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Abstract

There is a large number of different approaches for formulating and
solving optimization problems under uncertainty. In applications, one is
usually faces incomplete information on probabilty measure .
Numerical attemps has been made mostly rely on approximating u by
“simpler” measures. This paper presents overview of stability of two-
stage Stochastic Integer Programming model under perturbations of the
integrating probability measure .
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1. Introduction

Problems of the stability of solutions in mathematical programming problems are
considered from different viewpoints and investigated from various positions. In works
devoted to the investigation of the stability of the solutions, the subject of observation is a
conditional extremum which is taken either as a random point, or as a random value.
Depending on that, quite different notions of stability are inserted. In a number of works
the stability problem is investigated in stochastic and parametric plans and also the light of
the error theory.

In the stochastic programming problem the decision of the stability problems become very
important since in these problems the values of the parameters are random. Here, we
consider two-stage integer stochastic programs where the sum of the first stage cost and
the expectation with respect to P of the second stage cost has to be minimized. However
in most applications P is not known exactly. Even if P is given, it might happen that the
stochastic program cannot be solved due to technical limitations and one has to use a
simpler approximating distribution that makes the problem solvable. Hence, one often has
to deal with statistical models and approximations Q of P . Of course, since solutions and

optimal values of the original problem containing the distribution P are of interest, it is
necessary to have statements at hand about stability of stochastic programs with respect to
perturbations of P.
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There are a number of such stability results in literature, see [16] for a recent survey. Most
of these results consist of Lipshitz continuity properties of solution and optimal values

with respect to certain probability metrics d(P,(). Especially in the case that P is
unknown, this may in the end not be completely satisfactory, because in this case the
distance d(P,(Q)is also unknown. Hence the question arises whether it is possible to

prove statistical statements about the accuracy of solution and optimal values. In
particular, confidence sets may be of interest. Such statistical statements require the

availability of some statistical estimates associated with P, e.g. independent identically
distributed sample of P.

The latter called empirical estimates and they can be understood as the so-called empirical
measure ) = P, with n € N denoting the sample size. Asymptotic properties of

statistical estimators in stochastic programming have been studied intensively. For two-
stage stochastic programs without integrality requirements much is known. For mixed
integer two-stage stochastic programming programs, the situation is essentially different.
In [18]conditions are given implying consistency, convergence rates and a law of the
iterated logarithm for optimal values. For pure integer model, large deviation type results
are derived. Much of this work is based on recent development of empirical process theory

e.g [19]

Modeling the uncertainty by random objects may lead to diverse stochastic programming
problems. In this paper we concentrate on two-stage problem only.

In Stochastic Integer Programming, integrality constraints are imposed on the first stage
and/or second stage variables. Problems become almost unbearable if integrality
constraints are imposed on second stage decision variables.

This model will be explained by analysis of its mathematical formulation

min{f, (x) + E,¢p(x,®) : x € X} 6}
As can be scen, this formula (1) presents a decision with possible recourse actions. At the
first stage a decision x is to be selected from a set X of feasible solutions. A decision X
gives rise directly to costs f,(x), f; : X > R and in the second stage to costs that are

involved if a recourse action on the decision is taken. Besides Xx this recourse action
depends on the realization of initially unknown data represented by random object @,

which is an element of some probability space ((€2, 4, 4). For a realization @ the
recourse cost is denoted by the function @ : X xQ > R of x and @, and hence a
random object itself. Since it becomes realized only after the decision x is made we
include it in the total cost function by taking its expected value E @(x,®), which is a

(non-random) function of X, depending on the probability measure .
Let

O(x, ) = E ,0(x, 0) )
The recourse action usually asks for an optimal decision that is formulated as :
o(x,0) = min{f,(y,): y € Y (x,w)} €)
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Here, y represents the recourse action to be selected from the set of feasible recourse action
Y (x,®). As indicated by the notation this set is dependent on X and @ . The cost of the

action y may also depend on @ and is therefore denoted as f,, (y, @), f, : Y xQ+> R.

