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Abstract. In [3], Orin Chein defined and constructed a class of Moufang loops called the M(G, 2) with a product

rule which is rather complicated. We provide an alternative definition of M(G, 2) with a much simpler product rule.

1. Introduction & motivation

A Moufang loop 〈L, ·〉 is a loop which satisfies the identity xy · zx = (x · yz)x. 〈L, ·〉 is not necessarily

associative, i.e., it may not satisfy the identity xy · z = x · yz. In fact, there exists a smallest nonassociative

Moufang loop of order 12 [4]. In [3], Chein showed various methods of constructing nonassociative Moufang

loops. In fact in this memoir, he constructed all the nonassociative Moufang loops of order less than 64. Among

the most well used and probably the simplest was a Moufang loop called M(G, 2), the definition of which was

given in [3, p.5, Theorem 0] as we quote below:

“If L is a finite nonassociative Moufang loop for which every minimal set of generators contains an element

of order 2, then L contains a nonabelian subgroup G and an element u of order 2 in L such that each element of

L may be uniquely expressed in the form guα, where g ∈ G, and α = 0 or 1. Furthermore, the product of two

elements of L is given by

(g1u
δ)(g2u

ǫ) = (gv
1g

µ
2 )vuδ+ǫ

where v = (−1)ǫ and µ = (−1)ǫ+δ .

Conversely, given any nonabelian group 〈G, ·〉, the loop L constructed as indicated above is a nonassociative

Moufang loop. It will be denoted by M(G, 2).”

So in order to use the product rule above, we would first need to calculate the values of v and µ before

evaluating (gv
1g

µ
2 )vuδ+ǫ.

The primary goal of this paper is to simplify the product rule given by Chein. We notice that δ and ǫ are the

values which mainly determine the value of (gv
1g

µ
2 )vuδ+ǫ. Since the values of δ and ǫ are either 0 or 1, we should

look at the four possible combinations of choices for both δ and ǫ in order to find our own simplified product rule.

This is what we do in Lemma 3.1.

Thus by looking at the 4 cases mentioned, we have come up with a much simpler product rule. Next, we have

shown that the loop that we construct is indeed a Moufang loop, and that it is nonassociative if G is a nonabelian

group.

Finally, we show that our loop is isomorphic to M(G, 2).

Although there is nothing lacking in Chein’s presentation of M(G, 2), we wish to mention that our presentation

is more similar to previously well known presentations or constructions of nonassociative Moufang loops. (See

[2], [5] and [6].)

2. Definitions

1. A binary system 〈L, ·〉 in which specification of any two of the elements x, y, z in the equation x · y = z

uniquely determines the third element is called a quasigroup. If further, it contains an identity element,

then it is called a loop.

2. A loop 〈L, ·〉 is a Moufang loop if it satisfies any of the 3 (equivalent) Moufang identities:

i) (x · y) · (z · x) = [x · (y · z)] · x,

ii) x · [y · (z · y)] = [(x · y) · z] · y,

iii) x · [y · (x · z)] = [(x · y) · x] · z.

(See [1, Lemma 3.1, p.115]. Note that when there is no danger of misinterpretation, we can write xy

to mean x · y. So we will write xy · z instead of (x · y) · z, xy · zx instead of (x · y) · (z · x), etc., in order

to simplify our presentation.)
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3. A loop 〈L, ·〉 is a group if it satisfies the associative property xy · z = x · yz.

4. A loop 〈L, ·〉 is isomorphic to 〈M, ∗〉 if there exists a function φ : L → M such that φ is one-to-one and

onto with (l1 · l2)φ = (l1φ) ∗ (l2φ), ∀li ∈ L.

5. Other definitions follow those in [1].

3. Main results

Lemma 3.1. In M(G, 2),

(i) (g1u
0)(g2u

0) = (g1g2)u
0,

(ii) (g1u
1)(g2u

0) = (g1g
−1
2 )u1,

(iii) (g1u
0)(g2u

1) = (g2g1)u
1,

(iv) (g1u
1)(g2u

1) = (g−1
2 g1)u

0, ∀g1, g2 ∈ G.

