# EXPONENTS OF PRIMITIVE GRAPHS CONTAINING TWO DISJOINT ODD CYCLES 

Indra Syahputra ${ }^{1}$, Mardiningsih and Saib Suwilo ${ }^{2}$<br>Department of Mathematics, University of Sumatera Utara Medan 20155, Indonesia<br>${ }^{1}$ klencot@graffiti.net, ${ }^{2}$ saib@usu.ac.id


#### Abstract

A connected graph $G$ is primitive provided there exists a positive integer $k$ such that for each pair of vertices $u$ and $v$ in $G$ there is a walk of length $k$ connecting $u$ and $v$. The smallest of such positive integer $k$ is the exponent of $G$. A primitive graph is said to be odd primitive graph if it has an odd exponent. It is known that if $G$ is an odd primitive graph then $G$ contains two disjoint odd cycles. This paper discusses exponents of a class of primitive graphs containing of exactly two disjoint odd cycles. For such graphs we characterize the odd and even primitive graphs.


## 1. Introduction

We discuss exponents of connected graphs consisting of two odd disjoint cycles connected by a path. We follow notation and terminologies for graphs in [1]. In particular a walk of length $m$ connecting vertices $u$ and $v$ is a sequence of edges of the form

$$
\left\{u=v_{0}, v_{1}\right\},\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\}, \ldots,\left\{v_{m-1}, v_{m}=v\right\} .
$$

A walk $w$ connecting vertices $u$ and $v$ is abbreviated by a $u v$-walk or $w_{u v}$ and its length is denoted by $\ell\left(w_{u v}\right)$. By a $u v$-path we mean a $u v$-walk with no repeated vertices except possibly $u=v$. A $u v$-walk is open provided $u \neq v$ and is closed otherwise. A cycle is a closed path and a loop is a cycle of length 1 . The distance of vertices $u$ and $v$ is the length of the shortest $u v$-path. The diameter of a graph $G$ is defined to be

$$
\operatorname{diam}(G)=\max _{u, v \in G}\{d(u, v)\}
$$

A graph $G$ is connected provided for each pair of vertices $u$ and $v$ in $G$ there is a $u v$-walk connecting $u$ and $v$. A connected graph is primitive provided there is a positive integer $k$ such that for each pair of vertices $u$ and $v$ in $G$ we can find a $u v$-walk of length $k$. The smallest of such positive integer $k$ is the exponent of $G$ and is denoted by $\exp (G)$. A primitive graph is said to be an odd primitive graph if $G$ has odd exponent and is an even primitive graph otherwise. The following proposition gives necessary and sufficient conditions for primitivity (see [1]) of connected graphs.
Proposition 1.1. Let $G$ be a connected graph. The graph $G$ is primitive if and only if $G$ has cycles of odd length.
A lot of research has been done on exponents of graphs. Shao [4] proved that for primivite graphs $G$ on $n$ vertices $\exp (G) \leq 2 n-2$. Liu et.al [3] showed that for loopless primitive graphs on $n$ vertices $\exp (G) \leq 2 n-4$. Suwilo and Mardiningsih [5] give a bound of exponents of primitive graphs $G$ in term of the length of the smallest odd cycle in $G$. Fuyi et.al [2] show that if $G$ is an odd primitive graph, then $G$ contains two odd disjoint cycles. This paper discusses a class of primitive graphs containing two odd disjoint cycles and characterizes them as an odd primitive graph or even primitive graph.

## 2. Facts on primitive graphs

In this section we present several results on exponents of primitive graphs that will be useful in dicussing our main results. Let $G$ be a primitive graph and let $C$ be a cycle of smallest odd length $s$. Let $u$ be a vertex in $G$ but not in $C$ and let $p_{u x}$ be a shortest path that connects the vertex $u$ and a vertex $x$ in $C$, and define

$$
\ell=\max _{u \in G \backslash C, x \in C}\left\{\ell\left(p_{u x}\right)\right\}
$$

Suwilo and Mardiningsih [5] proved the following result.
Theorem 2.1. Let $G$ be a primitive graph with smallest odd cycle of length s. Then

$$
\exp (G) \leq s+2 \ell-1
$$

Proof. See [5]

Let $G$ be a connected graph on $n$ vertices consisting of a cycle $C$ : $v_{1}-v_{2}-\cdots-v_{s}-v_{1}$ of length $s$ and a path $P: v_{s}-v_{s+1}-v_{s+2}-\cdots-v_{n}$ of length $n-s$ which intersects $C$ on the vertex $v_{s}$. The graph $G$ is called $\left(v_{s}, v_{n}\right)$-lollipop. Shao showed that the graph attain the upper bound $2 n-2$ is a $\left(v_{1}, v_{n}\right)$-lollipop while Liu et.al showed that the graph attain the upper bound $2 n-4$ is a ( $v_{3}, v_{n}$ )-loolipop. The following corollary gives formula for exponents of $\left(v_{s}, v_{n}\right)$-lollipops.

