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1. Introduction

The classical Newton polygon is a device for computing the fractional power series expansions of algebraic func-

tions. Newton gave a number of examples of this process in his ”Method of Fluxions” which amount to a general

method. However, it was not till much later that Puiseux proved that every branch of a plane algebraic curve

defined by a polynomial equation f(x, y) = 0 has an expansion

y − y0 =
∑

j≥0
cj (x − x0)

(a+bj)/q

in a neighbourhood of a point (x0, y0) on the curve. In practice, the integers a, b and q can be read off from

the Newton polygon and the coefficients cj can be determined successively with ever-increasing labour. (See,

for example, [18], pages 98 − 106.) Much of this extends naturally to several variables. For example, let z =
(z1, ..., zn) in C∗n be a complex n-vector with no component zero and for α = (α1, ..., αn) in Zn, write zα =
zα1
1 ...zαn

n . Let S1, ..., Sn be finite subsets of Zn and let N (S1, ..., Sn) denote the number of solutions in C∗n of

the system of equations

∑

α in Si

ci,αzα = 0(i = 1, 2, ...n).

By analogy with the classical case, the Newton polyhedron of the equation
∑

α in S

cαzα = 0

is the convex hull Ŝ of the set S in Rn. Bernstein [7] has shown that for systems in general position, that is for all

systems except for some agebraic submanifold in the space of coefficients,

N (S1, ..., Sn) = n!V
(

Ŝ1, ..., Ŝn

)

where V is the Minkowski mixed volume of the n Newton polyhedra.(This is the symmetric multilinear function

whose diagonal part V
(

Ŝ, ...
)

is just the n-dimensional Euclidean volume of Ŝ). Moreover, the Newton polyhe-

dra of the equations can be used to construct discriminant conditions which describe the special systems for which

the formula breaks down. Another account of Bernstein’s formula is given in [6]. We shall be concerned here with

p-adic versions of these ideas. The motivation comes from the study of multiple exponential sum of the shape

S (f ; q) =
∑

x
∼

mod q

exp

(

2πif (x)
∼

/q

)

,

where f is a polynomial with integer coefficients and the summation is taken over a complete set of residues of

each of the components of x
∼

modulo q. Under suitable conditions of f, we can estimate S(f ; p) for a prime p

using Deligne’s work on the Weil conjuctures, then proceed to estimates for S(f ; pα) by induction, and use the

multiplicativity of S(f ; q) in q to get the general case. This method is used in [15] to show that if f is a polynomial

in X1, . . . , Xn of degree d with integer coefficients, f considered modulo p is non-singular at infinity for each

prime p dividing q, and the hypersurfaces ∂f
∂Xi

= 0 meet transversely, then

|S (f ; q)| ≤ dnω(q)qn/2
(

∆5, q
)n/2

,
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where ω(q) denotes the number of distinct prime factors of q and ∆ is the discriminant of grad f . (In fact, ∆ is the

least positive integer in the ideal in Z

[

X
∼

]

generated by the polynomials ∂f
∂Xi

and the Hessian det
(

∂2f
∂Xi∂Xj

)

).

The simplest way to do the induction step in the estimation of S(f ; pα) is to reduce it to counting the solutions of

a system of congruences. If we write x
∼

= u
∼

+p[α/2] v
∼

in S (f ; pα), so that u
∼

and v
∼

run through complete sets of

residues mod p[α/2]and mod pα−[α/2] respectively, we get

|S (f ; pα)| ≤ pn(α−[α/2])#
{

u
∼

modp[α/2] : grad f ≡ 0 mod p[α/2]
}

.

In [15], the right-side of this inequality is estimated by some p-adic analysis invoking Hensel’s lemma at a critical

stage. This is responsible for the fairly poor dependence on the discriminant in the final result given above and

the lack of any result at all when the discriminant vanishes. Complete exponential sums for polynomials in one

variable can be treated much more satisfactorily. The key is to use the p-adic Newton polygon instead of Hensel’s

lemma [14], and to take the induction step in smaller stages [16]. This paper is the beginning of an attempt to

make similar ideas work for multiple exponential sums. As usual, Qp denotes the field of p-adic numbers with the

p-adic valuation |x|p normalised by |p|p = p−1. We write ordp x for the corresponding additive valuation, so that

|x|p = p− ordp x. By convention ordp 0 = ∞. We will have occasion to use the algebraic closure of Qp, denoted

by Qp, and the completion of Q̄p denoted by Ωp. The p-adic valuation extends uniquely to Q̄p and Ωp. Let

f(X) = a0 + a1X + . . . + anXn

be a polynomial in Ωp[X]. The p-adic Newton polygon of f is the lower convex hull of the set of points (i, ordp ai)
for i = 0, 1 . . . , n. The slopes of the edges of the Newton polygon give the p-adic orders of the reciprocals of the

roots of f , with their multiplicities. More precisely, if the Newton polygon has an edge joining (i, ordp ai) and

(i + r, ordp ai + λr), then f has exactly r roots with p-adic order -λ. Further if α is one of these roots and K is

the field generated over Qp by the coefficients of f , then [K (α) : K] ≤ r. (For all this, see [12], pages 89 − 91.

The last remark comes from the fact that all the conjugates of α over K have the same order).