Proof. From the definition of M(G, 2), (g1u
δ)(g2u

ǫ) = (gv
1g

µ
2 )vuδ+ǫ where v = (−1)ǫ and µ = (−1)ǫ+δ . So

(i) (g1u
0)(g2u

0) = (g1
1g1

2)1u(0+0) = (g1g2)u
0, because v = (−1)0 = 1, µ = (−1)0+0 = 1,

(ii) (g1u
1)(g2u

0) = (g1
1g−1

2 )1u(1+0) = (g1g
−1
2 )u1, because v = (−1)0 = 1, µ = (−1)0+1 = −1,

(iii) (g1u
0)(g2u

1) = (g−1
1 g−1

2 )−1u(1+0) = (g2g1)u
1, because v = (−1)1 = −1, µ = (−1)0+1 = −1,

(iv) (g1u
1)(g2u

1) = (g−1
1 g1

2)−1u(1+1) = (g−1
2 g1)u

0, because v = (−1)1 = −1, µ = (−1)1+1 = 1.

�

We note that the power of g2 in each of the four possible combinations of values for δ and ǫ is always 1 or −1,

solely depending on the value of δ. If δ = 1, the power of g2 is −1, but if δ = 0, the power of g2 is 1. So we can

write the power of g2 as (−1)δ . On the other hand, the power of g1 is always 1, but g1 may appear on the left or

right of g
(−1)δ

2 , solely depending on the value of ǫ. Hence, we obtain the following lemma.

Lemma 3.2. In M(G, 2), (g1u
δ)(g2u

ǫ) = (g1−ǫ
1 g

(−1)δ

2 gǫ
1)u

δ+ǫ.

Proof. From Lemma 1, if δ = 1, the power of g2 is −1, but if δ = 0, the power of g2 is 1. So we can write the

power of g2 as (−1)δ . The power of g1 is always 1, and if β = 0, g1 will be multiplied on the left of g
(−1)α

2 ,

whereas if ǫ = 1 , g1 will be multiplied on the right of g
(−1)α

2 . So in any case, we can write this observation as

g1−ǫ
1 g

(−1)δ

2 gǫ
1. Therefore, (g1u

δ) · (g2u
ǫ) = (g1−ǫ

1 g
(−1)δ

2 gǫ
1)u

δ+ǫ. �

Theorem 3.1. Let 〈G, ◦〉 be a group and M = {(g, α) | g ∈ G, α ∈ Z2}. Define ∗ on M as (g1, α1)∗(g2, α2) =

(g1−α2
1 ◦ g

(−1)α 1

2 ◦ gα2
1 , α1 + α2). Then

i) 〈M, ∗〉 is a Moufang loop,

ii) |M | = 2|G| if |G| is finite,

iii) 〈M, ∗〉 is a not associative iff G is not commutative,

iv) 〈M, ∗〉 is isomorphic to M(G, 2).

Note 3.1. It is necessary to note that the power of g1 should be either 0 or 1. We can observe that when finding

the product of 3 or more elements of M , there may be cases where we would have to obtain g
1−α−β
1 where

α = β = 1. Since the operations 1 − α − β and α + β are in Z2, i.e., the addition and subtraction are congruent

modulo 2, we must take g
1−α−β
1 = g1

1 , rather than g−1
1 , and g

α+β
1 = g0

1 = 1, rather than g2
1 etc., so that the powers

of g1 remain as either 0 or 1 only, whereas the powers of g2 are either 1 or −1.

Proof. Clearly M is closed under the operation ∗. Also ∗ is well defined. So 〈M, ∗〉 is a binary system. Obviously

( 1, 0) ∈ M , where 1 is the identity element of G, and ( 1, 0) ∗ (g, α) = (g, α) ∗ ( 1, 0) = (g, α), ∀g ∈ G, α ∈
Z2. Thus (1,0) is the identity element of 〈M, ∗〉.

For the rest of the proof we have chosen to omit writing the product rule ‘◦’ between elements in G since this

results in no confusion but rather simplifies the presentation of our proof.