Corollary 2.1. Let $G$ be a $\left(v_{s}, v_{n}\right)$-lollipop with $s \leq n$ is odd. Then $\exp (G)=2 n-s-1$.

Proof. Since $\ell=n-s$, Theorem 2.1 implis that $\exp (G) \leq s+2(n-s)-1=2 n-s-1$. It remains to show that $\exp (G) \geq 2 n-s-1$. We note that the shortest closed walk of odd length that connects the vertex $v_{n}$ to itself is of length $2 n-s$. This implies there is no closed walk of length $2 n-s-2$ that connects $v_{n}$ to itself. Hence $\exp (G) \geq 2 n-s-1$.

Corollary 2.2. Let $C$ be a cycle of odd length $s$. Then $\exp (C)=s-1$.

Proof. A cycle $C$ of length $n$ can be considered as a $\left(v_{n}, v_{n}\right)$-lollipop. In this case we have and $s=n$, hence Corollary 2.1 implies that $\exp (C)=s-1$.

## 3. Exponents of primitive graphs containing two disjoint cycles

In this section we explore the exponents of a special type of graphs containing two disjoint odd cycles. Let $C_{1}$ and $C_{2}$ be two disjoint cycles of odd length $s_{1}$ and $s_{2}$ respectively. Let $P$ be a path of length $\ell_{P}$ with one end vertex on $C_{1}$ and the other end vertex on $C_{2}$. A connected graph $G$ consisting of two disjoint cycles $C_{1}$ and $C_{2}$ of length $s_{1}$ and $s_{2}$ connected by a path $P$ of length $\ell_{P}$ is called an $\left(s_{1}, \ell_{P}, s_{2}\right)$-barbel. For simplicity, we assume that $s_{1} \leq s_{2}$ and let $v_{1}$ be the vertex in common to $C_{1}$ and $P$, and $v_{2}$ be the vertex in common to $C_{2}$ and $P$. Notice that the diameter of an $\left(s_{1}, \ell_{P}, s_{2}\right)$-barbel is

$$
\operatorname{diam}(G)=\frac{1}{2}\left(s_{1}+s_{2}\right)+\ell_{P}-1
$$

For each vertex $u \in C_{1}$, let $p_{u v_{1}}$ be the shortest $u v_{1}$-path and let $p_{u v_{1}}^{\prime}$ be the $u v_{1}$-path of length $s_{1}-\ell\left(p_{u v_{1}}\right)$ that lies on $C_{1}$. Similarly for each $u \in C_{2}$ let $p_{u v_{2}}$ be the shortest $u v_{2}$-path and $p_{u v_{2}}^{\prime}$ be the $u v_{2}$-path of length $s_{2}-\ell\left(p_{u v_{2}}\right)$ that lies on $C_{2}$. The following result characterizes ( $s_{1}, \ell_{P}, s_{2}$ )-barbels of even exponents.

Lemma 3.1. Let $G$ be an $\left(s_{1}, \ell_{P}, s_{2}\right)$-barbel with $s_{1}$ and $s_{2}$ are odd and $s 1 \leq s_{2}$. If $\operatorname{diam}(G) \leq s_{2}-1$, then $\exp (G)=s_{2}-1$.

