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Abstract. A connected graph G is primitive provided there exists a positive integer k such that for each pair of

vertices u and v in G there is a walk of length k connecting u and v. The smallest of such positive integer k is the

exponent of G. A primitive graph is said to be odd primitive graph if it has an odd exponent. It is known that if G is

an odd primitive graph then G contains two disjoint odd cycles. This paper discusses exponents of a class of primitive

graphs containing of exactly two disjoint odd cycles. For such graphs we characterize the odd and even primitive graphs.

1. Introduction

We discuss exponents of connected graphs consisting of two odd disjoint cycles connected by a path. We follow

notation and terminologies for graphs in [1]. In particular a walk of length m connecting vertices u and v is a

sequence of edges of the form

{u = v0, v1}, {v1, v2}, {v2, v3}, . . . , {vm−1, vm = v}.

A walk w connecting vertices u and v is abbreviated by a uv-walk or wuv and its length is denoted by ℓ(wuv).
By a uv-path we mean a uv-walk with no repeated vertices except possibly u = v. A uv-walk is open provided

u 6= v and is closed otherwise. A cycle is a closed path and a loop is a cycle of length 1. The distance of vertices

u and v is the length of the shortest uv-path. The diameter of a graph G is defined to be

diam(G) = max
u,v∈G

{d(u, v)}.

A graph G is connected provided for each pair of vertices u and v in G there is a uv-walk connecting u and v. A

connected graph is primitive provided there is a positive integer k such that for each pair of vertices u and v in G

we can find a uv-walk of length k. The smallest of such positive integer k is the exponent of G and is denoted by

exp(G). A primitive graph is said to be an odd primitive graph if G has odd exponent and is an even primitive

graph otherwise. The following proposition gives necessary and sufficient conditions for primitivity (see [1]) of

connected graphs.

Proposition 1.1. Let G be a connected graph. The graph G is primitive if and only if G has cycles of odd length.

A lot of research has been done on exponents of graphs. Shao [4] proved that for primivite graphs G on n

vertices exp(G) ≤ 2n−2. Liu et.al [3] showed that for loopless primitive graphs on n vertices exp(G) ≤ 2n−4.

Suwilo and Mardiningsih [5] give a bound of exponents of primitive graphs G in term of the length of the smallest

odd cycle in G. Fuyi et.al [2] show that if G is an odd primitive graph, then G contains two odd disjoint cycles.

This paper discusses a class of primitive graphs containing two odd disjoint cycles and characterizes them as an

odd primitive graph or even primitive graph.

2. Facts on primitive graphs

In this section we present several results on exponents of primitive graphs that will be useful in dicussing our main

results. Let G be a primitive graph and let C be a cycle of smallest odd length s. Let u be a vertex in G but not in

C and let pux be a shortest path that connects the vertex u and a vertex x in C, and define

ℓ = max
u∈G\C,x∈C

{ℓ(pux)}.

Suwilo and Mardiningsih [5] proved the following result.

Theorem 2.1. Let G be a primitive graph with smallest odd cycle of length s. Then

exp(G) ≤ s + 2ℓ − 1.

Proof. See [5] �
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Let G be a connected graph on n vertices consisting of a cycle C : v1 − v2 − · · · − vs − v1 of length s and a

path P : vs − vs+1 − vs+2 − · · · − vn of length n − s which intersects C on the vertex vs. The graph G is called

(vs, vn)-lollipop. Shao showed that the graph attain the upper bound 2n − 2 is a (v1, vn)-lollipop while Liu et.al

showed that the graph attain the upper bound 2n− 4 is a (v3, vn)-loolipop. The following corollary gives formula

for exponents of (vs, vn)-lollipops.

Corollary 2.1. Let G be a (vs, vn)-lollipop with s ≤ n is odd. Then exp(G) = 2n − s − 1.

Proof. Since ℓ = n − s, Theorem 2.1 implis that exp(G) ≤ s + 2(n − s) − 1 = 2n − s − 1. It remains to show

that exp(G) ≥ 2n− s− 1. We note that the shortest closed walk of odd length that connects the vertex vn to itself

is of length 2n − s. This implies there is no closed walk of length 2n − s − 2 that connects vn to itself. Hence

exp(G) ≥ 2n − s − 1. �

Corollary 2.2. Let C be a cycle of odd length s. Then exp(C) = s − 1.

