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Abstract

The main purpose ofthis paper is to validate the e{ficiency and accwacy
of the Half-Sweep Arithmetic Mean (HSAM) method using the fourth-
order flrnite difference approximation equation to solve one-dimensional
Poisson's equation. In this paper, wo formulate the Full-Sweep and
Half-Sweep Arithmetic Mean methods, namely FSAM and HSAM
respectively. Finally some computational experiments were conduckd
to prove that the fourth-order solver using the HSAM methods is
superior to the FSAM method.

Keyrords: Half-Sweep Iterative, Arithmetic Mean Algorithm, Fourth-
Order Finite Difference, Poisson's equation

1. Introduction

Recently many researchers have formulated high-order approximation equations obtained

by discretization of existenl differential equations in mathematical models. For instance,

formulation on the fourth-order approximation equations have discussed by Spotz (1995)

and Gupta et al. (1997a-b) in order to get more accurate approximate solutions. Each

approximation equation will lead a system of linear equations, where the character and

complexity of its coefficient matrix depends on the order of the equation. Apart from these

discretizations, solving systems of linear equations using the iterated approach is more

interesting to be studied. Therefore, in this paper the Arithmetic Mean (AM) method

(Ruggiero & Galligani 1990) will be considered to get approximate solutions for any

system of linear equations. Actually this method is categorized as one of two-step iterative
methods. Other two-step iterative methods can be considered such as the Altemating
Group Explicit (AGE) (Evans & Sahimi, 1988), the Iterative Alternating Decomposition
Explicit (IADE) (Sahimi, Ahmad & Bakar, 1992) and the Reduced Iterative Alternating
Decomposition Explicit (RIADE) (Sahimi & Khatim, 2001) methods.
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However, next section in this paper, we show on the combination of the full-
sweep and half-sweep iterative into the Arithmetic Mean (IISAM) method and then called
the Full-Sweep Arithmetic Mean (FSAM) and Half-Sweep Arithmetic Mean (HSAM)
methods respectively, see Sulaiman et al. (2004). To validate the accuracy ofthe fourth-
order solver and the efficiency of the HSAM method, let us consider one-dimensional
Poisson's equation defined as

#= f(x),aoSx<b6 (1)

subject to the boundary conditions

u(a6)=$0, u(h)=Ft

and a is a variable, which depends pn the type of metals and f is a continuous function.
Before further discussions on formulation of the fourth-order full-sweep and half-

sweep finite difference approximation equations for problem (1), we shall restrict our

discussion onto miform node points only. Let assume the solution domain (l) can be

uniformly divided into m=2P, p22 subinterval, which its distance, l* defined as

6*=$, -"il =o,n=m-l

2. The Fourth-Order Ilalf-Sweep Finite Difference Approximation

Referring in Fig. 1, the finite grid networks show the distribution ofuniform node points to
be considered in implementing the half-sweep and full-sweep iterative methods. The
applications of both methods into the Arithmetic Mean method will compute approximate
solutions onto node points oftype @ only until the iterative convergence is satisfied.
While solutions of other remain points are computed directly, see Abdullah (1991),
Ibrahim and Abdullah (1995), Yousif and Evans (1995), AMullah and Ali (19!)6).

ot2 345678

a).

*-- 2h----

0r?3456',tI
b).

Fig. I a). and b). show the distribution ofuniform node points for the full- and
halGsweep cases respectively.

Using the finite difference approac[ there are many approximation equations can be
derived for problem (l). For instance, the second-order finite difference approximation
equation can be expressed as

(2\
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-II;-1+2(t i -tJ i*t = h2 fi
Furthermore, the computational molecule for equation (3) is shown in Fig.
corresponding syskm of linear equations can be stated as

oy=!

where,

(3)

2 and the

(4)

-l
2-l

-i 2

u_=lW u2 u3

t2fi n2fz

i-X i i+t
Fig. 2 Computational molecule of the second-order finire dlfference

scheme for problem (l)

Using the same st6p to get approximation equation (3), it can be shown that the fourth-
order fuIl-sweep and half-sweep finite difference approximation equations generally can
be expressed as

tli-p -l6Ui-p +30Ui -l6Ui+p +Ui+p =t2( ph)2 fi (5)

The value of p, which corresponds to I and 2, represents the firll-sweep and half-sweep
cases respectively. In additio4 Fig. 3 shows the computational molecule for both fourth-
order fmite-difference schemes. Based on Fig. 1 and 3, we can not compute approximate
values for node points, i- p and i=m-pbl using equation (5), because some node

points are out of the solution domain (1), see Fig. 4. To overcome this problerq both
points will be evaluated by equation (3).