2. Model of two-stage problem

A Stochastic Programming problem related to the two-stage recourse problem is the
distribution model, where the objective is to determine the distribution of the random
variable

z(w) = min{f,(x)+ o(x,0) :x € X} “
A standard form of two-stage integer stochastic programming problem with complete
recourse formulation is as follows :

min{ch+Q,(x,,u):Abe,xZO,xeR"} Q)
Q' (x.1)=E ¢’ (x,0) ©)
¢’ (x,®) = min{g(w)" y: Wy 2 p(@)-T(®),y >0,y € Z*} )

with {y e R : Wy >2,y>0}#0,Vz e R".
In general (pI (x,w) is discontinuous in X for every @ € Q. This implies that under a
discrete probability distribution on @, @' (x,4) is also discontinuous. If @ is

continuously distributed, the situation is slightly better : ¢’ (x, £) is continuous but still

non convex [6]. Hence the solution methods that were successful for stochastic linear
programming problem cannot be simply adapted to solve this stochastic integer
programming problem with integer second stage variables.

Ilustration presented below is extracted from [11] concerning SunDay Icecream Co.’s
planning the location and capacity of its distribution centers to serve demands from its

retailers in NV cities, where the demands of the various retailers are quite uncertain but the
probability distribution of the retailer demands is known. Let y,be the 0-1 variable

indicating whether a distribution center is to be located in city  (if =1, ..., N) and X,
denote the non-negative variable indicating the capacity of the distribution center located
in city-7 . The maximum capacity that can be located in the city - / is denoted by U, . The

cost parameters g; and b; denote the per-unit capacity cost and the fixed location cost for
locating a distribution center in city- i, respectively. Let z;; denote 0-1 variable indicating
the assignment of retailer j to distribution center-i, and Vi denote the associated fixed

assignment cost; d; be the uncertain demand of the retailer in city- j (j = (..., N).

All costs are assumed to be amortized to a weekly basis, and the demands and capacities
are in tones of ice-cream.
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Note that the locations, capacities and assignments of the distribution centers have to be
decided prior to observing the actual demand, whereas the shortage penalty is incurred

upon observing the actual demand volume in the future. Consequently, the g; is an

uncertain parameter, whose actual value depends on the uncertain future demand volume.
Now suppose that SunDay has to make the location-capacity-assignment decisions prior to
observing demand. However, instead of paying a penalty on shortages, it wishes to
guarantee that the probability of a shortage at any of the distribution center is small
(< €). The problem formulation now becomes what is called a chance-constrained model

N N N
min )" (a,x, +b,9,)+ Y. > 7,2, (10)
i=l

i=l j=l

suchthat O0<x, <U,y,

N
ZZ,-,- =1
i=l

N
zzij Ly
j=1
Yi»2; €401} i,j=1..,.N
and
N
P,(Z dz; <x,i=1,., N) z2l-¢ (11
Jj=1

The last constraint in the above model bound the probability of a shortage from above.
Such constraints are known as chance constraint or probabilistic constraints. Unless the
underlying parameter distributions and/or the constraint structure are of very specific form,
chance constraints are extremely difficult to deal with algorithmically.

Suppose the demand d is represented by the random object d, element of some
probability space (€2, 4, 4£). For a realization W the recourse cost is denoted by the

function Q" (x, ) = E ﬂQI (x,d) At the first stage, a decision Xis to be selected
which gives rise directly to costs c’x , and in the second stage to costs that are involved
if a recourse action on the decision is taken. Besides X this recourse action depends on the
realization of initially unknown data that are represented by the random object d element
of some probability space (€, 4, ) . Since it becomes realized only after the decisions
Xxis made we include it in the total cost function by taking its expected value
E ﬂQI (x,d) which is a (non-random) function of X, depending on the probability
measure /£ . In stochastic integer programming, integrality constrains are imposed on the
first stage and/or second stage variables. This introduces computational difficultics. In
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general, Q(x,d) is discontinuous in x for every d € €. This implies that under

discrete probability distribution the situation is slightly better : Q(x,d) is continuous but
still non convex (see [8] and [5] section 3).