Proof. A cycle C of length n can be considered as a (vn, vn)-lollipop. In this case we have and s = n, hence

Corollary 2.1 implies that exp(C) = s − 1. �

3. Exponents of primitive graphs containing two disjoint cycles

In this section we explore the exponents of a special type of graphs containing two disjoint odd cycles. Let C1

and C2 be two disjoint cycles of odd length s1 and s2 respectively. Let P be a path of length ℓP with one end

vertex on C1 and the other end vertex on C2. A connected graph G consisting of two disjoint cycles C1 and C2

of length s1 and s2 connected by a path P of length ℓP is called an (s1, ℓP , s2)-barbel. For simplicity, we assume

that s1 ≤ s2 and let v1be the vertex in common to C1 and P , and v2 be the vertex in common to C2 and P . Notice

that the diameter of an (s1, ℓP , s2)-barbel is

diam(G) =
1

2
(s1 + s2) + ℓP − 1.

For each vertex u ∈ C1, let puv1
be the shortest uv1-path and let p′uv1

be the uv1-path of length s1 − ℓ(puv1
)

that lies on C1. Similarly for each u ∈ C2 let puv2
be the shortest uv2-path and p′uv2

be the uv2-path of length

s2 − ℓ(puv2
) that lies on C2. The following result characterizes (s1, ℓP , s2)-barbels of even exponents.

Lemma 3.1. Let G be an (s1, ℓP , s2)-barbel with s1 and s2 are odd and s1 ≤ s2. If diam(G) ≤ s2 − 1, then

exp(G) = s2 − 1.

Proof. Since C2 is a subgraph of G and the exp(C2) = s2 − 1, then exp(G) ≥ s2 − 1. It remains to show that for

each pair of vertices u and v in G there is a uv-walk of length exactly s2 − 1.

Case 1. Both vertices u, v ∈ C1 or u, v ∈ C2. If u and v both lies on cycle C1, then Corollary 2.2 implies that

there is uv-walk of length s1 − 1. This walk can be extended to a uv-walk of length exacly s2 − 1. Similarly, if u

and v both lies on the cycle C2, Corollary 2.2 implies there is a uv-walk in G of length exactly s2 − 1.

Case 2. The vertex u ∈ C1 and the vertex v ∈ C2. Assume that the diam(G) is obtained from the path pxy

consisting of the path pxv1
, the path P , and the path pv2y , where the vertex x ∈ C1 and the vertex y ∈ C2. Notice

that we can choose x and y such that both vertices u and v lie on the path pxy . Let puv be the shortest uv-path

and assume that ℓ(puv) is odd, since if ℓ(puv) is even we can extend puv to a uv-walk of length s2 − 1 and hence

we are done. Consider the path p′uv consisting of the path p′uv1
, the path P and the path pv2v . If ℓ(pux) < ℓ(pvy),

then

ℓ(p′uv) = ℓ(pux) + ℓ(p′xv1
) + ℓP + ℓ(pv2v)

= ℓ(p′xv1
) + ℓP + ℓ(pv2y) + ℓ(pux) − ℓ(pvy)

=
1

2
(s1 + s2) + ℓP + ℓ(pux) − ℓ(pvy) ≤ diam(G) ≤ s2 − 1

is even. Since ℓ(p′uv) is even, the path p′uv can be extended to a uv-walk of length s2 − 1.
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Assume now that ℓ(pux) > ℓ(pvy). Consider the path p′uv consisting of the path puv1
, the path P , and the path

p′v2v . Then

ℓ(p′uv) = ℓ(pvy) + ℓ(p′yv2
) + ℓP + ℓ(puv1

)

= ℓ(p′yv2
) + ℓ(pv1x) + ℓP + ℓ(pvy) − ℓ(pux)

=
1

2
(s1 + s2) + ℓP + ℓ(pvy) − ℓ(pux) ≤ diam(G) ≤ s2 − 1

is even. We can extend p′uv to a uv-walk of length s2 − 1.

