the
other two models.

Keyw ords;-Portfolio optimizatiorr, Linear Programming, Downside risk.

l.Introduction

Portfolio optimization problem has been one of the important research fields in modern
finance. Generally, investors always prefer to have the return on their portfolio as large as
possible. At the same time, he also wants to make the risk as small as possible. However,
some investors pursue a high return even though it is accompanied with a higher risk.

The basic theory of portfolio optimization was presented by Markowitz in his pioneering
article [3]. By employing the standard deviation and expected value of the stocks as the
representation of return, Markowitz introduced the famous mean-variance model, which
has been regarded as a quadratic programming problem. There has been a tremendous
amount of researches on improving this basic model both computationally and
theoretically. Various portfolio models such as the single-index model, the multi-index
model [] and the mean-absolute deviation (MAD) model [2] have been proposed. The
single-index model reduces the number of parameters for representing the variance-
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covariances of the stocks by assuming a linear relation for the return on stocks and the
retum of the market index. The multi-index model then extends the linear relatiou ou a
single index to multiple indexes. The MAD model, howevel uses the mean absolute
deviation from the mean as the risk measure to estimate the nonlinear variance-covariances
of the stocks in the mean-variance model. It transforms the portfolio selection problem
from a quadratic programming into a linear programming problem. Usually, it is easier to
solve a linear problem than a quadratic one [8]. If the returns are normally distributed,
then the risk measures in the MAD model becomes proportional to the standard deviation.
Hence the corresponding MAD model is then equivalent to the Markowitz mean-variance
model. However, the MAD model does not require any specific type of return
distributions.

The popularity of downside risk among investors is growing and mean-retum-downside
risk portfolio selection models seem to oppress the familiar mean-variance approach. The
reason for the success of the former models is that they separate retum fluctuations into
downside risk and upside potential. This is especially relevant for asymmetrical return
distributions, for which mean-variance model punish the upside potential in the same
fashion as the downside risk. This led Markowitz [4] to propose downside risk measures

such as (downside) semivariance to replace vmiance as the risk measure. Consequently,
one observes growing popularity of downside risk models for portfolio selection [6].

The portfolio optimization problem considered in this paper follows the original
Markowitz formulation and is based on a single period model of investment. At the
hginning of a period, an investor allocates capital among various securities. Assuming
that each secwity is represented by a vmiable, this is equivalent to assigning a nonnegative
weight to each variable. Drning the investment period a security generates a random rate
of retum. The change of capital invested observed at the end of the period is measured by
the weighted average ofthe individual rates ofreturn.

The mean absolute negative deviation from the mean is a half of the mean absolute
deviation from the mean, hence tlre corresponding mean-risk model is equivalent to the
MAD model [5]. We model a downside portfolio selection problem as a linear
programming problem by taking the mean negative absolute deviation as the risk measure.
We compare the result from the model with the results from MAD and mean-variance
models.

2. Portfolio Models

Suppose there are n stocks considered for an investment. Let the return on stock i, i: 1,

..., rL be denoted by random variable R; with mean [i . Let X1 be the proportion invested

onstockiandwecallP:(X1,Xr,...,&),*to" f Xt=l,aportfolio. EachportfolioP
i=l
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n
defines a corresponding random variable fp : !n1Xi that represents retum of the

i=l
portfolio. The expected return Rp of this portfolio:

Rp :E t!n1xr I: ![1xi
i=1

We consider the portfolio optimization problem modeled as a mean-risk bicriteria
optimization problem wherc [p is maximizes and some risk 6p is minimized.

In order to compare on real-life data the performance of various mean-risk models, one
needs to deal with specific investor preferences expressed in the models. One way of
modeling risk averse preferences and therefore one of the major approaches to handle
bicriteria mean-risk problems is by assuming a tade-off coefficient between the risk and
the mearL the so-called risk aversion coefticient [4. Irt ]. = the risk aversion factor of the
investor satisfying 0 < )" < l. The greater the aversion factor, 1,, the more risk aversion the
investor has. When l, : 1, the investor will be exhemely conservative because in this case
only the risk of his&er investment is considered ard no attention is paid to the retums of
hiJher investrnent. Conversely, l,:0 means that the investor is extremely aggressive to
pursue the retums of his/her investmen! complehly ignoring the risk of investonent.