Proof. Since $C_{2}$ is a subgraph of $G$ and the $\exp \left(C_{2}\right)=s_{2}-1$, then $\exp (G) \geq s_{2}-1$. It remains to show that for each pair of vertices $u$ and $v$ in $G$ there is a $u v$-walk of length exactly $s_{2}-1$.
Case 1. Both vertices $u, v \in C_{1}$ or $u, v \in C_{2}$. If $u$ and $v$ both lies on cycle $C_{1}$, then Corollary 2.2 implies that there is $u v$-walk of length $s_{1}-1$. This walk can be extended to a $u v$-walk of length exacly $s_{2}-1$. Similarly, if $u$ and $v$ both lies on the cycle $C_{2}$, Corollary 2.2 implies there is a $u v$-walk in $G$ of length exactly $s_{2}-1$.
Case 2. The vertex $u \in C_{1}$ and the vertex $v \in C_{2}$. Assume that the $\operatorname{diam}(G)$ is obtained from the path $p_{x y}$ consisting of the path $p_{x v_{1}}$, the path $P$, and the path $p_{v_{2} y}$, where the vertex $x \in C_{1}$ and the vertex $y \in C_{2}$. Notice that we can choose $x$ and $y$ such that both vertices $u$ and $v$ lie on the path $p_{x y}$. Let $p_{u v}$ be the shortest $u v$-path and assume that $\ell\left(p_{u v}\right)$ is odd, since if $\ell\left(p_{u v}\right)$ is even we can extend $p_{u v}$ to a $u v$-walk of length $s_{2}-1$ and hence we are done. Consider the path $p_{u v}^{\prime}$ consisting of the path $p_{u v_{1}}^{\prime}$, the path $P$ and the path $p_{v_{2} v}$. If $\ell\left(p_{u x}\right)<\ell\left(p_{v y}\right)$, then

$$
\begin{aligned}
\ell\left(p_{u v}^{\prime}\right) & =\ell\left(p_{u x}\right)+\ell\left(p_{x v_{1}}^{\prime}\right)+\ell_{P}+\ell\left(p_{v_{2} v}\right) \\
& =\ell\left(p_{x v_{1}}^{\prime}\right)+\ell\left(\ell_{P}+\ell\left(p_{v_{2} y}\right)+\ell\left(p_{u x}\right)-\ell\left(p_{v y}\right)\right. \\
& =\frac{1}{2}\left(s_{1}+s_{2}\right)+\ell P+\ell\left(p_{u x}\right)-\ell\left(p_{v y}\right) \leq \operatorname{diam}(G) \leq s_{2}-1
\end{aligned}
$$

is even. Since $\ell\left(p_{u v}^{\prime}\right)$ is even, the path $p_{u v}^{\prime}$ can be extended to a $u v$-walk of length $s_{2}-1$.

Assume now that $\ell\left(p_{u x}\right)>\ell\left(p_{v y}\right)$. Consider the path $p_{u v}^{\prime}$ consisting of the path $p_{u v_{1}}$, the path $P$, and the path $p_{v_{2} v}^{\prime}$. Then

$$
\begin{aligned}
\ell\left(p_{u v}^{\prime}\right) & =\ell\left(p_{v y}\right)+\ell\left(p_{y v_{2}}^{\prime}\right)+\ell_{P}+\ell\left(p_{u v_{1}}\right) \\
& =\ell\left(p_{y v_{2}}^{\prime}\right)+\ell\left(p_{v_{1} x}\right)+\ell P+\ell\left(p_{v y}\right)-\ell\left(p_{u x}\right) \\
& =\frac{1}{2}\left(s_{1}+s_{2}\right)+\ell_{P}+\ell\left(p_{v y}\right)-\ell\left(p_{u x}\right) \leq \operatorname{diam}(G) \leq s_{2}-1
\end{aligned}
$$

is even. We can extend $p_{u v}^{\prime}$ to a $u v$-walk of length $s_{2}-1$.
Now assume that $\ell\left(p_{u x}\right)=\ell\left(p_{v y}\right)$. If $\operatorname{diam}(G)$ is even, then $\ell\left(p_{u v}\right)$ is even. Hence $p_{u v}$ can be extended to $u v$-walk of length $s_{2}-1$. If $\operatorname{diam}(G)$ is odd, then $\operatorname{diam}(G)<s_{2}-1$. Consider the path $p_{u v}^{\prime}$ consisting of the path $p_{u v_{1}}$, the path $P$ and the path $p_{v_{2} v}$.Then

$$
\begin{aligned}
\ell\left(p_{u v}^{\prime}\right) & =\frac{1}{2}\left(s_{1}+s_{2}\right)+\ell_{P}+\ell\left(p_{v y}\right)-\ell\left(p_{u x}\right) \\
& =\frac{1}{2}\left(s_{1}+s_{2}\right)+\ell_{P} \leq s_{2}-1
\end{aligned}
$$

