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Abstract

A 2-digraph is a digraph whose each ofits arcs is colored by either red
or blue. The exponent ofa 2-digraphD is the smallest positive integer
h + k over all possible nonnegative integers h and k such that for each
pair of vertices u and v in D there is a walk from u to v consisting of h
red arcs and k blue arcs. In this paper, we show that for n > 5 the
exponent set of complete asymmetic 2-digraphs on n vertices is Eo :
{2,3,4}.
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1. Introduction

Let D be a digraph. We follow the notations and terminologies of digraphs on Brualdi and
Ryser [1]. By a walk of length m from a vertex z to a vertex y, we mean a sequence of arcs
of the form

(vo, v, ),(v,,v, ) ,...,(,r-_z,v-q),(y-;,t -) (1)

where v6: u andv^ = v. The walk (l) is also denoted by

y0 -)yl -+y2-+...)t_.
A walk is called closed if u: v and is called open otherwise. A path is a walk with no
repeated vertices and, a cycle is a closed path. A digraph D is strongly connected provi&d
for each pair of vertices u andv in Dthere is a walk from a to y and vice versa. A digaph
D is complete provided that for each pair ofvertices u andv both (av) and (v,z) are arcs
of D. A stongly connected digraph is primitive provided there is a positive integer t such
that for each pair of vertices u and v in D there is a walk of length k from u to y. The
smallest of such positive integer t is the exponent of D and is denoted by exp(D). Wielandt
[fl showsthatforanyprimitivedigraphof orderz, theexp(D) <(n- t)2+l.I-etE,lrr-the
set of positive integers r such that there is a primitive digraph having r as its exponent.
Dulmage andMendelsohn[2]showthatfor n>4,thesetE, isapropersubsetof {1,2,
..., (n - l)2 + 1).

By a2-colored digraph or a2-digraph we mcan a digraph whose each of its arcs is colored
by either red or blue. In a 2-digraph we distinguish a walk of length n by how many red
arcs and blue arcs it has. By an (ft,/r)-walk wG mean a walk of length /rrlr consisting of lz

red arcs and t blue arcs for some nonnegative integers h and k. For each walk ra, r(r.r,) and
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D(ra) denote respectively the number of red arcs and blue arcs w has. The vector 
[;[;]] "

called the cornposition of w. A 2-digraph D is strongly connected provided that its
underlying digraph, that is the digraph obtained from D by ignoring its arcs coloq is
strongly conneeted. A sfongly connected 2-digraph D is primitive provided there exist
nonnegative integers h arld k such that for each pair of vertices in D there is an (&,fr)-walk
between them. The smallest positive integer lil-,t over all such nonnegative integers h and k
is called the exponent of D and is denoted by exp(D). By a complete asymmetric 2-digraph
we nroan a complete 2-digraph such that whenever (r,r,v) is a red arc then (v,n) is a blue arc
and vice versa-

l-at Dbe a strongly connected 2-digraph and let C =lh,Tz,...,Ttlbe the set ofall cycles

in D. The cycle matrix of D is the 2by t mafrrix

wheretheithcolumnofMisthecompositionofthecycle y,,i=1,2,...,t. Wedefine (M)
to be the additive subgroup of 22 generated by the columns of M. If the wil<(M): 2 the
canteilt of M, denoted by cont{M), is defined to be the greatest corlmon divisor of the
determinant of 2by 2 submatrices of M.ltra*(M): 1, then we define the content of Mto
be 0. The following resulg due to Fornasini and Valcher (see Theorem 2 of [3]), gives
algebraic characterization of primitive 2-digraphs.

Theorem l. Let D be a sffongly connected 2-digrqh whose cycle matrix M has rank 2.
Then the followings are equivalent:

(a) D is primitive, @ (M):7:, (c) cont(I1): 1.

Shader and Suwilo [5] show- that the largest exponent for primitive 2-digraphs on n
vertices lies in the interval l(n'-5n")/2, l3nt + 2nt-bt)/21 . Olesky et al. [4] general2e the
notion of 2-digraphs to that of multicolored digraplw for positive integer t > 2 and show

that the largest exponent of primitive mrltkolored k-digraphs is of order O(rrr*t ).In this
paper, for z > 5 we show that the exponent set E, of asymmetric complete 2-digraph of
order z is E, = {2,3,4} .