2.1 Mean-Variance Portfolio Optimization Model.

Let op be the standard deviation of the portfolio be the risk measure:

,,
6p= ,fut{)*,r, -1eln;x;yy21 :

Y i=r i=l

l-t "
.f2;",.,x,x,
!f ;=ti=t

where o1; is the covariance of tJre returns on stock i and j.

The mean-variance model can then be written as a quadratic programming as follows [see
el

MODEL Pl: Mcan variance (MY) model
nnn

Max z :(l-1") IRixi - i I I o;;X1X;
i=l i=1j=1

Subject to
n

Ix,=t
i=1

I-t<XsUt, i:1,...,n
x>0, i:1,...,n
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where Ia and U, are the lower bound and the upper bound on the proportion of stock i
respectively.

2.2 Mcan Absolute Deviation Optimization Model

Irt&t:therealizationofrandomvariable&duringperiodt(wheret:1,...,T).&is
available from historical data or from some future projection. Konno and Yamazaki
assumed that the expected value of the random variable can be approximated by the
average derived from these data [2]. That is:

tT
Ri :E[&] 

= i). RitrEi
, Tln 

I

The absolute deviation is dehned as +),lI (R,, - R;)Xil and is used to rcplace

't=tli=t I

nn
the term ll olXqXi in the mean-variance model. The MAD model can then be

i=1j=1

expressed as:

MODEL P2: Mean-Absolute Deviation (MAD) model
n ^ rln 

IMaximize(l -t) IRix,- +IlI fnu - Ri)xil
i=r ,i:jl=i " 

I

Subject to
n

Ix,=t
i=l
I-t<X<Ut, i=1,...,n
X>0, i:1,...,n

Model P2 can be transformed to a linear programming optimization modsl as follows:

, Tln 
I

tet 4 : : +)l) tnn - ni)Xildenote the absolute deviation of ttre porrfolio retum,;=lE " 
I

(from the mean) at time t then the equivalent linear program for the mean-absolute
deviation model is:

nrT
Mw<z:(r-I)IRixi - I; Id,

i=l I t=l
Subject to
n_
) (ni - R;, )Xi <dt , t: l, ... , T (downside)
i=l
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i ,U, - R,,)Xi 2 -d,, t= l, ...,T (upside)

i:l
n

lx1=t
i=l
Lt<X <Ut, i= 1,...,n
X>0, i= 1,...I
4>0, t= 1,...,7

23. Downside Portfolio Optimization Modcl

By consi&ring only the return below the mean as the risk and replace the mean absolute
deviation with the mean negative deviation the downside risk model can be written as:

MODEL P3 : Mcan-Scmi Absolute Dcviation (MSAD) Model
n ,T n

Maximize(1-t)IEix1 -i,{mortil I tni - Ri1)X1,01}
i=l 't=li=l

Subject to
n

IXi=t
i=l

I"(X<Ui,
xa0, i:1,2,...,u

n
Let Ar :rno tI (R1 - R1)X1 ,0ldenote the absolute deviation of the portrolio retum

i=l
(from the mean) at time t then the mean-semi absolurc deviation model can be
transformed to an equivalent linear program as:

n"T
Maximize(l -I)IRixi - f Ia,

i=l ' t=l
Subject to
2
f tn-i - R1)Xi <dt t= l, ... ,r
i=l
n

Ixr=t
i=l
l.<X<Ur,
x>0, i: r,2,... ,u
dt >0 t:1,...,7
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3. Methodology

We tested our model on 40 stocks chosen at random from stocks listed on the main board
of Bursa Malaysia. The historical data of beginning and ending monthly price with
dividend yield from 1994 to 2003 for these stocks were used to obtain the annual retum for
ten years from 1994 to 2003.

Let Rit and R! represent the return of stock i in month t and in year t respectively.

*,- 
P(t*r):-Pit+Dit 

ano nf :(l+&r)(r+&r... (l+&rr- l,

where P;s and Ptt*rl r€present the beginning and ending price respectively and D1 is the
dividend.

The optimal portfolios for different risk aversion factors and different upperbounds on the
proportions were obtained from the downside risk model that is the mean-semi absolute
deviation(MSAD) model :

I) MSAD model
n ,T n

Maximize (t - r")I[ix1 - 1.{maxtil I ei - Rl)xi,0]}
i=l ' t=l i=t

Subject to
n

Ix'=t
i=l

0<X<U, i:1,2,...,n

where T = 10 and t= 1,2,.-.,T represent the ten years from 1994 to 2003 and R-, is ttre

average annual refurn for stock i.