Therefore, combination between equations (3) and (5) can be easily shown in a
matrix form generally stated as

AU =b

2

-l l
I

-t I

,)wa

u,lr

n2 7r*un*1f

-l

f =1" f,*uo

(6)
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where,

A=

2-l
-16 30 -16 l
I -16 30 -16

l-rc
I

I

3; -r;
-16 30

-t

I

-16
r[[(

m-p

9-,).(;)-ll
v,

h2.f^-p*r.Y.

Y=V" u2p u3p

l2hz f2r+Ug tzt2lo

a+tt

Fig. 3 Computational molecule of the fourth-order full-sweep and half-
sweep finite difference scheme for problem (l).

@:,, @ ,@,',
t p fu '3p 4p m"?P m-P m

Fig. 4 Distribuition of node points for the computational molecule of the
fourth-order firll-sweep and half-sweep schemes at i = p.

3. The llalf-Sweep Arithmetic Mean Method

As explained in previous sectioq the AM method is categorized as one of two-st€p
iterative methods. It means that the iterative pr&ess for this method involves two levels of
virhral time such as u0) and u(z). tn this paper, we show on how to derive the FSAM or

HSAM method To facilitate on formulation of HSAM and FSAM methods onto system of
equations (6), let us rewrite the coeffrcient matix" A in a general form as

au=f

f =lr2 fro *uo

(7)



IRCMSA 2005 Proceedings 143

where,

A=

atp btp dtp

cZp alp bZp d2p

Plp qp a3p blp d3p

Pm-3P cm-3, am-3P

Pm-2p cm-2p

P*-P

u!t) '

(",Q -,y/* t - o,,u!!l 
o - a,,u!!) 

o 
* t 

) I ",
(- ",,u ll o 

+ ai g - r\1( r ) - t,,u! ll o - a,,u! !) p * rt ) I ",
(- o,,u{u o - ",,u{! o 

+ a, (r - r\\ x ) - Uru!|/ p *,t, ) I ",
(- o,ru{u- r - ";"u{l o 

+ o;(t -,\t( k ) * t 
) 1 ",

bm-3p dn-3p
am-Zp bn-2p

cm-p am-p

tt;l-t.tt9-i)
Thereafter let assume the matrit A in equation (7) needs to be decomposed into

A= L+ D+r (g)

where I, D and T are lower triangular, diagonal and upper triangular matrices
respectively. The general scheme for both AM methods is given by (Ruggiero & Galligani
1990; Sulairnan et al. 20&)

tn+ rpfi) =(r- r)o- rrp_@)+ r 7 I
(n+rrp_Q) =1$-,)o-tp&)+,7 | O,

y(r*r) =1[u(r)* u0)l )
- - \-

where r ana uG) represent as an acceleration parameter and an unknown vector at the ke

iteration respectively. Practically the value of r will be obtained by implementing some
computer programs and tlren choose one optimal value of r, where its number of
iterations is the smallest. Getting values of maftices L, D and I as stated in (8), the
general algorithm for FSAM and HSAM schemes in (9) may be described in Algorithm 1.