2. Notes on Exponents of 2-Digraphs

We give several comments on expon€nts of 2-digraphs. Let D' be a 2-digraph obtained
from D be replacing each red arc by blue arc and vice versa. This implies every (ft,k)-walk
in D' corresponds to a (/r,&)-walk in D, and hence exp(D) equals to exp(D'). l*t D be a
primitive asymmetric complete 2-digraph. Suppose that the exponent of D is attained by
(ft,D-walks. Hence for any pir of vertices u and v in D there is an (fr,/r)-walk from z to y
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and there is an (h,/r)-walk from v to z. Since D is asymmehic complete 2-digrap[ for
everypairof vertices uandv inDthere is a (&,&)-walk from ato v andthere is a (,tft)-
walk from v io z.

3. The Exponent Set of Asymmetric Complete 2-digraphs

L,€t D be a 2-digraph on z vertices. Let v be any vertex in D. The red indegree of the
vert€x y, denoted by rid(v), is thE number ofred arcs incident to y. The red outdegree of
the vertex v, denoted by rod(v), is the number of red arcs incident from v. The blue
indegree arrd outfugree are defined similarly. We define the exponent sed denoted by E ,
of a 2-digraph D on a vertices to be the set of all positive integers , such that there is a 2-
digaph on z vertices having r as its exponent. In the following we show that for z > 5 the
exponent set of asynmetric complete 2-digraphs on n vertices is E, = {2, 3, 4}. We first
state a result on exponents of aqmmetic complete 2-digraphs.

Theorcm 2. Let D be a complete asymmetric 2-digraph on n 2 3 vertices. Then
exp(D) 3 4.

Proof. trt u andv be vertices in D. We show that there exists a (2,2)-walk from a to v.

Since D has n ) 3 vertices, there is a vertex* in D where x * u,r , If u: v, then the walk

u -+ x --ru -+ x -+u
is a (2, 2)-walk from a to itself. Assume now that a * y.

Let
V p(u) = \x eV : x * y and the arc (2, r) is a red arc)

and

Vp(u) = {y eV : y + v and the arc(a,y) isa blue arc}.

If there is an .r e tr/a (z) such that the arc (-x,v) is a blue arc, then the walk

u ">x b>v r>x--D_-,y

is a (2,2)-walk from z to v inD. Similarly, if there is a yeZ3(z)suchthat (y,v) is a red

arc,thenthewalk u b >y '>u b ry '>visa(2,2)-walkformztov.Hence,
we assume that (;r,v) is red for all xeYr(u),and @,v) is blue for all yeZs(z).Since

n ) 3, either Vp(u) * A w Vs(u) * O. We consider three cases.

Case l: Vp(u)*A md Yn(u)=A.

Irt xelp(z). Ifthe arc{u,v)isred,thenthewalk u ' >v b >x-Sal-+v isa
(2,2)-walk from z to v. Suppose the arc (av) is a blue arc. The cycles
,t-+x-+t4 u-+y-)u, r-+y-+x, u-+x-+y-+z,and x)u-+v-+x have

l-rl trl l-rl l-:l l-ol
composition 

L,j L,] L,] Lrl, 
*o 

Lrl 
respectively. Since D is 2-primitive and the content
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[rrl3ol
of I - ^ ^ I is not l, I Zx (u) l> l. [rt x1 and x2 be distinct vertices in Z* (a). If the

Ll 1103.1
arc (.x,,xr)isaredargthenthewalk u o ,n o >x1-1x21-+vis a(2,2)-waLk
from u to y. If the arc (xr,xz) is a blue ffc, then the walk

u .o >o o >x2-1\-!-+y isa(2,2)-walkfromatoy.

Case 2: Vp(u)=O and, Yr(u)*Q.
An argument similar to that of Case I shows that for each pair of vertices a and v in D
there exists a (2,2)-walk form z to y.

Case 3: V*(u)*O and Vy(u)*O.
Choose x e Y p(u) and 7 e V 6 {u). lf the arc (u,v) is a red arc, then the walk

u '>v b >x--!-->u ")y
is a (2,2)-wa1k from u to v. If the mc (a,v) is a blue arc, then the walk

ub>v">y'>rb>u
is a (2,2)-walk from a to y.

