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Abstract

Recently, the authors established a number of inequalities involving
Khatri-Rao product of two positive matrices. Here, in this paper, the
results are established in three ways. First, we find new Holder-type
inequalities for Tracy —Singh and Khatri-Rao products of positive semi-
definite matrices. Second, the results are extended to provide estimates
of sums of the Khatri-Rao and Tracy-Singh products of any finite
number of positive semi-definite matrices. Three, the results lead to
inequalities involving the Hadamard and Kronecker products, as a
special case.
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1. Introduction

Consider matriccsA=[a,.j],C=[c,.j]eMm’nandB=[bk,]eMp’q. Letdand B be

partitioned as A=[A,-j]and B=[By] (1gigt,1<j<o), where 4; is an m; Xn;

! 4 1 [4
matrix and Byis a p; X gq,matrix (m=Ym,, n=%Xn,,p=2Lp; q=24q;)
i=1 Jj=1 i=1 j=1

Let A® B,A-C,A®B and A* B be the Kronecker, Hadamard, Tracy-Singh and
Khatri-Rao products, respectively. The definitions of the mentioned four matrix products
are given by (see e.g. [2])

A®B=(a,jB)ij ; A°C=(aycu-),-,- 2 M

4+B=(4,©B,) ; 108= (4,08), = (4, ® Bu)y),- @

Additionally, the Khatri-Rao product can be viewed as a generalized Hadamard product
and the Tracy-Singh product as a generalized Kronecker product, i.e., fora non-partitioned

matrix 4 and B, their A®@Bis A® B and 4* B is Ao B . For any compatibly partitioned
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matrices 4, B,C, D, we shall make frequent use the following properties of the Tracy-
Singh product (see ¢.g. [1,2] )
(4OB)(COD) = (AC)O(BD); 3)

(40B)" = A°©B". @)
An  Hermitian matrix 4 is called positive semi-definite (Written 4>0) if

(Ax, x) 2 0 for any vector x . For Hermitian matrices 4 and B , the relations 4 > B mean

that 4—B >0 is a positive semi-definite. Given a positive semi-definite matrix 4 and
k 21 be a given integer, then there exists a unique positive semi-definite matrix B such

that A = B*, written asB= A'""*. Let4e M, be a positive definite. The spectral
decomposition of A assures that there exists a unitary matrix U such that (see e.g. [6])

A=U'DU =U"diag(A)U ,UU =1, . [#))
Here, D = diag(4;) = diag(4,,---,4,,) is the diagonal matrix with diagonal entries A
(4; are the positive egeinvalues of A4 ). For any real number 7 , 4" is defined by

A"=U'D'U =U"diag(A)U . 3)

2. Some Lemmas
Denote H, be the set of all positive semi-definite nxn matrices. We present the
following three Lemmas as basic results.

2.1. Lemma

Let A4, €M,;,;,(1<i<k,k>22) are compatibly partitioned matrices

(m=l’£[lm(i),n=_]£[1n(i), r=2ﬁmj(i), s=§ﬁnj(i), m(i)=i]mj(i), n(i) =
R i=] i= j i =

J=li=1 J=ti=l

[4

>n ;())). Then (see e.g. [1]) there exists two real matrices Z,of order mxr and Z,of

J=1

order nx s suchthat Z/ Z=1,, ZYZ =1, and
k r( k
[I+4, = 7 | 184, |z,. @)
i=1 i=1

Here, I, and 1, are identity matrices of order rxr and sx s, respectively .
2.2. Lemma

Let a; and b, (1<i < k) be positive scalars. If 1 < p.q <o satisfy (1/p)+(1/g)=1.
Then the scalar Holder inequality is given by (see e.g., [7])
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k E 1/p k i/q
Yab, s(za,”) (zb,.") . 5
=1 i=1 i=1

2.3. Lemma

Let @, and b;(1<i<k) be positive scalars. If 0<p<w and O0<g<1 satisfy

(1/g)— @1/ p)=1.Then
k k 1P /g i/q
Eaibik(za?’) (Zb,-") , )
il

i=1 i=1
Proof: The condition (1/g)— (1/p) =1 can be rewritten as 1Ap/q) +1/1/q) = 1. Note
that 1< (p/q)<wand 1< (1/9) < . By scalar Holder inequality in Lemma (2.2), we

have
k k k P ¢y q
2t =2t ) s (@) (Slan})
i= i=1 i=1

i=l i

k & ~1/p k l/q
Hence, ¥ a;b, Z(Zai—p) (Zbiq) . O
i=t i=1

3. Main Results

3.1. Theorem

Let4, € H, be commutative partitioned matrices and B, € H), be commutative
partitioned matrices (1< i< k).If 1< p,q < o satisfy (1/ p)+(1/¢) =1. Then

k k 1/p k 1/q
> 4,0B, S(ZA,.”) <) (ZB,.") )
i=1 i=l i=l
Proof: By assumption there exist a unitary matrix U e M, and a unitary matrix
VeM,suchthat 4, =U DU with D, = diag(d,,,"+,d,,)and B, = VT,V with
T, = diag(t,),**+,t,,), whered, t,; are nonnegative real numbers for all 7andj. It
follows that
408, = (U DU ('1U)= (U ev*p,er, Yver)
= (UGV)* diag(dntils”"dntima"'admtix»""dintim)(UQV)
So, by using Lemma (2.2), we have
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k * k k
Z]AIGB = (U@)V) diag(zldiltﬂ’""zI 11 Lims'- de [ EN detm)(U@V)
i= 1 i= =]