is even. Hence $p_{u v}^{\prime}$ can be extended to $u v$-walk of length $s_{2}-1$.
Case 3. Both vertices $u, v \in P$. Assume $\ell\left(p_{u v}\right)$ is odd and $\ell\left(p_{u v_{1}}\right)<\ell\left(p_{v v_{1}}\right)$. Consider the $u v$-walk $w_{u v}$ consisting of the path $p_{u v_{1}}$, the cycle $C_{1}$, and the path $p_{v_{1} v}$. Then $\ell\left(w_{u v}\right)$ is even. Since diam $(G) \leq s_{2}-1$, hence $s_{1}+2 \ell_{P} \leq s_{2}$. This implies $\ell\left(w_{u v}\right)=s_{1}+2 \ell\left(p_{v_{1} u}\right)+\ell\left(p_{u v}\right)<s_{1}+2 \ell_{P} \leq s_{2}$. We now have $\ell\left(w_{u v}\right)$ is even and $\ell\left(w_{u v}\right) \leq s_{2}-1$. Hence $w_{u v}$ can be extended to a $u v$-walk of length exactly $s_{2}-1$.
Case 4. The vertex $u \in C_{1}$ or $u \in C_{2}$ and $v \in P$. Assume that $u \in C_{1}$ and the length of the path $p_{u v}$, consisting of the path $p_{u v_{1}}$ and the path $p_{v_{1} v}$, is odd. Then the path $p_{u v}^{\prime}$ consisting of the path $p_{u v_{1}}^{\prime}$ and the path $p_{v_{1} v}$ is of even length and $\ell\left(p_{u v}^{\prime}\right)<s_{1}+\ell_{P} \leq s_{2}-\ell_{P}<s_{2}-1$. Hence $p_{u v}^{\prime}$ can be extended to a $u v$-walk of length $s_{2}-1$.

Now assume that $u \in C_{2}$ and the length of the shortest path $p_{u v}$ is odd. Hence the length of the path $p_{u v}^{\prime}$ consisting of the path $p_{u v_{2}}^{\prime}$ and the path $p_{v_{2} v}$ is even. If $\ell\left(p_{u v}^{\prime}\right) \leq s_{2}-1$, then we are done. So assume that $\ell\left(p_{u v}^{\prime}\right)>s_{2}-1$. This implies $\ell\left(p_{v v_{2}}\right)>\ell\left(p_{v_{2} u}\right)$. Consider the walk $w_{v u}^{\prime}$ consisting of the path $p_{v v_{1}}$, the cycle $C_{1}$, the path $P$, and the path $p_{v_{2} u}$. Then $\ell\left(w_{u v}^{\prime}\right)$ is even. Since $\ell\left(p_{v v_{2}}\right)>\ell\left(p_{v_{2} u}\right)$,

$$
\begin{aligned}
\ell\left(w_{u v}^{\prime}\right) & =s_{1}+\ell_{P}+\ell\left(p_{v_{1} v}\right)+\ell\left(p_{v_{2} u}\right)<s_{1}+\ell_{P}+\ell\left(p_{v_{1} v}\right)+\ell\left(p_{v v_{2}}\right) \\
& =s_{1}+2 \ell_{P} \leq s_{2} .
\end{aligned}
$$

Since $\ell\left(w_{u v}^{\prime}\right)$ is even, $\ell\left(w_{u v}^{\prime}\right) \leq s_{2}-1$. Now we can extend $w_{u v}^{\prime}$ to a $u v$-walk of length exactly $s_{2}-1$.
Lemma 3.2. Let $G$ be an $\left(s_{1}, \ell_{P}, s_{2}\right)$-barbel with $s_{1}$ and $s_{2}$ are odd and $s 1 \leq s_{2}$. If $\operatorname{diam}(G)>s_{2}-1$, then $\exp (G)=\operatorname{diam}(G)$.