In the subsequent sections, we set up a p-adic Newton polyhedron for polynomials in two variables and in-

vestigate its connection with the p-adic zeros of polynomials. This program is mentioned briefly by Krasner [13]

and developed by Thaler [17] with an eye on applications in algebraic geometry. In effect, he works over the field

Ωp. Section 2 sharpens Thaler’s ideas and gives very satisfactory information about the sizes of the zeros of a

single polynomial, parallelling the results about Newton polygons stated above. One consequence is that if f is

a polynomial in Qp [X, Y ] and (α, β) is a given point, we can determine the distance from (α, β) to the nearest

p-adic zero of f by using the Newton polyhedron. (See Theorem 3.1). This result could be used to sharpen a

theorem of Birch and McCann [8] on the solubility of polynomial equation in p-adic integers, bypassing the use

of Hensel’s lemma. In the light of the application to exponential sums, a critical problem is to estimate the size

of the common zeros of a pair of polynomials in Qp [X, Y ]. We discuss this subject in Section 4. Again, we can

recover Hensel’s lemma with a slight improvement, but we have not been able to prove everything that we believe

to be true. Much of the work here extends readily to polynomials in n variables with n > 2. This extension and

the application of the results to the estimation of exponential sums will be the subject of another paper.

2. The Newton polyhedron

Let

f (X, Y ) =
∑

aijX
iY j

be a polynomial with coefficients in Ωp, the completion of the algebraic closure of the field Qp of p-adic numbers.

To each term aijX
iY j of the polynomial, associate the point Pij = (i, j, ordp aij) in Euclidean space. Here, ordp

denotes the extension of the usual additive p-adic valuation from Qp to Ωp, with the convention that ordp 0 = ∞.

The Newton polyhedron of f is defined to be the lower convex hull of the set of points Pij . Kinematically, we

obtain the Newton polyhedron by pushing up a horizontal plane until it bends around the points Pij , eventually

reaching the outermost points Pij which correspond to the points (i, j) on the classical Newton polygon of f .

Around these points, the plane bends up to form a number of semi-infinite vertical faces. We investigate first the

connection between the Newton polyhedron and the sizes of the zeros of polynomials. In one direction, this is

quite straightforward.
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Theorem 2.1. Let f be a polynomial in Ωp [X, Y ] and let (ξ, η) be a zero of f . Then the vector (ordp ξ, ordp η, 1)
is normal to a line on the Newton polyhedron of f and lies between the normals to the faces of the Newton

polyhedron adjacent to this line.

Proof. Let

f (X, Y ) =
∑

aijX
iY j

and let

Tij = aijξ
iηj .

Since f (ξ, η) = 0 the minimum of the numbers ordp Tij is attained by at least two of the terms, say

ordp Tmn = ordp Trs = min
i,j

ordp Tij = M.

The points Pmn and Prs correspoding to these terms as in the definition at the beginning of this section lie on the

plane

Π : X ordp ξ + Y ordp η + Z = M.

Each point Pij lies on or above Π since ordp Tij ≥ M , so the line segment E joining Prs to Pmn lies on the

Newton polyhedron and lies in Π. Finally, the normal (ordp ξ, ordp η, 1) to Π is normal to E and lies between the

upward-pointing normals to the faces of the Newton polyhedron adjacent to E because the Newton polyhedron is

a convex surface lying above Π. �

We will prove the converse of this theorem. To this end, the following lemma is useful.

Lemma 2.1. Let f (x) =
∑

aiX
i and g (X) =

∑

biX
i be polynomials in Qp [X] with respective degrees m and

n, and let λ = r/s be a rational number (in lowest terms). Write

µ = min
0≤i≤m

(ordp ai + λi) , v = min
0≤i≤n

(ordp bi + λi) .

Then there is a number ξ with degree at most

s (1 + [log (m + n + 1) / log p])

over Qp such that

ordp ξ = λ, ordp f (ξ) = µ, ordp g (ξ) = v.

Proof. Let K be a totally ramified extension of Qp of degree s and let π be a prime element in K. We look for ξ
in an unramified extension, L say, of K with [L : K] = t. Thus π is a prime element in L and the residue field of

L has a set of representatives
∑

consisting of pt elements of L. In L, we have the π -adic expansions

ξ = πλs
∑

j≥0

xjπ
j , ai = π(µ−λi)s

∑

j≥0

aijπ
j , bi = π(v−λi)s

∑

j≥0

bijπ
j

where the xj , aij and bij are in
∑

and at least one ai0 and bi0 are non-zero. We obtain

f (ξ) = πµs
n

∑

i=0

ai0x
i
0 + 0

(

πµs+1
)

, g (ξ) = πvs
n

∑

i=0

bi0x
i
0 + 0

(

πvs+1
)

.

If
∑

is sufficiently large, we can choose a non-zero x0 in
∑

so that

m
∑

i=0

ai0x
i
0 6≡ 0,

n
∑

i=0

bi0x
i
0 6≡ 0 (modπ)

and then ξ, f (ξ) and g (ξ) have the prescribed orders. To find ξ, we avoid 0 and at most m + n roots of the

polynomial congruences. This is certainly possible if pt > m + n + 1, so we can take

t = 1 + [log (m + n + 1) / log p] .

�
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Theorem 2.2. Let f be a polynomial in Qp [X, Y ] of degree at most d in X and Y . Let n = (λ, µ, ν) be an integer

vector with ν > 0. Suppose either n
∼

is normal to a face F of the Newton polyhedron of f , or that n
∼

is a normal

to an edge E of the Newton polyhedron and lies between the upward pointing normals to the faces adjacent to E.