Now assume that ℓ(pux) = ℓ(pvy). If diam(G) is even, then ℓ(puv) is even. Hence puv can be extended to

uv-walk of length s2 − 1. If diam(G) is odd, then diam(G) < s2 − 1. Consider the path p′uv consisting of the

path puv1
, the path P and the path pv2v .Then

ℓ(p′uv) =
1

2
(s1 + s2) + ℓP + ℓ(pvy) − ℓ(pux)

=
1

2
(s1 + s2) + ℓP ≤ s2 − 1.

is even. Hence p′uv can be extended to uv-walk of length s2 − 1.

Case 3. Both vertices u, v ∈ P . Assume ℓ(puv) is odd and ℓ(puv1
) < ℓ(pvv1

). Consider the uv-walk wuv

consisting of the path puv1
, the cycle C1, and the path pv1v . Then ℓ(wuv) is even. Since diam(G) ≤ s2−1, hence

s1 + 2ℓP ≤ s2. This implies ℓ(wuv) = s1 + 2ℓ(pv1u) + ℓ(puv) < s1 + 2ℓP ≤ s2. We now have ℓ(wuv) is even

and ℓ(wuv) ≤ s2 − 1. Hence wuv can be extended to a uv-walk of length exactly s2 − 1.

Case 4. The vertex u ∈ C1 or u ∈ C2 and v ∈ P . Assume that u ∈ C1 and the length of the path puv , consisting

of the path puv1
and the path pv1v , is odd. Then the path p′uv consisting of the path p′uv1

and the path pv1v is of

even length and ℓ(p′uv) < s1 + ℓP ≤ s2 − ℓP < s2 − 1. Hence p′uv can be extended to a uv-walk of length s2 − 1.

Now assume that u ∈ C2 and the length of the shortest path puv is odd. Hence the length of the path p′uv

consisting of the path p′uv2
and the path pv2v is even. If ℓ(p′uv) ≤ s2 − 1, then we are done. So assume that

ℓ(p′uv) > s2 − 1. This implies ℓ(pvv2
) > ℓ(pv2u). Consider the walk w′

vu consisting of the path pvv1
, the cycle

C1, the path P , and the path pv2u. Then ℓ(w′
uv) is even. Since ℓ(pvv2

) > ℓ(pv2u),

ℓ(w′
uv) = s1 + ℓP + ℓ(pv1v) + ℓ(pv2u) < s1 + ℓP + ℓ(pv1v) + ℓ(pvv2

)

= s1 + 2ℓP ≤ s2.

Since ℓ(w′
uv) is even, ℓ(w′

uv) ≤ s2 − 1. Now we can extend w′
uv to a uv-walk of length exactly s2 − 1. �

Lemma 3.2. Let G be an (s1, ℓP , s2)-barbel with s1 and s2 are odd and s1 ≤ s2. If diam(G) > s2 − 1, then

exp(G) = diam(G).

Proof. It is clear from the definition of diameter of a graph and exponent of a graph that exp(G) ≥ diam(G). We

need t show that for each pair of vertices u and v, there is a uv-walk of length diam(G).

Case 1 Both vertices u, v ∈ C1 or u, v ∈ C2. Assume that u, v ∈ C1. By Corollary 2.2 the exp(C1) = s1 − 1,

hence for each pair of vertices u and v in C1 there is a uv-walk of length k for each k ≥ s1 − 1. Therefore for

each pair of vertices u and v in C1 there is a uv-walk of length diam(G). Similar argument works for the case

where u, v ∈ C2.

Case 2 The vertex u ∈ C1 and the vertex v ∈ C2. We use the notation as in Case 2 of the proof of Lemma 3.1.

