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Abstract

This paper discusses about necessary and sufficient condition for linier
equations over commuktive rings and relation to determinantal ideals.
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1. Introduction

In this paper, -R will denote a commutative ring with uni! a system of linear equation over
R given by

(S):Ax = B (l)
where l=[ar] is at (mxn) -matrixoverR, x=1xr,...,x,]' and B =fbr,...,b^)'
are column vectors with over R.

Equation in (l) have a solutioq ifthere exist avector € io R' suchthat At = B .for I
is a square matix of size n Crame's rule tell us about the determinantal approac[ that is if
det(l) is a unit, then we may solve uniquely for x,,11i 3 n .

If we extendl k ar (mxn)- matrix and we defined Ir(A) as the ideal generated by all

the determinant of the I x I sub matrices of A - I,(A) was the /{ft determinantal ideal of

A, and I,(Al B) is determinantal ideal of augmented matrix [AlB], then next theorem

describes necessary condition for Ax=B to have solutiorL lhat is if system

(S):Ax = B has solutionthen It(AlB)= I,(A) for all t eZ.

This condition is not sufficient to assure a solution of Ax = B . Camion, Levy and Mann
have given an example where the determinantal ideal I and augmented matrix [AlB] agree

for all t, lrr'tt Ax= B has no solution.

Which is due Camion, lrvy and Mann, we give sufficient condition for Ax=B to have

solution In this case, we will let I,(A I B) * denote the ideal generate d by all determinant

of t x t sub mahices of [AlB], and we can always assume m < n to considering solution
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to Ax=B.Tl:.atis rank(A)=m,ifthereexistideal p in R andnonzerodevisor d,
such that pI.(Al B) * g < a > c. pI -(A), then the equation Ax = B has a solution.

The origin of this result may possibly be traced to Steinitz and his interest in solving
system of linear equation over ring of algebraic integers or more generally, Dedekind
domain.

Another application is given by this following result. If It(A) =R, than Ax=B is

solvable. For B : 0 a system of linear equation become Ax=0 of course, this system

always possesses the fivial solution ;r : 0. McCoy tell us this system has non-fivial
solution if and only if McCoy rank ofl less than r.

ln this paper we want to give suffrcient and necessary condition for system of linear
equation has a solution with the local property.

2. Localization

For any prime ideal P in.R wE consfuct sets and py5={(r,s)lre .R, se ,S}, we

definearelation-or RxS as follow (r,s) -(7,F) if onlyif l(rs'-F's)=Q 1e1

some /eP"

It is easy to check that - is an equivalence relation on RxS. We will let

equivalence class of (r, s) in .Rx,S .

Set.R, = 1Il1r,s)eRxS) = {ll r eR, s eP}

Addition and multiplication on R, are defined by following equations :

r,r _(rs'+sr')-;- - -----------:-
.s .9 ss

(1.1Ls=)
sss.s

We can check that both of these operation are well defined and R" with the stucture of a

commutative ring. The ring R" is a local ring that is ring has precisely one maximal

ideal and called the localization of R at P. For any prime ideal P in ,R the system of
equation over R, obtained from (S):lx = B by replacing each coefficient by its image

in R"via the homomorphism d:R-+Rp will be denoted by (Sr) that given by

(So):Aox=Bo where Ao=<tland Bo =(?,...,Lr)'

L
.s

denote the
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The following result shows that the cxistence of a solution fa ( s) is a local propcrty.

Thcorcm t Thefollowing statements are equivalent
(a) Tlrc syslezr (,S) : Ax= B las a solution oyerR
(b) The ry,en (S r) : Arx= B, has a solution over local R, for each prime ideal p or

x
(c) The systen (S_): A_x= B, /.s a solation wer local ,inC R_ for each muimal

ideal M of R
Proof:
(i) ) (iD I (iii) is easyto proof
(iii) ) (i) Assume trat for every maximal M n Rthe system (^sr) has a solution given
by

x1M)=$ J< j3n- s(m)
in this case assumption that xlm)r,.,xn(m) have the sarre denominfiw s(m)eM .

Then for everyMone has

iop,#=0, ,t<i1m

so there exist elemcm t r(m)eM such that

(" \t,($l\aoa,@)l=t,(m)s(m)b, ,t<i1m\r=t )
setring l(z)= !rr,r., one obtains.

(a \t,(m)llaoa,@\)=t,(m)s(m)b, ;3i3m
Now, since t(m).s(m)eM, idcal generated by elements t(m) . s{n) is not contained in
any maximal i&al M ad so t(m).s(m) is rt. It follows that there exist finitery many
maximal i&,al t\,...,mp and element 4,...,10 in X such that

tf4t6;s(2.)