Let ℓ denote the minimum of the lengths of the projections of F or E respectively on the x and y axes, but ignoring

either projection if it has length zero. Then f has a zero (ξ, η) in Q̄p with

ordp ξ = λ/ν, ordp η = µ/ν and [Qp (ξ, η) : Qp] ≤ νℓ (1 + [log (2d + 1) / log p]) .

Proof. Consider first the case in which n
∼

is normal to an edge E of the Newton polyhedron. Write

f (X, Y ) =
∑

aijX
iY j

and let Pmn and Prs be the endpoints of E corresponding to the respective terms amnXmY n and arsX
rY s as in

the definition at the beginning of this section. Thus

e
∼

= (m − r, n − s, ordp (amn/ars))

is a vector along E. Choose ξ and η in Q̄p with ordp ξ = λ/ν and ordp η = µ/ν. Since n
∼

is orthogonal to e
∼

,

ν e
∼
·n
∼

= (m − r) ordp ξ + (n − s) ordp η + ordp (amn/ars) = 0,

that is

ordp amnξmηm = ordp arsξ
rηs.

Next, let n1
∼

and n2
∼

be the normals to the faces F1 and F2 of the Newton polyhedron adjacent to E, normalised to

have third component 1. Since n
∼

lies in the plane of n1
∼

and n2
∼

and between them, we can write

n
∼

= ν

(

γ n1
∼

+(1 − γ) n2
∼

)

with 0 ≤ γ ≤ 1. Let Pij be any vertex on the Newton polyhedron. The vector, v
∼

say, from Pmn to Pij lies above

the planes containing the faces F1 and F2, so

v
∼
·n
∼

= υ

(

γ v
∼
·n1
∼

+(1 − γ) v
∼
·n2
∼

)

≥ 0,

giving

ordp aijξ
iηj ≥ ordp amnξmηn.

Moreover, this is a strict inequality unless Pij lies on E. Thus the two terms amnξmηn and arsξ
rηs dominate all

other terms in f (ξ, η). We can suppose m > r and either n = s or m−r < |n−s| : otherwise, the same argument

can be made after relabelling the points and possibly interchanging x and y. Choose η in Q̄p with ordp η = µ/ν
and write

g (x) = f (x, n) =
∑

i

ci (η) xi, ci (η) =
∑

j

aijη
j .

By the previous remarks,

ordp amnηn = min
j

ordp amjη
j , ordp arsη

s = min
j

ordp arjη
j .

By the lemma, we can choose η with ordp η = µ/ν and

[Qp (η) : Qp] ≤ ν (1 + [log (2d + 1) / log p])

so that

ordp cm (η) = ordp amnηn, ordp cr (η) = ordp arsη
s.

Consequently

ordp cm (η) + λm = ordp cr (η) + λr ≤ ordp ci (η) + λi

for each i and the inequality is strict for i < r and i > m. The line segment of slope -λ, joining the points

(r, ordp cr (η)) and (m, ordp cm (η))

is therefore an edge of the Newton polygon of g (x). From the remarks in Section 1, g (x) has a root ξ in Q̄p with

ordp ξ = λ and [Qp (ξ, η) : Qp (η)] ≤ m − r.
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This choice of ξ and η satisfies the requirements of the theorem. Now suppose n
∼

is a normal to a face F of the

Newton polyhedron. Suppose the length of the projection of F onto the x-axis is less than or equal to that on the

y-axis. Let E be the line segment joining two vertices of F which determine the extreme points of the projection

on the x-axis. The preceding argument goes through with the choice of E exactly as before. �

3. The indicator diagram

The Newton polyhedron lacks one of the useful features of Newton polygon: it is rather hard to draw. The

indicator diagram recaptures this essential feature for polynomials in two variables. The indicator diagram is the

plane graph whose vertices and edges correspond to the faces and edges of the Newton polyhedron as follows. The

vertex representing a face with normal (λ, µ, ν) is (λ/ν, µ/ν), and two vertices are joined by a straight edge when

they represent faces which share a common edge on the Newton polyhedron. In this terminology, the theorems of

section 2 assert that if (ξ, η) is a zero of f , then (ordp ξ, ordp η) is a point on the indicator diagram and, conversely,

every rational point of the indicator diagram gives the p-adic orders of the coordinates of a zero of f . For, suppose

(λ, µ) is a point of the indicator diagram lying on the edge joining the vertices corresponding to the faces F1 and

F2 of the Newton polyhedron. The vector (λ, µ, 1) is a linear combination of the normals to F1 and F2 and is

normal to the common edge E say, of F1 and F2, and it lies between the upward-pointing normals to F1 and

F2. So Theorem 2 gives a zero (ξ, η) with ordp ξ = λ and ordp η = µ and the edgepoints of E determine the

dominant terms of f (ξ, η). If (λ, µ) lies on a second edge of the indicator diagram, we get further dominant terms

of f (ξ, η) and this means that (λ, µ, 1) is normal to a face of the Newton polyhedron and (λ, µ) is a vertex of the

indicator diagram. Thus the edges of the indicator diagram do not cross each other. Let

f (X, Y ) =
∑

aijX
iY j

be a polynomial with coefficients in Ωp. We single out for special attention the edges of the Newton poly-

hedron through the vertex P00 = (0, 0, ordp a00). We call these edges and the corresponding edges of the

indicator diagram the initial edges. Consider an initial edge, E say, of the Newton polyhedron from P00 to

Prs = (r, s, ordp ars). If (λ, µ) is a point of the corresponding initial edge E′ of the indicator diagram, then

(λ, µ, 1) is normal to E, so E′ is a segment on the line

rx + sy = ordp (a00/ars) .