. 1/p 1/q i/p i/q k lp
<(vev) diag[(f:d,.’,’ (ft;{) (fd’{) (ft,-‘,’,,) ,---,(Zd,i)
i= i=1 i=1 i=1 i=l
l/q i/p 1/q
(24) " (a2) " (52) ](Uw)
i=1 i=1 I=1
i/p 1p
=(U®V)'{diag[(ﬁdﬁ) fld,ﬁ) }
1/q 1/q
@diag[(ft;{) (it) ]}(U@V)
i=1 i=l
ip 1/q
(U‘@V){(zpf’) @(irﬂ) }(U@V)
i=
1/p 1 1/q
v* ZD" U]@(V*(_ZIT,") V]
l:
x 1/p & 1/q
o ) o(ger)"

3.2. Corollary

Al

M=

]

i

Let4, € H, be commutative partitioned matrices and B, € H, be commutative
partitioned matrices (1<i<k).If 1< p,q <o satisfy (1/ p)+ (1/¢) =1. Then

k k 1/p % 1/q
Y 4, + B, s(zA,!’) . (zs;’) . ®
i=1 i=1 i=]

Proof: Follows immediately by applying Lemma (2.1) and Theorem (3.1). o
3.3. Corollary
LetA” e H "o (1<i < k) be commutative partitioned n'” x n"”

matrices, (1< j <r).Let 1< {p‘” }j.:, <o satisfy 5(1/ p»)=1. Then
J=l

1/,
z(nm“’} H@)(Z(A“))”m) ’ ©)

=1\ j=1 1 J=t =1

Proof: Using Theorem (3.1), the corollary follows by inductionon k. o
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3.4. Corollary
Let4Y e H ;( ;» (I<i<k) becommutative partitioned n'” x n”

matrices, (1< j<r).Let 1< {p”’ };=1 < satisfy Zr:(l/p(j)) =1.Then
=1

1/

i(ﬁt/t“’)s1’1;(2(4-‘”)”(”) . (10)
J=t \i=

=\ j=t i
Proof: Using Corollary (3.3) and Lemma (2.1), the corollary follows by induction onk .0
We give an example using products of three matrices (» =3 ). Let A,.U ) (<igk) be
commutative positive partitioned » x n matrices, (1< j <3). Let 1< {p‘j ) };1 <
satisfy (1/p©)+.1/p®)+ (1/ p®)=1. Then

k
0 X 4%e4Pe4?
i=l

1/p® 1/ p@® 1/ p®
kO k(2 ko3
s(zA;’ ) @(ZA}’ ) @(zAf’ ) g 1)
i=1 i=1 i=1

k
@) A7+ 47+ 4P

1/ p® 1/ p® 1p

k 1) k (2) k (3)

s(zA,!’ ) *(ZA,.” ) *(ZA,!’ ) . 12)
i=1 i=1 i=1

3.5. Theorem

Let4; € H, be commutative partitioned matrices and B, € H, be commutative
partitioned matrices (1<i<k).If0< p<o and 0< g <1 satisfy
(1/q)=(1/ p) =1. Then
k & -1/p k /g
Y 4,08, S(ZA,."’) e (ZB,.") 13)
i=l i=1 i=1
Proof: By assumption there exist a unitary matrix U e M, and a unitary matrix
V eM, suchthat 4, =U D,U with D, = diag(d,),+~,d, )and B, =V TV with
T; = diag(t;y,*+*,1,,), where d, 1, are nonnegative real numbers for all 7 and ;. It
follows that
4,0B, = (U*D,U)@ (V*T,.U) = (U‘@V*XD,.@T,. Xver)
= (UGV)’ diag(dt; s Ayl s digliy s s Bl )(UGV)
So, by using Lemma (2.3), we have
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k k
ZA@B (U®V) dlag(zdzltxl’ "’21 ithim>" de i1 gldintim)(UeV)

i=l

. . -Up s, i/q 1 “Up sy 1/q

> or) aug (£ ) (8] () (£
k -1/p k 1/q 1 “1ps /g

() () () () o
i=1 i=1 i=1 =1
. & -l/p & -l/p
= (ver) {diag[(zal;”) ,---,(Zld;,”) ]
i1 i=

=([ver*) {(é D77 )_1,,, 9@1 TS )l/q}(U(-DV)

k —llp of & i/q
U (ZD,."’) U @(V (_ZIT,.") V) ‘
i=] i=
-1/p k 1/q
=( 47 ) Q(ZB,.") .o
i=l i=1

3.6. Corollary

M

Let4, € H, be commutative partitioned matrices and B; € H, be commutative
partitioned matrices(1<i<k).If 0<p<wand 0<qg<1 satisfy (1/9)—(1/p)=1.

Then
k k -1/p k 1/q
> 4, +B, z():A,.‘P) . ():B;’) (14)
i=1 i=1

i=l
Proof: Follows immediately by Lemma (2.1) and Theorem (3.5). o
3.7. Remark
The results obtained in section 3 are quite general. Now, as a special case, consider the
matrices in section 3 are non-partitioned, we then have Holder type inequalities involving
Kronecker and Hadamard products by replacing ® by ® and * by o.

4. Conclusion

The problem may occur that we can’t find Holder-type inequalities for usual product of
positive matrices, but here, we can find new Holder-type inequalities for the Tracy-Singh,
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Khatri-Rao, Kronecker and Hadamard products of positive matrices which are very
important for applications to establish new inequalities involving these products. Since its
sometimes difficult to compute, for example, ranks, determinants, eigenvalues, norms of
large matrices, its of great importance to provide estimates of sums of these products of
any finite number of matrices by applying Holder-type inequalities of positive matrices.
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