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Abstract

Recently, the authors established a number of inequalities involving

Khatri-Rao p-A* ''f i*" ;;iti'; matrices' Here' in this paper' the

results are estabtishJ i" td"; ways' !qst' we find new Holder'type

inequalities to, r'ut'i--Sffi *a fg'ui-n- products of positive'semi'

definite matrices' #""4 itre resutls are extended to provide estimates

of sums or tn irtuii-ito antl-iracy-sinsh oroducts of any finite

number or po*lti'fllrri'atftrrrc matrices' 
"Three' the results lead to

-i*q*fiti.r'in 
ofviog ttte Hadamard and Kronecker products' as a

special case'

Keywords: Tracy'Singh pPaYtl' Khatri-Rao Product' Kronecker
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1. Introduction

Consider matrices,4 =laiil,C = [crl e Mr,nandB = [DH] e M o,o' l*lAar.d B be

partitioned as A=lAulnd B=lBal(l<'< t,l3i 3c)' whereliiis at m'xn'

matrix and Eris a po xq,matrix 1m=f'm,' n=f^nyo=Ir'' q=iqi)'

Let,4AB,A.C,,4@AandA*BbetheKronecker'Hadamard'Tracy-singhand
Khatri-Rao products, ..ti"ti"fy' The definitions of the mentioned four matrix products

are given bY (see e.g. [2] )'o*, 
=louilr; AoC =lru")u (l)

A* B =(au e nr)u ; a@B =(euor), = ((e, e h))u' Q)

Additionally,theKhatri'RaoproductcanbedewedasageneralizedHadamardproduct
and the Tracy-Singh pr"d;;-;;;nl.AizeA Xror.cker prJduct, i.e', for a non-partitioned

matrixl andB,theirl@Bisloa -oz * B is AoB. For anycompatiblypartitioned
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matricesl,B,C,D, we shall make frequent use the following properties of ttre Tracy-
Singfu product (see e.g. [1,2] )

(A@B){C@D) = (AC)@(BD) ;

(A@B)' = A'@B' .

(3)

(4)

An Hem{tian matrix ,4 is called positive semi-definite (Written I > 0 ) if
(*, rl ,0 for any vector .x . For Hermitian matrices I and .B , the relations A >- B mean
that A-B >0 is a positive semi-definite. Given a positive semi-definite mafiixland
f > I be a given integer, ttren there exists a unique positive semi-definite matrix B such

tlrrtA= Br, written asB= A1tk. l-etAeM. b a positive definite. Tlw spectral

decomposition of ,4 assures that there exists a unitary matrix U such that (see e.g. 16])

A=U*DU=U'dias(l)U ,[J'U =1.. (2)

Here,D = dias(4)= diag{4,"',)..) is the diagonal matrix with diagonal entries 2,

( 2, are the positive egeinvalues of ,4 ). For any real number r ,l' is defined by

A' =u'D'U =u-dias(4)u

2. Some Lemmas

Denoie aj ue trre set of all positive semi-definite a x z matrices. we present the

followingthree kmmas as basic results.

2.1. Lemma

Let A; e Mn1iy.n1i)(l < rs k,k>2) are compatibly partitioned matrices

k k , b ck t
( m = llm(i), a = ll n(i),, = 217 m i(,), s = IIIn, (i), m(i) = i.m,(i), n(i) =i=l i=t j=ti=t ' J=tr=t ' j=t '

c

I.rr (i) ). Then (see e.g. []) there exists two real matrices Zrof or&r m x r atd Z rof

order rex s suchthat Z{ Z = It, Z:Z = Iz and

fr, u, = zi(fisd,\2,. (4)
,=l \,=l ) -

Here, 1, and,I, are identity matrices of order r x r and s x s, respectively,

2.2. Lemma

Let a, and bi\<i < t) be positive scalars. lf l< p,q < o satisff (l/ p)+(llq)-1.
Then the scalar Holder inequality is given by (see e.E, I7l)

(3)



IRCMSA 2005 Proceedings 3

i, o,o,'(i,,t)"' (,i rr 
)' 
"

23. Lemma

I.et qi and, b,(l<r<fr) be positive scalars. If O<p<o and 0<4<l satisry

(ltl q)- (t/ p\ = 1. Then

i,o,r, >(io ol''' (iui\''' (6)i=r' \r=r I \i=r')
Proof: The condition (l/q)-(l/ p)= I can be rewritten as l/{p/q)+l/(l/q) = l. Note

that I S (plq) < oand I <(llq) < -. By scalar Holder inequality in [rmma e.2],we
have

3. Main Results

3.1. Thcorem

l,etAi e H; b" commutative prtitioned mafices and, B, c H; b commrrtative

partitioned matrices ( I <, < r ). If I 3 p, q q oo sadsry Q I p) + (l I q) = I . Then

k /r \l/P /k \l/q
zAi@Bi =[,I,r,rJ " L]r,rJ 0)

Proot By assumption there exist a unitary matrix u e M o ard a unitary matrix

Y e Mrzuchthat Ai =(J'D,fl witl, 4 = diag(dir,...,d*1and Bi =V'Tiy with

T, = diag(t,1,...rti.), whercd,r, /, are nonnegative real numbers for all iand7. It
follows that

A1@8, * (u'o,u! @' r,u) =(u'or. )(4o r,\uov)
= (uov)' aiog (d,t it,. 