We shall use these ideas to estimate the smallest zero of f . To measure the size of a zero, we write

ordp (ξ, η) = min {ordp ξ, ordp η} .

(This is just the additive form of the natural norm on Ω2
p).

Theorem 3.1. Let

f (X, Y ) =
∑

aijX
iY j

be a polynomial in Qp [X, Y ] of degree at most d in X and Y . Let

δ = max
i,j

ordp (a00/aij)

i + j
=

ordp (a00/ars)

r + s

say, where the maximum is taken over all pairs (i, j) 6= (0, 0) with aij 6= 0 and r+s is chosen as large as possible

if the maximum occurs more than once. Then f has a zero (ξ0, η0) in Q̄p with

ordp (ξ0, η0) = δ and [Qp (ξ0, η0) : Qp] ≤ (r + s)
2
(1 + [log (2d + 1) / log p]) .

Moreover, every zero (ξ, η) of f satisfies ordp (ξ, η) ≤ δ.

Proof. Note first that the maximum defining δ occurs for a coefficient which determines an initial edge of the

Newton polyhedron. Indeed, if the vertex

Pmn = (m,n, ordp amn)

in the usual notation is not an initial edge, then there must be a vertex Pij on an initial edge and lying on or below

the plane

ordp (a00/amn)

m + n
(x + y) + z = ordp a00
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which goes through P00 and Pmn, and this gives

ordp a00/aij
i + j

≥
ordp a00/amn

m + n
.

Label the initial edges of the Newton polyhedron in anticlockwise order about the vertical axis. Suppose the i-th
one runs from P00 to Prisi

. Let Ei denote the corresponding initial edge of the indicator diagram with equation

rix + siy = ordp a00/arisi
.

The slope ri/si are negative and increase with i, so the initial edges E1, E2, ... form a convex polygonal arc in the

plane running from the point at infinity corresponding to the first slope to that corresponding to the last. Moreover,

the convexity of the Newton polyhedron means that the rest of the indicator diagram lies below the arc formed by

the initial edges. Set

δi =
ordp a00/arisi

ri + si
.

The line y = x intersects some initial edge, Eℓ say, at the point δℓ. Since the initial edges form a convex arc,

the other initial edges intersect y = x below this point, so we have δℓ = max
i

δi = δ. Now by Theorem 2.2,

there is a zero (ξ0, η0) of f with ordp ξ0 = ordp η0. If (δ, δ) is not a vertex of the indicator diagram, we apply

Theorem 2.1, the edge E being the one joining P00 to Prs. If (δ, δ) is a vertex, apply the theorem with F being the

corresponding face of the Newton polyhedron and observe that the projection of F on the (x, y) plane is contained

in the triangle bounded by

x = 0, y = 0 and x + y = r + s

and yields the required bound on [Qp (ξ0, η0) : Qp]. Finally, any point (λ, µ) on the indicator diagram satisfies

min{λ, µ} ≤ δ because it lies below the plane formed by the initial edges, so the last assertion follows theorem.

�

A translation of coordinates gives the apparently more general statement discussed in section 1.

Corollary 3.1. Let f be a polynomial in Qp [X, Y ] and let α and β be in Qp. Set

δ = max
(i,j) 6=(0,0)

1

i + j

(

ordp f (α, β) − ordp
1

i!j!

∂f i+j

∂Xi∂Y j
(α, β)

)

.

Then f has a zero (ξ0, η0) inQ̄p with

ordp (ξ0 − α, η0 − β) = δ

and every zero (ξ, η) of f satisfies

ordp (ξ − α, η − β) ≤ δ.

Suppose, in particular, that α, β and the coefficients of the polynomial f are p-adic integers and that f is

non-singular at (α, β). Let

γ = ordp (fX (α, β) , fY (α, β)) .

Hensel’s lemma applied as in [15], gives the following result: If ordp f (α, β) > 2γ, then f has a zero (ξ, η) in

Qp with

ordp (ξ − α, η − β) ≥ ordp f (α, β) − γ.

Corollary 3.2 gives a sharper result of this kind.

Corollary 3.2. Let f be a polynomial in Qp [X, Y ] with degree at most d in X and Y and let α and β be in Qp.

Set

γ = ordp (fX (α, β) , fY (α, β))

and suppose that

ordp f (α, β) > γ + max
i+j>1

1

i + j − 1

{

γ − ordp
∂f i+j

∂Xi∂Y i
(α, β)

}

Then f has a zero (ξ, η) in Q̄p with

ordp (ξ − α, η − β) ≥ ordp f (α, β) − γ,

and

[Qp (ξ, η) : Qp] ≤ 1 +
[

log (2d + 1) / logp

]

.
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Proof. Write

f (X + α, Y + β) =
∑

aijX
iY i

and suppose that ordp a10 ≤ ordp a01. The hypotheses give

ordp a00/a10 >
ordp a00/aij

i + j

whenever i + j > 1, so we can take

δ = ordp a00 − γ and r = 1, s = 0

in Theorem 3.1. �

At least for p > 2d + 1, the last corollary guarantees a zero in Qp. We cannot expect any such result when

f is singular at (α, β) . For example, the polynomial f (X) = X2 + pa has no zeros in Qp when a is odd but

ordp f (0) can be made arbitrarily large.