Take (g, α) ∈ M . Define (g, α)′ = (g(−1)α+1

, α). Clearly (g, α)′ ∈ M. Now

(g, α) ∗ (g, α)′ = (g, α) ∗ (g(−1)α+1

, α) = (g1−α
[

g(−1)α+1
]

(−1)α

gα, α + α) = (1, 0),∀α ∈ Z2.
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Similarly, it can be seen that (g, α)′ ∗(g, α) = (1, 0), ∀α ∈ Z2. So (g, α)′ = (g, α)−1, i.e., the inverse element

of (g, α). Thus, for every element in M , there exists an inverse in M . Take l1 = (g, α), l2 = (h, β), l3 =
(k, γ) ∈ M . By definition, 〈M, ∗〉 is a Moufang loop iff

(l1 ∗ l2) ∗ (l3 ∗ l1) = [l1 ∗ (l2 ∗ l3)] ∗ l1 , ∀li ∈ M.

Now

l1 ∗ l2 = (g, α) ∗ (h, β) = (g1−βh(−1)α

gβ , α + β),

and

l3 ∗ l1 = (k, γ) ∗ (g, α) = (k1−αg(−1)γ

kα, α + γ).

So,

(l1 ∗ l2) ∗ (l3 ∗ l1) = (g1−βh(−1)α

gβ , α + β) ∗ (k1−αg(−1)γ

kα, α + γ) =
(

[

g1−βh(−1)α

gβ
] 1−(α+γ) [

k1−αg(−1)γ

kα
] (−1)α+β

[

g1−βh(−1)α

gβ
] α+γ

, 2α + β + γ

)

.

We write

u =
[

g1−βh(−1)α

gβ
] 1−(α+γ) [

k1−αg(−1)γ

kα
] (−1)α+β

[

g1−βh(−1)α

gβ
]α+γ

.

Therefore

(l1 ∗ l2) ∗ (l3 ∗ l1) = (u, 2α + β + γ).

On the other hand,

l2 ∗ l3 = (h, β) ∗ (k, γ) = (h1−γk(−1)β

hγ , β + γ),

and

l1 ∗ (l2 ∗ l3) = (g, α) ∗ (h1−γk(−1)β

hγ , β + γ) = (g1−(β+γ)
[

h1−γk(−1)β

hγ
] (−1)α

gβ+γ , α + β + γ).

Then,

[ l1 ∗ (l2 ∗ l3) ] ∗ l1 = (g1−(β+γ)
[

h1−γk(−1)β

hγ
] (−1)α

gβ+γ , α + β + γ) ∗ (g, α)

= (
[

g1−(β+γ)(h1−γk(−1)β

hγ)(−1)α

gβ+γ
] 1−α

g(−1)α+β+γ

[

g1−(β+γ)(h1−γk(−1)β

hγ)(−1)α

gβ+γ
]α

, 2α + β + γ).

Write

v =
[

g1−(β+γ)(h1−γk(−1)β

hγ)(−1)α

gβ+γ
] 1−α

g(−1)α+β+γ

[

g1−(β+γ)(h1−γk(−1)β

hγ)(−1)α

gβ+γ
] α

.

Therefore

[l1 ∗ (l2 ∗ l3)] ∗ l1 = (v, 2α + β + γ).

We see that

(l1 ∗ l2) ∗ (l3 ∗ l1) = [ l1 ∗ (l2 ∗ l3)] ∗ l1 , ∀li ∈ M,

iff u = v.

Case 1: α = 0. So

u = (g1−βhgβ) 1−γ
[

kg(−1)γ
] (−1)β

(g1−βhgβ)γ ,

and

v = g1−(β+γ)h1−γk(−1)β

hγg1−(β+γ).

Case 1.1: γ = 0. Then u = g1−βhgβ(kg)(−1)β

, and v = g1−βhk(−1)β

g1−β . Therefore u = v for β ∈ Z2.

Case 1.2: γ = 1. Then u = (kg−1)(−1)β

g1−βhgβ , and v = g−βk(−1)β

hg−β

= gβk(−1)β

hgβ (−β = β, because β ∈ Z2). Therefore, u = v for β ∈ Z2.

Case 2: α = 1. So

u = (g1−βh−1gβ)−γ(g(−1)γ

k)(−1)1+β

(g1−βh−1gβ)1+γ ,
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and

v = g(−1)1+β+γ

g1−(β+γ)(h1−γk(−1)β

hγ)−1gβ+γ .