Therefore, for each pair ofvertices z and v, there exists a (2,2)-walk from z to v. Hence,
we conclude tlut exp(D) < 4. r

We note that Theorem 2 implies th t En g 0,2,3,a). Since D is asymmetric, for each pair

ofvertices uandv if thearc(z,v)isredthenthe arc(v,u) isblueandviceversa. This
implies that exp(D) > 2. Hence E,g{2,3,41. The following tlreorem gives sufficient
condition for a complete aslanmetric 2-digraph to have exponent equals 2.

Proposition 3. Let D be a complete asymmetric 2-digraph on n > 4. Suppose D has a
vertex! withrid(v): n- 1 andfor every vertex ulv in Due hove rid(a) Z l. Then the
exp(D:2.
Proof. trt the vertex set of D be V -lvr,vr,...,vnland without loss of generality we
,rssume that rid(v1) : n - l. We show that for each pair of vertices v; afldvi in D there is a
(l,l)-walk from v; to v;. Clearly, for each vertex v; the walk v, -+ v j -+ yi is a (I,l)-walk.

We note that for every pair of vertices v; and v; where yi,v j + v1, the walk vi -+ \ -+ v j
is a (l,l)-walk from v; to v;. Now {tssume that v; : v1. Since rid(v;) }1, then for each v.;

there is a vertex yr such that (v6v) is a red arc. This implies yl -+ yr -+ v, is a (l,l)-
walk. Similar argument shows that y j -+ yk -+ v, is a (l,l)-walk.

The following proposition gives a class of complete asyrnmetric 2-digruph with exponent
equals 3.
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Proposition 4. Let D be a complete digraph on n > 5 vertices vt rz, ..., v* I"el D be
colored such thd the red arcs of D are at least the ares of the form (vnv7'1 for all i * 3,
(vi,4) for all i * l, (v,,rr) for all i = 2, ..., fl - l, the arcs (rr1,v,),(v,-1,vy), (v:,yr), and color
the rest arcs in D with either red and blue such that D is a complete asymmetric 2-
digraph. Then the exp(D): 3.

Proof. We first note that there are no (2,0)-walks from v2to t4 and there are no (1,1)-
walks from v, to v3. Hence the exp(D) 2 3. We show that for each pair of vertices in D
there is a (2,I)-walk between them. This will imply that the exp(D) = 3.

Note that for any vertex y, *r2lt\ and any vertex yj, the following walk
r)i -+ v2 -+ v*l -) v1 , v; -) y2 -) 1r3 -+ rn, and vi -+ y2 -+ yn -+ v, are (2,I)-walk.

Theseshowthatforanypairofvertices vi*r2,v3andv;thereisa(2,I)-walkfromv;to
vi. If v; : v2, then the walks v, -+ y3 -+ vnq ) v1t v2 --+ v3 -) yx_l + vt, artd

v2 -rv3 -+vn --rv j , 2< j <n-t, are (2,I)-walks with initial vertex y2. Finally if v; :
v3,thenthewalk y3 *>y1 -+vu_r -ivj for l<j<3 andthewalks v. -)y1 -)v2--+yj
for4<"i <a are(2,1)-walkswithinitialvertexy3. r

Proposition 5. Let D be a complete asymmetric 2-digraph on n> 3 vertices. IfD has a
vertex u w ith rid(z) = n * I and has a yertex v w ith rod(v) = n * l, then the exp(D) = 4.

Proof. By Theorem 2, it suffices to show that exp(D) > 4. Consider the vertex z with
rid(u) = r- I andthe vertex y with rod(v) = n* l. Since all arcs withterminal yertex ? are
rd there are no (2,0)-walks from v to v. Since rid(u)= n- I and rod(v) : n - !, all walls
of length 2fromu to y are (0,2)-walks. Hence there are no (t,l)-walks from a to y.

Therefore, the exp(D) > 3.

Since all arcs with terminal vertex y are blue arcs, there are no (3,0)-walks with
terminal vertex v. More over since all arcs wifh initial vertex z are blue arcs, there are no
(2,l)-walks form n to y. Hence the exp(D) > 4. I

We now present the main result.

Theorem 6. Let D be a conplete asymmetric Z-digraph on n ) 5 yertices. Then the
exponent set of D is E, = {2,3,4} .

Proof, Since D is a complete as).mmetric 2-digrapll if (z,v) is a red arc the (v,z) is a blue
arc and vice versa. This implies the exp(D) > 2. The sequence of Propositions 3, 4, wtd 5,
and Theorem 2 imply that E, = {2,3,41.
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