4. Common zeros

Let f and g be two polynomials in Qp [X, Y ]. We wish to use the information contained in their Newton polyhedra

to study the common zeros of f and g. The first remark is immediate, after the construction of Section 3. If

(ξ, η) is a common zero, then the point (ordp ξ, ordp η) lies on the indicator diagrams of both f and g. It will

probably be difficult to find a completely satisfactory result in the opposite direction. Nevertheless, calculations

with polynomials of low degree lead us to the following suggestion.

Conjecture 4.1. Let f and g be polynomials in Qp [X, Y ] and let (λ, µ) be a point on the indicator diagrams of

both f and g. Assume that there are no edges of the indicator diagrams through (λ, µ) which coincide. Then f
and g have a common zero (ξ, η) in Ωp with

ordp ξ = λ and ordp η = µ.

We will prove a special case of this conjecture, with an extra hypothesis to ensure that the geometry of the indicator

diagrams is simple.

Theorem 4.1. Let f and g be polynomials in Qp [X, Y ] with degrees at most df and dg respectively, and suppose

that p > 2dfdg . Let (λ, µ) be a point on the indicator diagrams of both f and g, but not a vertex on either diagram,

and suppose that the edges through (λ, µ) do not coincide. Then f and g have a common zero (ξ, η) in Ωp with

ordp ξ = λ and ordp η = µ.

Proof. Since (λ, µ) is not a vertex on the indicator diagram of f , there are exactly two terms of f which dominate

the other terms at any point (x, y) in Ω2
p with ordp x = λ and ordp y = µ. We write f = s1+s2+f1, where s1 and

s2 are the two dominant terms of f , that is ordp s1 = ordp s2 and this order is less than that of the remaining terms

in f1 whenever ordp x = λ and ordp y = µ. Similarly, we write g = t1 + t2 + g1, where t1 and t2 are dominant

terms of g. After replacing x by pλx and y by pµy, we can suppose λ = µ = 0. Also, after multiplying f and

g by suitable constants, we can suppose ordp si = ordp ti = 0 for i = 1 and 2, whenever ordp x = ordp y = 0.

Now all the coefficients of f1 and g1 have positive orders. We write

s1s
−1
2 = −a−1xαyβ and t1t

−1
2 = −b−1xγyδ,

so that the equations f = g = 0 become

xαyβ = a (1 + f1/s2) , xγyδ = b (1 + g1/t2) .

The edges of the indicator diagrams of f and g passing through the point (0, 0) have the respective slopes −α/β
and −γ/δ. By hypothesis, these slopes are distinct, so that d = αδ − βγ is non-zero. We can therefore ”solve”

the equations by

x = h1 (x, y) = aδ/db−β/d (1 + f1/s2)
δ/d

(1 + g1/t2)
−β/d

y = h2 (x, y) = a−γ/dbα/d (1 + f1/s2)
−γ/d

(1 + g1/t2)
α/d

.
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If ordp x = ordp y = 0, the d-th roots of the functions on the right can be defined by their binomial expan-

sions.These converge p-adically because p > d and ordp f1/s2 and ordp g1/t2 are positive. Let

S =
{

(X, Y ) in Ω2
p : ordp x = ordp y = 0

}

and define h : S → S by the rule

h (x, y) = (h1 (x, y) , h2 (x, y)) .

We assert that h is a contraction mapping on S. In fact, by the earlier remarks, h1 (x, y) has an absolutely

convergent expansion on S, say

h1 (x, y) = c0 +
∑

(i,j) 6=(0,0)

cijx
iyj ,

where the coefficients cij satisfy |cij |p ≤ M < 1 for all i and j, and

|cij |p → 0 as |i| + |j| → ∞.

For (x1, y1) and (x2, y2) in S,

∣

∣

∣
xi

1y
j
1 − xi

2y
j
2

∣

∣

∣

p
=

∣

∣

∣

(

xi
1 − xi

2

)

yj
1 + xi

2

(

yj
1 − yj

2

)∣

∣

∣

p
≤ max

{

|x1 − x2|p , |y1 − y2|p

}

and consequently

|h1 (x1, y1) − h1 (x2, y2)|p ≤ M max
{

|x1 − x2|p , |y1 − y2|p

}

.

The same inequality holds for h2. The norm ‖(x, y)‖ = max
{

|x|p , |y|p

}

makes it into a complete metric space

and S is closed subset, so has unique fixed point (ξ, η) in S. By the previous construction, (ξ, η) is common zero

of f and g and its component have the required p-adic order. As in [15], Hensel’s lemma can be used to construct

common zeros of f and g in case the curves f = 0 and g = 0 intersect transversely. We can recover this result

and even a little more from Theorem 4. �

The above discussion and results are adapted from our paper in [5].