Case 2.1: β = 0. Thus,

u = (gh−1)−γ(g(−1)γ

k)−1(gh−1)1+γ = (gh−1)γ(g(−1)γ

k)−1(gh−1)1+γ (−γ = γ, ∵ γ ∈ Z2),

and

v = g(−1)1+γ

g1−γ(h1−γkhγ)−1gγ .

Therefore u = v for γ ∈ Z2.

Case 2.2: β = 1. So u = (h−1g)−γg(−1)γ

k(h−1g)1+γ , and v = g(−1)γ

g−γ(h1−γk−1hγ)−1g1+γ . therefore

u = v for γ ∈ Z2. Since u = v for every case, it follows that (l1 ∗ l2) ∗ (l3 ∗ l1) = [l1 ∗ (l2 ∗ l3)] ∗ l1, ∀li ∈ M .

Therefore, 〈M, ∗〉 is a Moufang loop. This proves part (i) of this theorem.

Obviously, (ii) is true, i.e., |M | = 2|G| if |G| is finite since |Z2| = 2.

Suppose G is a nonabelian group. Then there exists g1, g2 ∈ G such that g1g2 6= g2g1. Take (1, 1), (g−1
1 , 0),

(g−1
2 , 0) ∈ M . Using the product rule *, we get [(1, 1) ∗ (g−1

1 , 0)] ∗ (g−1
2 , 0) = (g1, 1) ∗ (g−1

2 , 0) = (g1g2, 1),
and (1, 1) ∗ [(g−1

1 , 0) ∗ (g−1
2 , 0)] = (1, 1) ∗ (g−1

1 g−1
2 , 0) = (g2g1, 1).

Since g1g2 6= g2g1, [(1, 1)∗(g−1
1 , 0)]∗(g−1

2 , 0) 6= (1, 1)∗ [(g−1
1 , 0)∗(g−1

2 , 0)]. Now, suppose G is an abelian

group, that is g1g2 = g2g1, ∀g1, g2 ∈ G. Therefore

(g1, α) ∗ (g2, β) = (g1−β
1 g

(−1)α

2 g
β
1 , α + β) = (g1−β+β

1 g
(−1)α

2 , α + β) = (g1g
(−1)α

2 , α + β).

That is (g1, α)∗ (g2, β) = (g1g
(−1)α

2 , α+β) if G is abelian. Take l1 = (g, α), l2 = (h, β), l3 = (k, γ) ∈ M .

So

(l1 ∗ l2) ∗ l3 = [(g, α) ∗ (h, β)] ∗ (k, γ) = (gh(−1)α

, α + β) ∗ (k, γ) = (gh(−1)α

k(−1)α+β

, α + β + γ).

Now,

l1 ∗ (l2 ∗ l3) = (g, α) ∗ [(h, β) ∗ (k, γ)] = (g, α) ∗ (hk(−1)β

, β + γ)

= (g(hk(−1)β

)(−1)α

, α + β + γ) = (gh(−1)α

k(−1)α+β

, α + β + γ)

because G is abelian. Thus, if G is abelian, ∀l1, l2, l3 ∈ M , (l1 ∗ l2) ∗ l3 = l1 ∗ (l2 ∗ l3), that is, M is associative.

So M is not associative iff G is not commutative. Define φ : 〈M, ∗〉 → M(G, 2) as φ (g, α) = guα. Now

φ [ (g, α) ∗ (h, β) ] = φ (g1−βh(−1)α

gβ , α + β) = (g1−βh(−1)α

gβ) uα+β = (guα) ∗ (huβ) (by Lemma 2)

= φ (g, α)∗φ (h, β). Thus, φ is a homomorphism. Clearly φ is one-to-one and onto. So it is also an isomorphism.

This completes the proof of our theorem. �

Remark 3.1. Note that for the product rule that we have presented in our theorem above: (g1, α1) ∗ (g2, α2) =

(g1−α2
1 ◦ g

(−1)α 1

2 ◦ gα2
1 , α1 + α2). Since

g1−α2
1 =

{

g1, α2 = 0
1, α2 = 1

and gα2
1 =

{

1, α2 = 0
g1 α2 = 1

,

we can suggest an alternative way of writing it, i.e.,

g1−α2
1 = g

1+(−1)α2

2
1 , and gα2

1 = g
1−(−1)α2

2
1

to avoid the confusion brought by the power of g1 especially when the product involves 3 or more elements of M .

