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Abstract

The process by which the red blood cells are developed is known as
erythropoiesis. It is depicted that while the process involves many
components, the ones are the erthrocytes themselves ant the
erythropoietin hormone (EPO). The hemoglobin in the RBC absorbs the
oxygen when it is flowing in the lung. The production and feedback loop
in erythropoiesis consist of RBC coming from the bone marrow. A
mathematical model for this process which connecting the of erythrocytes
(or RBO), the EPO and The oxygen is proposed together with time delay.
A bifurcation analysis is carried out to determine the ranges of parameter
values that would lead to state productions of RBC. We have also shown
the computer simulations of the behaviors.
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1. Introduction

The circulating tissue composed of fluid plasma and cells (red blood cells, white blood
cells, platelets) is called blood. The process is called Hematopoiesis. Medical terms related
to blood often begin in hemo- or hemato- (BE: haemo- and haemato-) from the Greek
word for “blood”. The process is called erythropoiesis while the blood cells are only red
blood cells (RBC) or erythrocytes. Many components are involved in an erytropoiesis
process; the erythrocytes themselves and the hormone erythropoietin (EPO) are the
absolutely necessary ones. The main function of blood is to supply nutrients (oxygen,
glucose) to tissues and to remove waste products (such as carbon dioxide and lactic acid).
The oxygen uptaken by the hemoglobin present in the RBC also plays an important role in
the regulation of the RBC production.

There are the productions and feedback loop consisting of erythrocytes which coming

from the bone marrow as the result of the maturation of committed precursor stem cells
into erythrocytes. The regulations of the production of the component factors in
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erythropoiesis are through different feedback loops. There are several diseases such as the
periodic hematopoietic diseases that are believed to arise because of abnormalities in the
feedback mechanisms which regulate blood cell number [1,2,3,4]. Mathematical models
have been used to learn the effects of variations in the maturation velocity and of moving
boundary conditions on Hematopoiesis by [5,6].

In this paper, we wish to analyze the erythropoiesis mathematical model with considering
the affect of a time delay. In section 2, our model is presented. We put the time delay into
the model, and then perform Hopf bifurcation analysis; like Khan’s process, and identify
the suitability of our model parameters. An analysis can determine that they have the
greatest effect on stability of the model in section 3. Finally, the simulation results are
shown and we attempt to explain the critical day time where the erythrocyte productions
go from being a steady state one to a non steady state one.

2. Mathematical Model

The rates of erythrocyte production and the hormone EPO are taken to be of the Michaelis-
Menten form. The rate types are often used to describe the kinetics of pathways stimulated
by growth factors [8]. For erythrocytes, the production should be small when the EPO
amount present is small. When the EPO is large, the production should be large. The
reverse holds for the control of EPO by the oxygen in the tissue. During periods of
hypoxia, the release of EPO by the kidney should increase, while during periods of proper
oxygen levels in the blood, the release of EPO should decrease. The amount of oxygen in
the blood should be directly related to the number of erythrocytes in the blood unless the
person is suffering from a disease that either prevents or enhances the release of the
oxygen by the iron ion in the hemoglobin.

Therefore; our model for erythroposeisis is given by

dx ay

dt 1+y T 0
dy kz

g - ; )
a1+ kz g @

and

dz

% = - . 3
= BE- 3)

where x(t) is the amount of erythrocytes or red blood cells; y(t), the amount of
erythropoietin (EPO) for erythrocytes; z(t), the amount of 0, ; The death or decay rate of
each variable, m,i = 1,2, 3 . When the oxygen is absorbed by the tissue cells, it is removed
from the blood stream. In the tissue, it is used to metabolize the nutrients to provide the

needed energy for the cell to live. We denote the net birth-rate for the variables RBC,
EPO, and 0, asa ,b and g, respectively.
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The system described by equation (Eq. 1) to (Eq. 3) has two positive steady state
(0,0,0)and (x,,y,,z,) where z, = (7x:) 113, s = kyx, 1 (o (y x, +143)), and
x, = (kay - mup)! (kyul (1+ 4, )) . The non-vanishing steady state  (x,,,,z,)

interested. We applied for studying a time delay model, a linearization of the system at its
steady state will produce an exponential polynomial equation.

3. Effect of Time Delay
3.1 The stability with time delay

There is a lag in the time the EPO acts on the pre-RBC and the fully developed erythrocyte
emerge. The effects of a time delay on a mathematical model for erythropoiesis. To
include the effects of time delay, we need to replace equation (Eq. 1) by

dx_ ay(t=7)

dt  1+y(t-7)
The jacobian matrix for equations (Eq. 4), (Eq. 2) and (Eq. 3) evaluated at the steady state
point (x,,¥;.2,) is

mx . Q)

—H (F(ys)+ysF'(ys))e—l! 0
0 A G(z,)+2,G'(z,)]| - )
V4 0 —H

Diagonalizing the above matrix, we obtain the following characteristic equation
B ral+bi+c+de? =0 . ()
We now suppose that two of ecigenvalues of equation (Eq. 6) are a pair of complex
conjugates i.c., A(r)=a(r)+io(r). Substituting /, into equation (Eq. 6) and separating
the real and imaginary parts, we get
a’- 3aw*+aa*- aw* +ba+c+e * @coswt)= 0 5 )
3a*w- '+ 2aaw+ bw- e ' (dsinwt)= 0 . (¢
Three conditions must be meet at the critical value 7 , for a Hopf bifurcation occurring. (i)
a(ty,)=0, (i) w(,)' 0 and(iii) a#(,)> 0. To see, we first assume that the critical
value defined by @(7,)=0 exist, if the eigenvalues of the Jacobian evaluated at the
steady state point (xs, A ) satisfy these conditions. However, we do not use this
condition to find £ ;. Setting & ( ro) =0 into (Eq. 7) and (Eq. 8) to have
; ®

o —bo+dsnor=0 . (10)

—aw? +c+dcosar=0
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Squaring the two equations and adding the squares together, we obtain
o +(a* ~2b)0* +(b* -2ac)0” +(¢* ~d*) =0 . (11
Letting s=0?, p=a®*-2b,q=b>-2ac, and r=c*-d>. Equation (Eq. 11) becomes
the following cubic equation
O(s)=s’+ps”+gs+r=0 . 12)
To find the roots of equation (Eq. 12), we introduce the following lemma 1.