5. An explicit estimate of exponential sums associated with a cubic polynomial

Let x = (x1, ..., xn) denote a vector in the space Zn where Z denotes as usual the ring of integers. Let q be a

positive integer and f a polynomial in Z [x]. The exponential sum associated with this polynomial is defined as

S (f ; q) =
∑

e
2πif(x)

q

where the sum is over a complete set of residues x modulo q. As a result of his proof of the Weil conjectures,

Deligne [10] showed that if p is a prime, then

|S (f ; p)|< (m − 1)
n

pn/2

where m denotes the total degree of the associated polynomial f , under the condition that the homogeneous

part of f having the highest degree is non-singular modulo p. Deligne’s work opens the way to estimates of the

sum associated with any positive integer q. Loxton and Vaughan [6] for example found very precise estimate

for the sum in terms of invariants associated with a one-variable polynomial f . However, the genera results for

polynomials of several variables are less complete. It can be shown that S (f ; q) has a multiplicative property with

respect to q (see for example Loxton and Smith [15]). That is if q1,q2 have no common factors then there exist

integers m1 and m2 such that

S (f ; q1q2) = S (m2f, q1) S (m1f, q2) .

Consequently it suffices to examine exponential sums of the form S (f ; pα). In this paper we give an estimate for

such an exponential sums with f a cubic polynomial with coefficients in the ring Z. The ensuing discussion is

adapted from our paper in [1].
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5.1. Some preliminary results. In the following discussion we will denote e2πit/pα

by epα (t) for any integer

t. Let f (x, y) be a polynomial with integer coefficients. Atan [2] adapted the results of Loxton and Smith

[15], to show that the estimate for S (f ; pα) is dependent on N (f ; pα), the number of common solutions to the

congruences

fx (x, y) ≡ 0, fy (x, y) ≡ 0 mod pα.

Here fx and fy denote the usual partial derivatives of f with respect to the variables x and y respectively. We

rewrite Atan’s assertion as follows.

Theorem 5.1. Let p be a prime and f (x, y) be a polynomial in Z (x, y). For α > 1, let

S (f ; pα) =
∑

x,y mod pα

epα (f (x, y)) and Θ = [α/2] .

Then

|S (f ; pα)| ≤p2(α−Θ)N
(

f ; pΘ
)

.

Proof. Define γ = α−Θ so that 2γ≥α and γ≥Θ≥1. Let z denote the pair (z, z′) in Z2 and x = u+ pγv, so that

x runs through the residue classes modulo pα as u runs through the residue classes modulo pγ and v runs through

the residue classes modulo pΘ. By using the Taylor expansion of f (x) = f (u + pγv) we can rewrite S (f ; pα)
as follows:

S (f ; pα) =
∑

u mod pγ

epα (f (u))
∑

v mod pΘ

epα (pγ grad f (u) · v)

The inner sum clearly vanishes unless both fx (u) and fy (u) are congruent to 0 modulo pα. Under this condition

each term in the inner sum is equal to 1. It follows then that the inner sum is equal to p2Θ, and hence

S (f ; pα) = p2Θ
∑

epα (f (u)) ,

where the sum is taken over all x modulo pα such that

grad f (u) ≡ 0 mod pΘ.

Since there are p2(γ−Θ) points u modulo pγ corresponding to each solution of the above congruences modulo pΘ,

we have

|S (f ; pα)| ≤p2Θ+2(γ−Θ)N
(

f ; pΘ
)

as required. �

If α is odd a slightly sharper estimate than the one in Theorem 5.1 can be obtained. Towards this end we define

the set

Kf (u) = {v = (v, v′) mod p : vJf (u) ≡ 0 mod p}

where u = (u, u′) and Jf is the Jacobian matrix

Jf (u) =

[

fxx (u) fxy (u)
fxy (u) fyy (u)

]

.

Our result for this category of α is as follows.

Theorem 5.2. Let p be a prime and f (x, y) be a polynomial in Z (x, y). Let

α = 2Θ + 1 with Θ≥1.

Then

|S (f ; pα)| ≤pα
∑

|Kf (u)|
1/2

where the sum is taken over all u = (u, u′) modulo pΘ such that grad f (u) ≡ 0 mod pΘ and, in addition, when

p is odd grad f (u) · v ≡ 0 mod pΘ+1 for all v in Kf (u) .

Proof. From the proof of Theorem 5.1, S (f ; pα) = p2Θ
∑

epα (f (x)), where the sum is taken over all x =
(x, x′) modulo pγ at which fx (x) and fy (x) vanish modulo pΘ and γ = Θ + 1.

Let

x = u + pΘv
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so that x, u and v run through the residue classes modulo pγ , pΘ and p respectively. By a Taylor expansion

f (x) = f (u) + pΘ grad f (u) · v +
1

2
p2ΘvJf (u) vt (modpα)

we obtain

S (f ; pα) = p2Θ
∑

epα (f (u))Gf (u) ,

where the sum is taken over all u modulo pΘ such that grad f (u) ≡ 0 mod pΘ and Gf (u) denotes the Gaussian

sum

Gf (u) =
∑

v mod p

ep

(

1

2
vJf (u) vt + p−Θ grad f (u) · v

)

.

Now consider

|Gf (u)|
2

=
∑

v,w

ep

(

1

2
vJf (u) vt − wJf (u)wt + p−Θ grad f · (v − w)

)

.

Write v = w + z and carry out the summation over w. This gives

|Gf (u)|
2

= p2
∑

zJf (u)=0 mod p

ep

(

1

2
zJf (u) zt + p−Θ grad f (u) · z

)

.

If we replace here z by z + v where v is any point in Kf (u), we get

|Gf (u)|
2

= ep

(

1

2
vJf (u) vt + p−Θ grad f (u) · v

)

|Gf (u)|
2
.