Let puv be the shortest uv-path in G. If ℓ(puv) ≡ diam(G) mod 2, the we are done. Hence assume that

ℓ(puv) 6≡ diam(G) mod 2. This implies ℓ(pux) 6= ℓ(pvy). If ℓ(pux) ≤ ℓ(pvy), then the path p′uv consisting

of the path p′uv1
, the path P , and the path pv2v has length ℓ(p′uv) = 1

2
(s1 + s2) + ℓP + ℓ(pux) − ℓ(pvy) ≤

1

2
(s1 + s2)+ ℓP −1 = diam(G). Notice that ℓ(p′uv) ≡ diam(G) mod 2, hence p′uv can be extended to a uv-walk

of length diam(G). If ℓ(pux) > ℓ(pvy), then the path p′uv consisting the path puv1
, the path P , and the path p′v2v

has length ℓ(p′uv) = 1

2
(s1 + s2) + ℓP + ℓ(pvy) − ℓ(pux) ≤ diam(G). Since ℓ(p′uv) ≡ diam(G) mod 2, hence

p′uv can be extended to a uv-walk of length diam(G).

Case 3 Both vertices u, v ∈ P . Let puv be the shortest uv-path and assume that ℓ(puv) 6≡ diam(G) mod 2.

Consider the walk wuv consisting of the path puv1
, the cycle C1 and the path pv1v , and the walk w′

uv consisting of

the path puv2
, the cycle C2, and the path pv2v . Then ℓ(wuv) ≡ diam(G) mod 2 and ℓ(w′

uv) ≡ diam(G) mod 2.
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Define ℓ′(wuv) = min{ℓ(wuv), ℓ(w′
uv)}. Since ℓ(wuv) + ℓ(w′

uv) = s1 + s2 + 2ℓP , ℓ′(wuv) ≤ 1

2
(s1 + s2) + ℓP .

Notice that ℓ′(wuv) ≡ diam(G) mod 2. This implies ℓ′(wuv) ≤ diam(G).

Case 4 The Vertex u ∈ C1 or u ∈ C2 and the vertex v ∈ P . Assume u ∈ C1, v ∈ P and the path puv , consisting

of the path puv1
and the path pv1v , has the property that ℓ(puv) 6≡ diam(G) mod 2. Define the path p′uv to be the

path consisting of the path p′uv1
and the path pv1v . Then ℓ(p′uv) ≡ diam(G) mod 2. Notice that

ℓ(p′uv) ≤ s1 + ℓP − 1 <
1

2
(s1 + s2) + ℓP − 1 = diam(G).

Hence we can extend p′uv to a uv-walk of length diam(G).

Now assume that u ∈ C2, v ∈ P and the shortest uv-path puv has the property that ℓ(puv) 6≡ diam(G) mod 2.

Consider the path p′uv consisting of the path p′uv2
and the path pv2v . Then ℓ(p′uv) ≡ diam(G) mod 2. If ℓ(p′uv) ≤

diam(G) mod 2, then we are done. So we assume ℓ(p′uv) > diam(G). Now consider the walk wuv consisting of

the path puv2
, the path P , the cycle C1 and the path pv1v . Then

ℓ(wuv) = s1 + 2ℓ(pv1v) + ℓ(pv2v) + ℓ(pv2u)

≡ diam(G) mod 2

Since ℓ(wuv) + ℓ(p′uv) = s1 + s2 + ℓP and ℓ(p′uv) > diam(G), we have ℓ(wuv) < 1

2
(s1 + s2) + ℓP + 1. On the

other hand we have ℓ(wuv) ≡ diam(G) mod 2, hence ℓ(wuv) ≤ diam(G). We can now extend the walk wuv to

a uv-walk of length diam(G).

We conclude that for each pair of vertices u and v in G, there is a uv-walk of length exactly diam(G). Hence

exp(G) ≤ diam(G). �

As a direct consequence of Lemma 3.1 and Lemma 3.2 we have the following result that characterizes the odd

and even primitive (s1, ℓP , s2)-barbels.

Theorem 3.1. Let G be a primitive (s1, ℓP , s2)-barbel with s1 and s2 are odd and s1 ≤ s2. Then

exp(G) =











even, if diam(G) ≤ s2 − 1

even, if diam(G) is even and diam(G) > s2 − 1

odd, if diam(G) is odd and diam(G) > s2 − 1.
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