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Abstract. The exponential sum associated with f is defined as

S(f ; q) =
X

exp (2πif(x)/q)

where the sum is taken over a complete set of residues modulo q and let x = (x1, x2, ..., xn) be a vector in the space

Zn with Z ring of integers and q be a positive integer, f a polynomial in x with coefficients in Z. The value of S(f ; q)
has been shown to depend on the estimate of the cardinality |V |, the number of elements contained in the set

V = {x mod q|f
x
≡ 0 mod q}

where f
x

is the partial derivative of f with respect to x = (x1, x2, ..., xn). This paper will give an explicit estimate of

|V | for polynomial f(x, y) in Zp[x, y] of degree five. Earlier authors have investigated similar polynomials of lower

degrees. The polynomial that we consider in this paper is as follows:

f(x, y) = ax5 + bx4y + cx3y2 + dx2y3 + exy4 + my5 + nx + ty + k

The approach is by using p-adic Newton Polyhedron technique associated with this polynomial.

1. Introduction

In our discussion, we use notation Zp, Ωp and ordpx to denote respectively the ring of p-adic integers, completion

of the algebraic closure of Qp the field of rational p-adic numbers and the highest power of p which divides x. For

each prime p, let f = (f1, f2, ...., fn) be an n-tuple polynomials in Zp[x] where Zp is the ring of p-adic integers

and x = (x1, x2, . . . , xn).

Loxton and Vaughn are among the researchers who investigate S(f ; q) where f is a non-linear polynomial in

Z[x]. They find that the estimation of S(f ; q) depends on the value of |V | the number of common zeros of the

partial derivatives of f with respect to x modulo q. By using this result, the estimations of S(f ; q) are found by

other workers such as Mohd Atan(1986), Chan Kait Loon(1997) and Heng Swee Huay(1999) for lower degree

polynomials. However, the general results for polynomials of several variables are less complete.

2. p-Adic orders of zeros of a polynomial

In 1986 Mohd Atan and Loxton conjectured that to every point of intersection of the combination of the indicator

diagrams associated with the Newton polyhedrons of a pair of polynomials in Zp[x] there exist common zeros of

both polynomials whose p-adic orders correspond to this point. The conjecture is as follows :

Conjecture: Let p be a prime. Suppose f and g are polynomials in Zp[x, y]. Let (µ, λ) be a point of intersection

of the indicator diagrams associated with Newton polyhedron of f and g. Then there are ξ and η in Ωp satisfying

f(ξ, η) = g(ξ, η) = 0

and

ordp ξ = µ, ordp η = λ.

A special case of this conjecture was proved by Mohd Atan and Loxton (1986). Sapar and Mohd Atan (2002)

improved this result and is written as follows:

Theorem 2.1. Let p be a prime. Suppose f and g are polynomials in Zp[x, y]. Let (µ, λ) be a point of intersection

of the indicator diagrams associated with Newton polyhedron of f and g at the vertices or simple points of

intersections. Then there are ξ and η in Ωp satisfying

f(ξ, η) = g(ξ, η) = 0

and

ordp ξ = µ, ordp η = λ.
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In Theorem 2.2 we give the p-adic sizes of common zeros of partial derivatives of the polynomial

f(x, y) = ax5 + bx4y + cx3y2 + dx2y3 + exy4 + my5 + nx + ty + k.

Theorem 2.2. Let

f(x, y) = ax5 + bx4y + cx3y2 + dx2y3 + exy4 + my5 + nx + ty + k

be a polynomial in Zp[x, y] with p > 5. Let

α > 0,

δ = max{ordp a, ordp b, ordp c, ordp d, ordp e, ordp m},

ordp(10cm − 2de)2 > ordp(10dm − 4e2)(2ce − d2),

and

ordp b2 > ordp ac.

If

fx(x0, y0), fy(x0, y0) ≥ α > δ

than there exist (ξ, η) such that

fx (ξ, η) = 0, fy (ξ, η) = 0

and

ordp(ξ − x0) ≥
1

4
(α − δ) , ordp(η − y0) ≥

1

4
(α − δ).

Proof. Let

X = x − x0, Y = y − y0

and

g(X + x0, Y + y0) = fx(X + x0, Y + y0),

h(X + x0, Y + y0) = fy(X + x0, Y + y0)

and λ be a constant. Then,

(g + λh)(X + x0, Y + y0)

= (5a + λb)(X + x0)
4 + (4b + 2λc)(X + x0)

3(Y + y0)

+ (3c + 3λd)(X + x0)
2(Y + y0)

2 + (2d + 4λe)(X + x0)(Y + y0)
3

+ (e + 5λm)(Y + y0)
4 + s + λt

and

(g + λh)(X + x0, Y + y0)

5a + λb
(2.1)

= (X + x0)
4 +

(

4b + 2λc

5a + λb

)

(X + x0)
3(Y + y0)

+

(

3c + 3λd

5a + λb

)

(X + x0)
2(Y + y0)

2 +

(

2d + 4λe

5a + λb

)

(X + x0)(Y + y0)
3

+

(

e + 5λm

5a + λb

)

(Y + y0)
4 +

s + λt

5a + λb

Let αij denote the coefficients of XiY j in the completed quartic form of the equation (2.1), 0 ≤ i ≤ 4, 0 ≤ j ≤ 4.