Hence, Gf (u) is 0 unless

1

2
vJf (u) vt + p−Θ grad f (u) · v ≡ 0 (modp)

for all v in Kf (u). If p is odd, this condition is equivalent to

p−Θ grad f (u) · v ≡ 0 (modp)

for all v in Kf (u) and we have

|Gf (u)|
2

= p2 |Kf (u)| .

From this, we get the estimate in the theorem. If p = 2, the condition for Gf (u) to be non-zero does not simplify,

but we still have the

|Gf (u)|
2
≤p2 |Kf (u)|

and the required estimate follows. From the above it is seen that the estimate for S (f ; pα) is dependent on the

estimates of N
(

f ; pΘ
)

and Kf (u) . In the following section we will examine these two quantities. In the ensuing

discussion p will always denote a prime and for a rational number x, ordp x will indicate the highest power of p
dividing x. We will set ordp x = ∞ if x = 0. �

5.2. Estimation of N (f ; pα). Let p be a prime and f = (f1, ..., fn) be an n-tuple of polynomials in x =
(x1, ..., xn) with coefficients in Z. Let N (f ; pα) denote the cardinality of the set

V (f ; pα) = {u mod pα : f (u) ≡ 0 mod pα}

where α > 0 and each component of u runs through a complete set of residues modulo pα. The estimation of

N (f ; pα) has been the topic of research of many authors. For example Loxton and Smith [15] showed that for

α > 0 and a one-variable polynomial f (x) in Z[x],

N (f ; pα)≤mpα−(α−δ)/e

if α > δ, where m is the number of distinct zeros ξi of f that generate its associated algebraic number field K,

and δ is the highest power of p such that D (f) ≡ 0
(

modpδ
)

where D (f) represents the intersections of the

fractional ideals of K generated by the numbers

f (ei) (ξi)

ei!
, i≥1

and e = max ej
j

with ej denoting the multiplicity of ξj . A similar result was obtained by Chalk and Smith [9] by

employing Hensel’s Lemma. In their work Loxton and Smith [15] showed that for



11

f = (f1, ..., fn) ,

N (f ; pα)≤

{

pnα if α≤nδ

( Deg f) pnδ if α > nδ

where δ is the highest power of p dividing the discriminant of f . Atan [3] considered linear polynomials f =
(f1, ..., fn) in (x1, ..., xn) with coefficients in the p-adic ring Zp. He showed that

N (f ; pα)≤min
{

pnα, p(n−r)α+rδ
}

where δ is the minimum of the p-adic orders of r × r non-singular submatrices of the reduced coefficient matrix

of f . Let f = (f1, ..., fn) be an n-tuple of polynomials in Zp[x] where x = (x1, ..., xn) , ξi common zeros of f
and

Hi (α) =
{

x ∈ Ωn
p : ordp (x − ξi) = max

j
ordp (x − ξj) and ordp f (x)≥α

}

where Ωp is a complete and algebraically closed p-adic field. Following the method of Loxton and Smith [15] we

show below that the cardinality N (f ; pα) of the set

V (f ; pα) = {x mod pα : f (x) ≡ 0 mod pα}

is dependent on the p-adic distance between common zeros ξi of f and elements x in Hi (α) .

Lemma 5.1. Let p be a prime, and f an n-tuple of polynomials in x = (x1, ..., xn) with coefficients in Zp. Let ξi

be a common zero of f . Then

N (f ; pα)≤
∑

i

pn(α−γi(α))

where

γi (α) = inf
x∈Hi(α)

ord (x − ξi) .

Proof. Consider the set Vi (f ; pα) of points in V (f ; pα) that are close p-adically to a common zero ξi of f . That

is

Vi (f ; pα) =

{

x ∈ V (f ; pα) : ordp (x − ξi) = max
j

ordp (x − ξj)

}

.

Then

N (f ; pα)≤
∑

i

card Vi (f ; pα). (1)

Consider the set

Hi (α) =

{

x ∈ Ωn
p : ordp (x − ξi) = max

j
ordp (x − ξj) and ordp f (x)≥α

}

.

Let

γi (α) = inf
x∈Hi(α)

ordp (x − ξi) (2)

for all i. Now, every α≥1, Vi (f ; pα)⊂Hi (α) for all i. Hence,

card Vi (f ; pα)≤ card
{

x mod pα : ordp (x − ξi)≥γi(α)
}

.

That is,

card Vi (f ; pα)≤pnα−nγi(α) (3)

with α≥γi for all i. Our assertion then follows from (1), (2), and (3). �

The determination of the size of γi (α) in the estimate above has been the subject of scrutiny of several re-

searchers (see for example Loxton and Smith [13]). Using the method described in Section 4 as our tool we arrive

at the estimate γi (α) associated with the two-variable polynomial

f (x, y) = αx3 + bx2y + cxy2 + dy3 + ex + my + n(0)

with coefficients in the ring of p-adic integers Zp, with the property that

c2 − 3bd, bc − 9ad and b2 − 3ac

are non-zero, in the following lemma.
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Lemma 5.2. Let p be a prime and (0) a polynomial in Zp[x, y] with non-vanishing coefficients in the homogeneous

part of degree 3. Let

δ = max {ordp 3a, ordp b, ordp c, ord p3d} .