3. Approximation Methods

In stochastic (mixed) integer programming integrality constrains are imposed on (some of)
the first stage and/or second stage variables. This causes computational difficulties and
gives strong evidence that polynomial time algorithms for its solution do not exist
(whereas such an algorithm has been devised for linear programming [20]). In case only
the first stage variables are restricted to be integer, the nice properties of the second stage
cost function are maintained, hence we obtain an integer convex programming problem.

There are three levels of difficulty in solving stochastic integer programs (5).

- Evaluating the second-stage cost for a fixed first stage decision and a particular
realization of the uncertain parameters.

- Evaluating the expected second —stage cost for a fixed first-stage decision.

- Optimizing the expected second-stage cost.

Two main approaches have been pursued in the recent literature with respect to solution
methods. One approach is to abolish optimality and settle for an approximation. This
approach has been investigated by [8] chapter 1, 2, and 3.

With approximation methods, the goa] is find a lower bound and upper bound of x as an

approximation for the optimal first stage decision x * . This is called confidence interval
for optimal values.[13] has shown that limit theorems can be used to derive confidence
interval for optimal value via a certain modification of the bootstrapping like method /
sampling. Moreover they have done empirical approximations of two-stage stochastic
mixed integer programs and derive central limit theorems for the objective and optimal
values.

Probability theory provides the tools for establishing mathematical indications on the
quality of the approximations. A common attitude in solving NP-hard combinatorial
optimization problems is not to insist on optimality but dedicate research efforts to
designing fast and high quality approximation methods. This approach was initiated by
STOUGIE [6], DEMPSTER et. al. [7,8]

To analyze the quality of the approximations, the stochastic nature of the problems
suggests a probabilistic error analysis.

The following illustration on results typical for this approach (worked by[5]) by an
example concerning a hierarchical scheduling problem which is extracted from [8], where
improvements of results in are obtained in [21].
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Figure 1 : Illustration of LPT rule

At the first stage or aggregate level we have to decide on the acquisition of a number x of
identical and parallel machines, each of which costs an amount ¢. On the machines
acquired a number n of jobs must be processes at the second stage or detailed level
according to a schedule to be constructed such as to minimize the completion time Cipay of
the job completed last, the so-called makespan. Suppose each time unit costs 1. Each job j
has a processing time 7 (®), j = 1,..., n, the precise value of which is not known at the

moment of the first stage decision. Assuming that 7, (w), 7, (®),..., 7, (@) are independent
and identically distributed (i.i.d.) random variables, where / lives on some probability
space (Q, A4,u) with p such that E #”12 (@) <o0. 1t is clear that the makespan is a
function of the processing times and the number of machines available, which is reflected
the notation Cexl X, 7(@) ) With 7(@) = (7, (®),..., 7, (@))-

The above lead to the stochastic programming problem

min{cx+ E,C,

max X T(@)) : x20,x € Z} 12)
Consider the longest processing time first (LPT) rule as a means for approximating it. This
method orders the jobs on a list in decreasing processing time, and at each step the next
jobs on a list is assigned to the earliest available machine (figure 1). The use of LPT is two
fold. First it can serve as an approximation for the second stage problem. Secondly, it
provides an upper bound on the optimal value that together with an obvious lower bound

can be used to derive an estimate of the C._ (X, 7(®)) that can becomes very accurate

as the number of jobs becomes large. Let C wid

max

(x, 7(®)) denotes the solution value
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—Zn (@)<C,,. (x,m(@)) <CET (x,m(@) < — Zn (@) +7, (@) (13)