Lemma 1. Condition for the existence of a cubic equation. For equation (Eq. 12)
1.If either (i) p< O,g* 0 and p> 3g or (ii) g < 0Oand D < 0, then equation (Eq. 12)

has positive simple roots,

4 5 1 2 4
where D=0@Xe)= 570" - 57P4- JPar+ =pr+ 1’ (13)

with e, and e, being the two turning points of O ¢>given by

e=(p- - 3y 3e=(p+r*- H)3 (14)

2.If r * 0 the necessary condition for equation (Eq. 12) to have no positive real roots are

either (i) p® < 3¢, (ii) p* = 3¢, (iii) p*>- 3¢g> Oand D > 0, or (iv) p>- 3¢ > 0 and
D> 0,p>0andg> 0.
Proof of this lemma is shown in Khan and Greenhalgh [9].

3.2 Critical time delay

We may denote the three positive roots of equation (Eq. 12) by s;,i=1,2,3. Then
equation (Eq. 12) has three positive roots; @, =\/5 ,i=12,3. Now, Let 7, >0 be the
minimum value for all the values of 7 which a(ro) =0 .The critical delay time can be
found by substituting ¢; into equation (Eq. 10) and solving for ¢ , we obtain

0 =(arcsin(—(a),-3 —bm,.)/d)+2(j-1)n)/m,.,i=1,2,3,j=o,1,2,... (15)
Therefore,
77 B { _(,-)} )
=%, i:lgl,lsrbzl % ? (16)
Wy =, and s, =g : an

4. Numerical Simulations and Conclusion

We use two methods to obtain some qualitative information about the stable solution of the
system. The computer simulations for the case of 7 =0 is done with a C-programming

code based on the Runge Kutta order6 method. For the cases of 10, the MathLab routine
for delay is used.
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4.1 Estimated Parameter

The values of many of the parameters were given in Mackey-Glass [10]. From that and the
other papers by Mackey, we sct the dead rate for RBC () to be closed to 1. Our
bifurcation analysis requires that the dead rate of EPO must be at least a half of RBC dead
rate. Since the presence of oxygen was not taken into account in the papers; Mackey and
Glass 1966[ 10], Murray JD[11], Belair, Mackey and Mahaffy(1995)[6], and Mahafty et al
(1998,1999)[5,71), we had to guess at the values of the parameters dealing with oxygen. In
order for the for the Routh-Hurwitz condition to hold when we attempted to find the
equilibrium concentration x ; , we established that the rate of removal of oxygen g had

to be in the range 0 < 5 < (kary)/(pu,) . Setting k at various values, we determined that
}; should be more than 1.

4.2 Numerical Results

Fg. 1 shows numerical solutions of the model. (Eq. 2-4) (t = 1.245< t , = 6.85207 ) The
parameters used are as follows: m = 0.945m, = 0.4725, a = 0.25,k = 6.7636,
my = 1.32025, x, = 0.1705,y, = 1.81403,z, = 0.88698. The trajectories show on 2D
phase plane. The motion spirals toward the steady state.

N
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Fg.2 2D Plots of EPO and others. The numerical solutions are stable. The values of the
Pparameters are the same as Fg. 1 except t = t, = 6.85207. The trajectory is a limit

cycle.
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Fg. 3 The behaviors indicate that the equilibrium state is unstable. This figure shows
numerical solutions of the system model (Eq.2-4). The parameters are the same as Fg. 1
except t =8> t,= 6.85207.
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Fg.4 Changing in the oxygen as time involves. The numerical solutions of the model
(Eq.2-4) are the case t = 1.245,6.85207, 8 respectively. The graphs depict that the
trajectories are periodic oscillation, tending to the steady state and unstable, respectively.

5. Conclusion

In this paper, we have proposed a mathematical model involving a set of nonlinear
equations for the production and regulation of red blood cells. The model contains an
effective delay in the effect of the hormone, EPO on the production of erythrocyctes by the
stem cells in the bone marrow. The time delay is included to simulate the dynamics of the
maturation steps needed to transform a precursor stem cell into a fully functional RBC.
Included in our model is the role of oxygen in the production of the EPO by the
liver/kidney. The amount of RBC in the blood stream does not directly determine the
amount of EPO that is produced by the kidney/liver. The amount of EPO produced is
related to the amount of oxygen absorbed by certain tissues in the kidney/liver. Since the
oxygen is carried to the tissue by the hemoglobin in the RBC, the amount of EPO
produced is indirectly related to the amount of RBC in the blood stream. The inclusion of
the dynamics of the oxygen in our model for erythroproiesis completes the feedback loop
required for the regulation of the erythrocytes production. The dynamics of the oxygen
could be ignored is we put in another time delay into the equations. The amount of EPO
produced at time t would depend on the amount of RBC at time t-1, (1,, being the time for
the EPO producing tissue to produce additional EPO in response to the lack of oxygen).
We find that there is an optimal turn-around time (Eq. 16) for all components in this
complicated system.
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