Suppose (x0, y0) is in Ω2
p with

ordp fx (x0, y0) , ordp fy (x0, y0)≥α.

If α > δ, then there is a zero (ξ, η) of fx and fy in Ω2
p such that

ordp (ξ − x0) , ordp (η − y0) ≥
1

2
(α − δ)

Proof. Let X = x − x0, Y = y − y0, and h = fx, g = fy . Then

h (X, Y ) = 3aX2 + 2bXY + cY 2 + hxX + hyY + h0,

g (X, Y ) = bX2 + 2cXY + 3dY 2 + gxX + gyY + g0

where lz denotes the partial derivatives of the polynomial l with respect to z defined at

(x0, y0) and l0 = l (x0, y0) .

Let α,β be the roots of the quadratic polynomial

u (x) =
(

c2 − 3bd
)

x2 + (bc − 9ad) x + b2 − 3ac.

If α 6= β, then it can be shown that the polynomials

H (U, V ) = (3a + bα) (h + αg) , G (U, V ) = (3a + bβ) (h + βg)

with

U = (3a + bα) X + (b + cα)Y, V = (3a + bβ) X + (b + cβ) Y

will have a simple intersection in the indicator diagrams associated with their respective Newton polyhedrons. By

Theorem 4.1 and resubstitution of variables there is a common zero (ξ, η) of h and g with

ordp (ξ − x0) , ordp (η − y0)≥
1

2
(α − δ0)

where

δ0 = max {ordp 3a, ordp b} .

We obtain the required estimate from our hypothesis since clearly δ0≤δ. �

The following theorem gives the estimate for N(fx, fy; pα) where f is as in the above lemma. The proof

follows from the results of Lemmas 5.1 and 5.2, and the fact that by a theorem of Bezout (see for example [11])

fx and fy have at most 4 common zeros.

Theorem 5.3. Let p be a prime and (0) a polynomial in Zn [x, y] with non-vanishing terms in its homogeneous

part of degree 3. Let

α > 0 and δ = max {ordp 3a, ordp b, ordp c, ord p3d} .

Then

N (fx, fy; pα)≤min
{

p2α, 4pα+δ
}

.

5.3. Estimation of S (f ; pα). Let f be a two-variable polynomial with integer coefficients of total degree m and

p a prime. From the work of Deligne on Weyl’s conjecture it can be shown that

|S (f ; pα)| ≤ (m − 1)
2
p

under suitable conditions on f . Let p be an odd prime and α > 1. If

f (x, y) = ax3 + bx2y + cx + dy + e

is a polynomial in Z [x, y], and

δ = max

{

ordp 3a,
3

2
ordp b

}

,

Atan [8] showed that for this cubic polynomial

|S (f ; pα)| ≤min
{

p2α, 4p
3α
2 +δ

}

.
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In the following theorem we will consider a more general polynomial than the one above of the form (0) with

coefficients in Z and we will show that δ is in fact dependent on the coefficients of the dominant terms of f ,

provided that each term in this homogeneous portion of highest degree of f is non-zero. The assertion generalizes

and improves the result as stated immediately above especially in the determination of the value of δ.

Theorem 5.4. Let p be an odd prime and α > 1. Let (0) be a polynomial in Z [x, y], with non-zero coefficients in

its cubic segment. Let

δ = max {ordp 3a, ordp b, ordp c, ordp 3d} .

Then

|S (f ; pα) |≤min
{

p2α, 4p
3α
2 +δ

}

.

Proof. In Theorem 5.3 it is shown that

N (fx, fy; pα)≤min
{

p2Θ, 4pΘ+δ
}

where Θ = [α/2]. If α = 2Θ, it follows from Theorem 5.1 that

|S (f ; pα)| ≤p2(α−Θ) min
{

p2Θ, bpΘ+δ
}

which lead us to the required estimate. Suppose now that α = 2Θ + 1 with Θ≥1. We will apply the result of

Theorem 5.2 in this case. If

D = (bm − ce)
2
− (3am − be) (cm − 3de)

is not divisible by p, then the congruences

fx = 3ax2 + 2bxy + cy2 + e, fy = bx2 + 2cxy + 3dy2 + m

and

|Jf | =
(

12ac − 4b2
)

x2 + (36ad − 4bc) xy +
(

12bd − 4c2
)

y2 ≡ 0 (modp)

do not have a common solution. Thus, in this case each term in the sum
∑

|Kf (u)|
1/2

is 1. Consequently,

|S (f ; pα)| ≤pαN
(

f ; pΘ
)

and the required estimate follows. If D is divisible by p then there are two possibilities in
∑

|Kf (u)|
1/2

. If

|Kf (u)| ≤1 then the term corresponding to u is counted with weight at most pα+1/2. If |Kf (u)| = 2 then the

term corresponding to u must satisfy the stronger congruence grad f (u) ≡ 0
(

modpΘ+1
)

and hence must be

counted with weight at most pα. As a result we would have

|S (f ; pα)| ≤pα+1/2N
(

f ; pΘ
)

≤pα+1/2 min
{

p2Θ, 4pΘ+δ
}

and the estimate as required follows. �

6. Conclusion

In this paper we obtained explicit estimate for S (f ; pα) for more general cubic polynomial f than one considered

in an earlier work through the application of the Newton polyhedron method developed. The result generalizes

and improves that in the previous work and give some indications on how the general case should be examined

especially in the search for the most suitable discriminant analogous to the one-variable case.
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