,nﬁ ’n@
[5] has solved the above problem and found x” e {{ — J," ———"} as an
c c

approximation for the optimal first-stage decision x*.
Together with the LPT-rule for the second-stage scheduling problem this yields a solution
value

2! =cx" +E CHT (x| m(w))

4~ max

Writing the optimal value as z° =cx” +E,C._(x',7(®)), and using the bounds in

4~ max

(12) and taking expectations, it can be verified that

i<1 i P max (@)

a 2\née

which establish the worst-case bound on the performance ratio of the approximation.
Under the assumption made, E #71'12 (®) < ©, we have that

(14)

(»)
lim—£-—2—— B =0 (15)
o 2 nbe

This approximation is said to be asymptotically optimal.

In the case the problem is under the assumption that all information is available in
advanced (4), the approximation solution can be compared with the optimal solution. [5]
has also worked on such a case and found that the relative error that can be attributed to
imperfect information also tends to zero with probability one.

Given difficulty of solving stochastic programs, particularly stochastic integer programs,
developing approximation algorithms for such problems is a promising direction for future
research.

3. Stability of recourse problems

When formulating a stochastic programming model one assumes the underlying
probability distribution to be given. In practical situations this is rarely the case. One often
has to live with incomplete information and approximations. Furthermore, also under full
information about the unde4rlying distributions one is led to approximations, since exact
computation of expectations and probabilities typically arising in stochastic programming
is beyond the present numerical capabilities for a large class of distributions. Since
solutions and optimal values of the original problem containing the distribution P are of
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interest, it is necessary to have statements at hand about stability of stochastic programs
with respect to perturbations of P. These circumstances motivate a stability analysis for
optimal values and optimal solutions to stochastic programs with respect to perturbations
of the underlying probability distributions. There are many excellent recent papers on
stability of stochastic integer programming problems e.g. {2,6,11]

In this section, what is investigated is the stability of optimal solutions and optimal values
to the integer recourse problem P(x, A, 1) when the probability distribution £ and
weight parameter A are subjected to perturbations. The stability of problem P (x, A, 1)
with r = 1 is examined with respect to variations both in p and Q, see Kall [10] and
Dupacova [11]. In the present paper we pursue this for two stage stochastic integer
program with recourse. The scalar minimization problem P (x, A, 1) is considered by

Chen [12] and Cho [9]. In [6], the stability of P (x, 4, &) with respect to variations in p

and A in the sense of weak convergence by defining the bounded Lipschitz metric on
distribution space.

There is some special work about confidence sets for solutions and optimal values of
stochastic program. In [14], a stochastic programming with finite decision space is
considered. Confidence sets for the solution set are desired by estimating the objective for
each possible decision and selecting the presumably best decisions according to some
statistical procedure. Statistical behaviour of the objective of general stochastic integer
programming problems has been analyzed in [15]. Since the solution is within acceptable
confidence interval, hence the question arises whether it is possible to prove statistical
statements about the accuracy of solution and optimal values.

The stability of optimal solutions and optimal values to the linear recourse problem
P(x, A, £) when the probability distribution p and weight parameter A are subjected to
perturbations has been investigated by Cho et al.[9]. They derive quantitative continuity
properties of the expectation functional which leads to qualitative and quantitative stability
results for optimal values and optimal solutions with respect to perturbations of the

underlying probability distributions and weight parameters in the objective function of the
multiobjective programming problem,

Conclusion
To establish stability of two-stage stochastic integer program with complete recourse and
to get the stability analysis on problem P (x, A, ££), one needs to investigate a structural

properties of a problem, mainly determined by the properties of the function QI given in
(5),(6).If the stochastic programming problem is absolutely planning stable with the
probability ¢, then since the optimal plan has with all corresponding realizations @ one
and the same objective function’s value, one may say that the problem is also functionally
stable, at least, with the probability « .
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