The return of the optimal portfolio were compared with those obtained from the mean-
variance model and the MAD model .

tr) MV model
n nn

Maxz: (1-)")IRixi - i II o1.;X1X.;

i=l i=tj=l
Subject to

n

Ix,=t
i=1

o<x <ui, i: 1,...,n
where Ri is the expected annual retum on stock i and oq is the estimated covariance of the

annual return on stocks i andj.
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trt) MAD model
n " rln 

I
Maximize (t - ),) IRix, - +IlI t*l - ni)xrl

i=r 'Eli= I

Subject to
n

It,=t
i=1

0<X<U, i:1,...,n
where T : l0 and t: 1,2...,T represent the ten yems from lgg4 to 2003. Rf is the annual

retum on stock i estimated from year t and R; is the corresponding average annual retum.

The models were solved using LINGO optimization software to find optimal solution for
the cases ofthe risk aversion coefficient l":0.95, 0.8, 0.6, 0.5, 0.4 0.2, 0.05 and upper
bound U: 0.1,0.2 ,0.3.

4. Numerical Results

The effect of downside risk is analyzed by comparing the retum of optimal portfolio from
the mean absolute deviation model with the retum of portfolio from semi absolute
deviation model. The results are presonted intables 1-3.

Table 1: Optimal portfolio return with upper bound U: 0

Risk aversion coefficient" l,
0.05 0.2 0.4 05 0.5 0.8 0.95

MSAD 0.880322 0.880322 0.88032 0.880322 0.784905 0.506075 0.80216
MAD 0.880322 0.880322 0.85049 0.729723 o.574451 o.3l94M 0.62166
MV 0.843519 0.86744s 0.75974 0 669187 o.570579 o.440821 0.25915

The retum of optimal portfolio from MSAD model is greater than the return resulting from
solving MAD model for 1,:0.4, 0.5, 0.6, 0.8 and 0.95 the MSAD retum is equal to MAD
model for l":0.05 and 0.2. The return of optimal portfolio from MSAD model is better
than the retum from MV model for all 1,.

Table 2: Optimal portfolio retum wit\ upper bound U:0.2

The optimal portfolio using MSAD provides better retum than the other two models.
Return from MSAD is less than the retum in MV model only when l,= 0.8.

Risk aversion coefficient. )"

0.05 o_2 o.4 0.5 0.6 0.8 0.95
MSAD l.143708 I .143708 l.143708 1.06203 t.012s42 0.536455 1.062028
MAD 1.143708 t.l4t7()lt 1.012542 0.73453 0.565218 0.536455 0.716509
MV 0.9985 I 5 1.062028 0.876051 o_80442 a_694182 o.543691 0.406/37



Nsk aversion coefflrcienl 7i

0.05 0.2 0.4 0.5 0.6 0.8 0.95
MSAD 1.27514 1.248213 1.223329 1.223329 l.198587 0.582552 t-223329
MAD 1.27514 1.243373 1.202533 0.791408 0.680677 0.513498 0.681918
MV 0.997221 1.198587 0.894555 a.804037 0.742367 0.576181 0.395898
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Table 3: Optimal portfolio retum with upper bound U:0.3

As the result for upperbound U : 0 in table 1, the return of the optimal portfolio from
MSAD model is better than that of the MAD and MV models for all values of risk
aversion coef ficients.

It can b€ observed that, in the sense of investment returns, the optimal portfolios from the
mean absolute negative deviation or the downside risk optimal portfolio result in higher
retums. Thus, the downside risk model is preferable when taking arithmetic means as

expected retums of stocks.

5. Conclusion

In this papeq a porfolio selection of stocks with downside risk is modeled as a mean-risk
biciteria portfolio opti,nizatron problem. The mean absolute negative deviation of annual
refum from the average annual return is used the downside risk. The annual returns are
calculated using the monthly returns. The porfolio selection problem with 40 stocks were
then tested to determine the optimal portfolio. The retums of the optimal portfolios are
compmed to the performance of the mpdel with the other models.
The comparison shows that the performance of portfolio model with downside risk is
better than that of the mean-absolute deviation model and the mean-variance model.
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