For the reader who wishes to be more careful, we can rewrite the product rule as

(g1, α1) ∗ (g2, α2) = (g
1+(−1)α2

2
1 ◦ g

(−1)α 1

2 ◦ g
1−(−1)α2

2
1 , α1 + α2).

However, since our main intention is to simplify the construction and product rule of M(G, 2), we prefer to leave

it in the form presented in our (main) theorem.

Remark 3.2. Actually, the statement (iv) in our theorem is essentially equivalent to parts (ii) and (iii) of this

theorem. We have purposely proven (ii) and (iii) by themselves (before proving part (iv)) so that our paper would

be as self-contained as possible.
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4. Conclusion

Since the smallest nonabelian group is the symmetric group S3, the smallest nonassociative Moufang loop that we

could construct using our theorem would be the 〈M, ∗〉, with the set M = S3 × Z2.

We know that we can write S3 = {1, (12), (13), (23), (123), (321)}. In order to make the presentation of our

table neater, we shall write a = (12), b = (13), c = (23), d = (123), e = (321). So M = { (1,0), (a,0), (b,0), (c,0),

(d,0), (e,0), (1,1), (a,1), (b,1), (c,1), (d,1), (e,1) }. We provide below the multiplication table of this 〈M, ∗〉.

∗ (1,0) (a,0) (b,0) (c,0) (d,0) (e,0) (1,1) (a,1) (b,1) (c,1) (d,1) (e,1)

(1,0) (1,0) (a,0) (b,0) (c,0) (d,0) (e,0) (1,1) (a,1) (b,1) (c,1) (d,1) (e,1)

(a,0) (a,0) (1,0) (d,0) (e,0) (b,0) (c,0) (a,1) (1,1) (e,1) (d,1) (c,1) (b,1)

(b,0) (b,0) (e,0) (1,0) (d,0) (c,0) (a,0) (b,1) (d,1) (1,1) (e,1) (a,1) (c,1)

(c,0) (c,0) (d,0) (e,0) (1,0) (a,0) (b,0) (c,1) (e,1) (d,1) (1,1) (b,1) (a,1)

(d,0) (d,0) (c,0) (a,0) (b,0) (e,0) (1,0) (d,1) (b,1) (c,1) (a,1) (e,1) (1,1)

(e,0) (e,0) (b,0) (c,0) (a,0) (1,0) (d,0) (e,1) (c,1) (a,1) (b,1) (1,1) (d,1)

(1,1) (1,1) (a,1) (b,1) (c,1) (e,1) (d,1) (1,0) (a,0) (b,0) (c,0) (e,0) (d,0)

(a,1) (a,1) (1,1) (d,1) (e,1) (c,1) (b,1) (a,0) (1,0) (e,0) (d,0) (b,0) (c,0)

(b,1) (b,1) (e,1) (1,1) (d,1) (a,1) (c,1) (b,0) (d,0) (1,0) (e,0) (c,0) (a,0)

(c,1) (c,1) (d,1) (e,1) (1,1) (b,1) (a,1) (c,0) (e,0) (d,0) (1,0) (a,0) (b,0)

(d,1) (d,1) (c,1) (a,1) (b,1) (1,1) (e,1) (d,0) (b,0) (c,0) (a,0) (1,0) (e,0)

(e,1) (e,1) (b,1) (c,1) (a,1) (d,1) (1,1) (e,0) (c,0) (a,0) (b,0) (d,0) (1,0)

It is easy to see that [((13),0) * ((123),1)] * (1,1) = ((12),0), but ((13),0) *[ ((123),1)* (1,1)] = ((23),0).

So 〈M, ∗〉 is nonassociative. However, we have no desire to prove that 〈M, ∗〉 fulfills the Moufang identity

for this case since it would be too tedious. Also it is unnecessary as we have already shown it for the general case

in our theorem.
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