Algorithm l. FSAM and HSAM schemes

D at level (l)

a^ For i=1p,2p,jp,...,m- p , calcvlate

,i =lp

,i=2p

,i=m-2p

,i=m- p

,Orhers(- o,"u!l), - ";,u!! o 
+ olr -,ft ( k ) - t,,u! ll p - 0,,4 ll o 

* fi 
) I ",
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ii) atlevel (2)

b. For i=6- p,n1-2p,...,2p,1p, calculate

u!') *

(-ayd,l/o-tay',lfo*,ifi-,Vlu) **)1", ,i=tp

(-orulllo-b,,u!:lo+ai|-t\1(k) -"yu!!lp*t,)1",,i=2p
(-oou!\lr+ a,(r-r\1$) -,,,u!!lp-p,,u!:lp*,f)1",,i=m-2p

(*{t-,Y{o) -",,u!!lp-p,,u!:lp*t)1", ,i=m'p

- a;,u!l/ 
o - rird,ll 

o 
+ "ft -,\/ 

k ) - "i"u{!l p - p,d,!l p * * ) I ", .ahers

c. For i=1p,2p,3p,...,m- p, calculate

ufu),-l(u!'t *u{'))

The FSAM and HSAM algorithms are explicifly performed by using all equations at
level ( l) and level (2) alternatively until the specified convergence cri0erion is satisfied.
Then the Full-Sweep Gauss-Seidel (FGS) method acts as the contol of comparison of
numerical results.

4. Computational Experiments

To show the efficiency of the HSAM scheme using the fourtlr-order finite difference
approximation equation (5) especially in tenn of the number of iterations, execution time
and maximum absolute eror, we conducted numerical experiments to solve the one-

dimensional Poisson's equation as follows

-4=9sin(3x), xe[0,1J
dxz

Then boundary conditions and the exact solution ofthe problem (10) were defined

U(x)=sin(3x), 0<x<1.

(10)

by

(1 l)

,i
i

rbi

,*l
EI
I

s-u

Number of iterations versus mesh size of the FSAM and HSAM methods.Fig. 5
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Fig. 6 The execution time (seconds) versus mesh size ofthe FSAM and HSAM methods.

All results of numerical experiments, obtained from implementation of the GS, FSAM
and HSAM methods, have been recorded in Table L In the implementation mentioned

above, the convergence test considered the tolerance error e = 10-10. nig. S and 6 show
number of iterations and the execution time versus mesh size respectively.

5. Conclusion

From the observation in Table l, the finding in Fig. 5 and 6 shows that a number of
iterations and the execution time for the HSAM have declined by 48.05 - 50.90% and
50.00 - 90.24o/o respectively compared with the FSAM method. Overall" the numerical
results shows that the HSAM method is superior to the FSAM method in terms of a
number of iterations and the execution time. This is attributed to the computational
complexity of the HSAM method, which is nearly 50%o less than the FSAM method. [n
term of the accuracy of approximate solutions, the HSAM method with the fourth-order
hnite difference approximation equation has got its maximum absolute error more accurate
than the FGS method with the second-order standard finite difference approximation
equation.

Table 1: Comparison of a number of iterations, the execution time (seconds)
and maximum errors for the iterative methods.

=tl
E'" Isa-

.t

No. oflterations
Melhods Mesh size

64 128 256 572 to24 2o48

FGS (2* Order') 7063 25954 94592 341534 12t8827 42861 18

FSAM (4e order) 837 t662 '3258 6334 t2245 23572

HSAM (4ft Order) 411 837 1662 3258 6334 1224s

Execution time {Seconds)

Methods Mesh size

64 t2a 256 512 1024 2044

FGS (2* Order'r 0.31 l. l3 63.33 299.57 1205.42 3692.O9

FSAM (4'Order) 0.06 0.16 0.34 1.07 9.t2 2t t2
HSAM f4e order) 003 008 0l 03 089 799



Maximum Ab6olute Errois
Methods Mesh size

64 128 256 512 lo24 2048

FGS (2d order) 1.697e4 4.228e-5 9.948e{ 5.293e-B 9.961e{ 4.233e-5
FSAM r4b chder) I O57*7 4.622e-9 1.790e8 3.691e-8 7.460e.8 I 502e8
HSAM (4'Order) 2.28Oe-6 1 174e-'7 4 742e-9 I 790e-8 3 69le-8 7 460e8

1.

2.

J.
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