Proof. It is clear from the definition of diameter of a graph and exponent of a graph that $\exp (G) \geq \operatorname{diam}(G)$. We need $t$ show that for each pair of vertices $u$ and $v$, there is a $u v$-walk of length $\operatorname{diam}(G)$.
Case 1 Both vertices $u, v \in C_{1}$ or $u, v \in C_{2}$. Assume that $u, v \in C_{1}$. By Corollary 2.2 the $\exp \left(C_{1}\right)=s_{1}-1$, hence for each pair of vertices $u$ and $v$ in $C_{1}$ there is a $u v$-walk of length $k$ for each $k \geq s_{1}-1$. Therefore for each pair of vertices $u$ and $v$ in $C_{1}$ there is a $u v$-walk of length $\operatorname{diam}(G)$. Similar argument works for the case where $u, v \in C_{2}$.
Case 2 The vertex $u \in C_{1}$ and the vertex $v \in C_{2}$. We use the notation as in Case 2 of the proof of Lemma 3.1. Let $p_{u v}$ be the shortest $u v$-path in $G$. If $\ell\left(p_{u v}\right) \equiv \operatorname{diam}(G) \bmod 2$, the we are done. Hence assume that $\ell\left(p_{u v}\right) \not \equiv \operatorname{diam}(G) \bmod 2$. This implies $\ell\left(p_{u x}\right) \neq \ell\left(p_{v y}\right)$. If $\ell\left(p_{u x}\right) \leq \ell\left(p_{v y}\right)$, then the path $p_{u v}^{\prime}$ consisting of the path $p_{u v_{1}}^{\prime}$, the path $P$, and the path $p_{v_{2} v}$ has length $\ell\left(p_{u v}^{\prime}\right)=\frac{1}{2}\left(s_{1}+s_{2}\right)+\ell_{P}+\ell\left(p_{u x}\right)-\ell\left(p_{v y}\right) \leq$ $\frac{1}{2}\left(s_{1}+s_{2}\right)+\ell_{P}-1=\operatorname{diam}(G)$. Notice that $\ell\left(p_{u v}^{\prime}\right) \equiv \operatorname{diam}(G) \bmod 2$, hence $p_{u v}^{\prime}$ can be extended to a $u v$-walk of length $\operatorname{diam}(G)$. If $\ell\left(p_{u x}\right)>\ell\left(p_{v y}\right)$, then the path $p_{u v}^{\prime}$ consisting the path $p_{u v_{1}}$, the path $P$, and the path $p_{v_{2} v}^{\prime}$ has length $\ell\left(p_{u v}^{\prime}\right)=\frac{1}{2}\left(s_{1}+s_{2}\right)+\ell_{P}+\ell\left(p_{v y}\right)-\ell\left(p_{u x}\right) \leq \operatorname{diam}(G)$. Since $\ell\left(p_{u v}^{\prime}\right) \equiv \operatorname{diam}(G) \bmod 2$, hence $p_{u v}^{\prime}$ can be extended to a $u v$-walk of length $\operatorname{diam}(G)$.
Case 3 Both vertices $u, v \in P$. Let $p_{u v}$ be the shortest $u v$-path and assume that $\ell\left(p_{u v}\right) \not \equiv \operatorname{diam}(G) \bmod 2$. Consider the walk $w_{u v}$ consisting of the path $p_{u v_{1}}$, the cycle $C_{1}$ and the path $p_{v_{1} v}$, and the walk $w_{u v}^{\prime}$ consisting of the path $p_{u v_{2}}$, the cycle $C_{2}$, and the path $p_{v_{2} v}$. Then $\ell\left(w_{u v}\right) \equiv \operatorname{diam}(G) \bmod 2$ and $\ell\left(w_{u v}^{\prime}\right) \equiv \operatorname{diam}(G) \bmod 2$.

Define $\ell^{\prime}\left(w_{u v}\right)=\min \left\{\ell\left(w_{u v}\right), \ell\left(w_{u v}^{\prime}\right)\right\}$. Since $\ell\left(w_{u v}\right)+\ell\left(w_{u v}^{\prime}\right)=s_{1}+s_{2}+2 \ell_{P}, \ell^{\prime}\left(w_{u v}\right) \leq \frac{1}{2}\left(s_{1}+s_{2}\right)+\ell_{P}$. Notice that $\ell^{\prime}\left(w_{u v}\right) \equiv \operatorname{diam}(G) \bmod 2$. This implies $\ell^{\prime}\left(w_{u v}\right) \leq \operatorname{diam}(G)$.
Case 4 The Vertex $u \in C_{1}$ or $u \in C_{2}$ and the vertex $v \in P$. Assume $u \in C_{1}, v \in P$ and the path $p_{u v}$, consisting of the path $p_{u v_{1}}$ and the path $p_{v_{1} v}$, has the property that $\ell\left(p_{u v}\right) \not \equiv \operatorname{diam}(G) \bmod 2$. Define the path $p_{u v}^{\prime}$ to be the path consisting of the path $p_{u v_{1}}^{\prime}$ and the path $p_{v_{1} v}$. Then $\ell\left(p_{u v}^{\prime}\right) \equiv \operatorname{diam}(G) \bmod 2$. Notice that

$$
\ell\left(p_{u v}^{\prime}\right) \leq s_{1}+\ell_{P}-1<\frac{1}{2}\left(s_{1}+s_{2}\right)+\ell_{P}-1=\operatorname{diam}(G)
$$