Finally, the clement xtr...rxn grven by
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p
y = l).ut(m)s@)ri

k=1

=f Lr@)d j(tn) , t< j <n

areasolutionofry.t".lg*' I

In a system of linear equation as above we concerned only with the matrices l, (l I B) and

Au for P is a prime ideal in ft. The following poperties we will use to find the necessary

condition for system so that has a solution in the particular class ring.

Nakayame'* Lemma z Let I /initely generated ideal in a local ring. If r is tlp smallest
numberofgeneratorsof p,thenatrysetofgeneratorof I containsasetof r generatot

ofI.

Theorem 2t Let R be a local ring and (S) : Ax = B a system of liruu equfltion over R..

The system (,,9) has a solution in R if satisfies the following two conditionfor every t20
(D I,(A)=t,11131
(ii) Either I,(A)=0 or I,(A) is on ideal generated by a nonzero divisor of R

Proof:

Let r be the integer such that I,(A) * 0 and I,(Al B) = 0 . Since 1, (l) is generated by

all determinant of txt sub matrices of I and by the hypothesis (ii), it is a principal ideal
generated by a nonzero divisor in the local ring X.

From Nakayama's lemma t}rat I, (A) is generated by an determinant of / x I
sub matrices of l. We can assume with no loss of generality that

A(4,...,1":jr,.-.,jr)=L(|,...,r:lr.-.,r).r*t X=A(1,...,r:1,...,r).Thenwehave

l r,, a,,1,l:lA=l :^-ll
Lo" a-)

Now we consiluct the system (S') given by

fro*, =b, ,l<i<r
j--t

by multiplying by cofactor matrix (Ar,) of l' on the left of system (S' )

fou*, =b, ,l<i<i
j=r



Zor*,*Lo,.n x,*, = br
j=l t=t

ft, +, o r*, *fi ak.,a,,, *, x, *,
j=t k=t t=t L=t

,, * Y f I Ar,,o,.,*,)*,*, =i no ru,, |LII L
r=r \r=

We can be also written inthe fomr

*,lrr, 4r,r*r 4,,*, di,i*r

,ex.+Il i, L/l
r=r I

lon ar,i-r ar,r+t ar,i+t

lq, 4;-, 4 oij*r
l.=l'
lon 0r,r-r b" at,i+l
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so that for l<i<r

,r*, =f A*.,b,- ; [E *,,*,.*,)*,*,

Since 2 generarestheideal I,(A)=1,11 lB),thenthelastexpressionthatthesystem

(S') has a solution Tk last rc shall cbck that the solutions of (S') are also solutions

of ( ,S ). For this we shall show tlat for l<s 1n-r the solution of (S') satis$ the

equatioa

4r+f,1 .q+ .... + ar*r,rxn =br*,
Since , is a non-zero divisor, the equation become

t**",rxj= b,*,
j=1

or equivalenty

f*,.".,', *i)o,*".r+t xr+t = h,*"
j=l ,=l

i<r

,l3i<r

= A*,,b,

,1S

so that
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+!fu,*,.,*,*,*,
k=t

,-"( , ( , \ \=Il Io,." .il -ZAr.ior.,*, l+ fu,*,."*, l*,*,
r=r \j=r \ r=r ) )

+!+*., (Zonr)
For I <t <n- r, the coeffrcient of .r"*, is zero, since determinant of the

(r + l)x(r + t) - sub matrix of I obtained by adding l' with (r + /) column and (r + s)

row ofl . So

***,.,*,=ton",,(Zo^)
so the concludes that the solutions of (^S') are also solutions of( S) as desired t

Proof ofthetheorematabovewithhypothesisorRisalocalringwithfacttha! if q--.a,
is a set of generator of a principle ideal I of a local ring, then I is generated by some a, .

However, the result cao be generated to the nonlocal case by using the concept offlat ideal
of aring.

Dcfenition : Ideal I of R that finitely generated is flat if and only iffor any prime ideal P of
R the ideal I p of Re ,'s eith€r (0) or generated by a nonzero divisor.

Theorcm 3: fe, (S) : Ax = B a syst€m of linear equations over the ring X. System (S)
has a solution if the following statements hold for every / > 0
(, I,(A)= I,(AIB)
(ii) I,(A) is a flat ideal of fi.

Proof:

By the property (ii) of determinantal ideals, the ideal 12 of Rp for any prime ideal P is (0)

or generated by a nonzero divisor. It is mean the system (Sr) has a solution in rt, , and

by theorem l, syskm (S) tras a solution in .R. v
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