. ., d itt ih,. . ., d int it,. . ., d,*t,.1(uov)
So, by using l,emma (2.2), we have

(5)

i,u: = 
fio;o 

(o p,f s (*,o: t,, o)''' (i,k" n),1',)

=(f.,-)''' (,it",oD'

Henw,, !.a,b,- (,*,t,)-"' (2u:)''' . ,
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!re,, 
o = (uov)* aiog(,i r,,r,,,.,,t r,,, *,. .., *. r,n,,,,..., f ,,,,,, )(r, 

n)

(,t', )"',,(f,o r.)''' (,t,* )"' ] 
@er)

- (uorf 
{aasft*rr)"',,[lr* )"' ]

**[[i,;)"',,(,i,*)"']]t,,1

= 
(uor)' ai,{i,*il''' (f.,:,)''' . ..,(f,ol)'' ' (i,,t )"' ,...,(Lor1'' '

= (u'or,') 
i(i 

r,;"' r(,ir,)"' 
)t 

.n)

= 
{['. 

(,*' :)'''')'('. (f,'' )""))
=[t+,)"" (,tul)"' ,

32. Corollary

l*tA, e tlj be commutative partitioned matrices and 8, e tt)U commutative

partitionedmatrices (l <, < r).If l< p,q < o satis$ gl p)+(t/q) = l. Then

2n,, 
r, =(?,nl)'''. (,trl)"'. (8)

Proof: Follows immediately by applying Lemma (2. l) and Theorem (3.1). o

33. Corollery

Let Ao e H)rt (l < , < t) be commutative partitioned nu) x nu)

maffices,(t<i <r).kt t={r,,,}r=, ao satisff i,.(tt r,t )=l.Then

*(,t*")= g,(*,,1' ,o'o)''"' (s)

Proof: Using Theorem (3.1), the corollary follows by induction on &. o



IRCMSA 2005 Proceedings 5

3.4. Corollary

Lfi Ao' e H)rt (l < , < /r) be commutative partitioned nu) x no)

matrices,(t < i < r).t-et t 
= {rt"I, . * satisry i(up,,,) = l. Th.,

i(,g. n',n) =fi ' (i r,rl" l' 
t t 

1t/ 

tr it

Proof: Using Corollary (3.3) and Lemma (2.1), the corollary follows by induction on/r.n

We give an example using products of three matrices (r=3). l-erA:n (l <r<f) be

commutativepositivepartitioned n xn matriceg(l< i <3). Let t< {p,r,}]=, . *
satisg (l/p(')1+.(l/ p@)+ (ll p")) = l. Then

U1!4ttsA!2)@AQ)
i=l

=(,tr,,t")" "" r(f rou')''oo', (,tr,,"')"'"'. (r)
<iil frafi) 

* 1Q\ * 1Q)

35. Theorcm

l-*A, eH) be commutative partitioned matrices and .B, en) ua commutative

partitionedmatrices (l3r<t). If 0<p<o and0<4<l satis$
(t/ q)- (tl p) = l. Then

fi,a,o 
o, 

= (hu;,)-''', (i,u:)'''

(10)

(13)

Proot By assumption there exist a unitary matrix U e M, wrd a unitary matrix

V e M^suchthat Ai =[J'DiU with D, = diag(dit,...,d,n1arrd B; =V'TiV with

T, = diag(t,r,...,tir),where do, t,, are nonnegative real numbers for all i and 7. It
follows that

Ai@Bi = (u. o,up V'r,r)=(u'orr.[4o r,\uor)
= knvl aug(d ii it,. 

. ., d itt ;^,. .., d int ;1 r. 
. ., d,,t 

^1(trcv\Sq byusing lrmma (2.3), we have

. (8r,,")"'"' * (i,^1")'' "" *(,?,r,,",)"'"' . (r2)
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fin,o 
e = (uovf airs(t 0,, 

^,. 
-., 

!,a,,t *,. 
. .,,f.oa *,,r,. . ., *. 0,o,,, 

)(rt 
r)

> ktuvl arog[(,I r, 
) 

-"' 
(i,, 

) 
"',, (,i rt' )-" 

" 
( f,, *)'''

,,(,ir*I''' (f;r)''',,(f,r,:)-''' (i1,.)'''],*,

= (uorf 
{ai,s[(]r,-,' )-"',,[tr, )-"' ]

**[(f,r)''' .,(f,,r)"']]t "a
= (u'or' ) (:"= ;-"'.(,ir' )"' ),^,
= 
{[r. [i,;' )-"',)r(,. [,:,t" )"' r]

=(f.or')-''" [t',t)""
3.6. Corollary

I.r:tl, e n) be commutative partitioned matrices and n, e njtr- commutative

partitioned matrices(l <, < t). If 0 < p < oand 0 < q <l satisff (l I q)- (ll p) = l.
Then

k /r \-llP /k \t/c

zA,* 
n, 

= t,r"r;'.) ' L!,rlJ (14)

Proot Follows immediately by Lrmma (2.1) and Theorem (3.5). o

3.7. Rcmerk

The results obtained in section 3 are quite general. Now, as a special case, consider the
matrices in section 3 are non-partitioned, we then have Holder type inequalities involving
Kronecker and Hadamard products by replacing @ by E and * by . .

4. Conclusion

The problem may occur that we can't find Holder-type inequalities for usual product of
positive matrices, but here, we can find new Holder-type inequalities for the Tracy-Singh,
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Khatri-Raq Kronecker and Hadamard products of positive matrices which are very
important for applications to establish new inequalitiejinvolving ttrse p.oJu.ts. Since its
sometimes difficult to compute, for exarnple, ort., aeto-inait", 

"ig"*au"r, 
norms of

large_maticeg its of great importance to provide estimates of sums ;f the;;roducts of
any finite number of matrices by applying Holder-tlpe inequalities of positive riatices.
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