Hence we can extend $p_{u v}^{\prime}$ to a $u v$-walk of length $\operatorname{diam}(G)$.
Now assume that $u \in C_{2}, v \in P$ and the shortest $u v$-path $p_{u v}$ has the property that $\ell\left(p_{u v}\right) \not \equiv \operatorname{diam}(G) \bmod 2$. Consider the path $p_{u v}^{\prime}$ consisting of the path $p_{u v_{2}}^{\prime}$ and the path $p_{v_{2} v}$. Then $\ell\left(p_{u v}^{\prime}\right) \equiv \operatorname{diam}(G) \bmod 2$. If $\ell\left(p_{u v}^{\prime}\right) \leq$ $\operatorname{diam}(G) \bmod 2$, then we are done. So we assume $\ell\left(p_{u v}^{\prime}\right)>\operatorname{diam}(G)$. Now consider the walk $w_{u v}$ consisting of the path $p_{u v_{2}}$, the path $P$, the cycle $C_{1}$ and the path $p_{v_{1} v}$. Then

$$
\begin{aligned}
\ell\left(w_{u v}\right) & =s_{1}+2 \ell\left(p_{v_{1} v}\right)+\ell\left(p_{v 2 v}\right)+\ell\left(p_{v_{2} u}\right) \\
& \equiv \operatorname{diam}(G) \bmod 2
\end{aligned}
$$

Since $\ell\left(w_{u v}\right)+\ell\left(p_{u v}^{\prime}\right)=s_{1}+s_{2}+\ell_{P}$ and $\ell\left(p_{u v}^{\prime}\right)>\operatorname{diam}(G)$, we have $\ell\left(w_{u v}\right)<\frac{1}{2}\left(s_{1}+s_{2}\right)+\ell_{P}+1$. On the other hand we have $\ell\left(w_{u v}\right) \equiv \operatorname{diam}(G) \bmod 2$, hence $\ell\left(w_{u v}\right) \leq \operatorname{diam}(G)$. We can now extend the walk $w_{u v}$ to a $u v$-walk of length $\operatorname{diam}(G)$.

We conclude that for each pair of vertices $u$ and $v$ in $G$, there is a $u v$-walk of length exactly diam $(G)$. Hence $\exp (G) \leq \operatorname{diam}(G)$.

As a direct consequence of Lemma 3.1 and Lemma 3.2 we have the following result that characterizes the odd and even primitive $\left(s_{1}, \ell_{P}, s_{2}\right)$-barbels.

Theorem 3.1. Let $G$ be a primitive $\left(s_{1}, \ell_{P}, s_{2}\right)$-barbel with $s_{1}$ and $s_{2}$ are odd and $s_{1} \leq s_{2}$. Then

$$
\exp (G)= \begin{cases}\text { even, } & \text { if } \operatorname{diam}(G) \leq s_{2}-1 \\ \text { even, } & \text { if } \operatorname{diam}(G) \text { is even and } \operatorname{diam}(G)>s_{2}-1 \\ \text { odd, } & \text { if } \operatorname{diam}(G) \text { is odd and } \operatorname{diam}(G)>s_{2}-1\end{cases}
$$

## References

[1] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, Cambridge, 1991.
[2] W. Fuyi, C. Mouquan and W. Jianzhong, On odd primitive graphs, Australasian J. Combinatorics 19 (1999), 11-15.
[3] B. Liu, B.D. Mckay, N.C. Wormald and Z.K. Min, The exponent set of symmetric $(0,1)$ matrices with zero trace, Linear Algebra Appl. 133(1990), 121-131.
[4] J. Shao, The exponent set of symmetric primitive matrice, Scientia Sinica Ser. A XXX, No. 4 (1987), 348-358.
[5] S. Suwilo and Mardiningsih, On exponents of primitive graphs, In: Herman Mawengkang, Saib Suwilo and Sutarman (eds.) IRCMSA 2005 Proceedings, Parapat, USU Press, (2005), 37-42.