By completing the quartic equation (2.1) and by solving simultaneously equations αij(λ) = 0, i 6= 0, j 6= 0 and

i + j = 4, we obtain

(g + λh)(X + x0, Y + y0)

5a + λb
=

(

(X + x0) +
4b + 2λc

4(5a + λb)
(Y + y0)

)4

+
s + λt

5a + λb

=

((

X +
4b + 2λc

4(5a + λb)
Y

)

+

(

x0 +
4b + 2λc

4(5a + λb)
y0

))4

+
s + λt

5a + λb
(2.2)
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where λ satisfies the equation

e + 5λm

5a + λb
−

1

2

(d + 2λe)2

(c + λd)(5a + λb)
= 0.

That is,

(2.3) (10dm − 4e2)λ2 + (10cm − 2de)λ + 2ce − d2 = 0.

From (2.3), we will obtain two values of λ, say λ1, λ2 where

λ1 =
−(10cm − 4e2) +

√

(10cm − 2de)2 − 4(10dm − 4e2)(2ce − d2)

2(10dm − 4e2)

and

λ2 =
−(10cm − 4e2) −

√

(10cm − 2de)2 − 4(10dm − 4e2)(2ce − d2)

2(10dm − 4e2).

Now, let

U = X +
4b + 2λ1c

4(5a + λ1b)
Y, u0 = x0 +

4b + 2λ1c

4(5a + λ1b)
y0(2.4)

V = X +
4b + 2λ2c

4(5a + λ2b)
Y, v0 = x0 +

4b + 2λ2c

4(5a + λ2b)
y0.(2.5)

By substitution of U and V in (2.2), we obtain the following polynomials in (U, V ),

F (U, V ) = (5a + λ1b)(U + u0)
4 + s + λ1t(2.6)

and

G(U, V ) = (5a + λ2b)(V + v0)
4 + s + λ2t.(2.7)

From (2.6) and (2.7),we have

F (U, V ) = (5a + λ1b)
[

U4 + 4u0U
3 + 6u0

2U2 + 4u0
3U

]

+ F0(2.8)

G(U, V ) = (5a + λ2b)
[

V 4 + 4v0V
3 + 6v0

2V 2 + 4v0
3V

]

+ G0(2.9)

where

F0 = fx(x0, y0) + λ1fy(x0, y0)

and

G0 = fx(x0, y0) + λ2fy(x0, y0).

The combination of the indicator diagrams associated with the Newton polyhedron of (2.8) and (2.9) takes the

form shown in Figure 2.1 below:

✲

✻
V

U

ordp U = 1
4 ordp

F0

5a+λ1b

(µ1, µ2)

ordp V = 1
4 ordp

G0

5a+λ2b

✠

Figure 2.1. The indicator diagrams ofF (U, V ) = (5a + λ1b)U2 + F0 and G(U, V ) = (5a + λ2b)V 2 + G0

From Figure 2.1 and Theorem 2.1 there exists (Û , V̂ ) in Ωp
2 such that

F1

(

Û , V̂
)

= 0, G1

(

Û , V̂
)

= 0

and

ordp Û = µ1, ordp V̂ = µ2
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with

µ1 =
1

4
ordp

F0

5a + λ1b
and µ2 =

1

4
ordp

G0

5a + λ2b
.

Suppose U = Û and V = V̂ in (2.4) and (2.5) there exists (X0, Y0) such that

Û = X0 + α1Y0 and V̂ = X0 + α2Y0

with

α1 =
4b + 2λ1c

4(5a + λ1b)
, α2 =

4b + 2λ2c

4(5a + λ2b)

in which λ1, λ2 are zeros of

k(λ) = (10dm − 4e2)λ2 + (10cm − 2de)λ + 2ce − d2.

Solving for X0 and Y0 we obtain

X0 =
α2Û − α1V̂

α2 − α1
and Y0 =

Û − V̂

α1 − α2
.

Then,

ordp X0 = ordp(α1V̂ − α2Û) − ordp(α1 − α2).

with

ordp(α1 − α2) = ordp

(2b2 − 5ac)(λ2 − λ1)

2(5a + λ1b)(5a + λ2b)

and

λ2 − λ1 = −

√

(10cm − 2de)2 − 4(10dm − 4e2)(2ce − d2)

10dm − 4e2

since

ordp(10cm − 2de)2 > ordp(10dm − 4e2)(2ce − d2),

we have

ordp(λ2 − λ1) =
1

2
ordp

2ce − d2

10dm − 4e2
.

Therefore,

ordp X0 = ordp(α2Û − α1V̂ ) − ordp

(2b2 − 5ac)(λ2 − λ1)

2(5a + λ1b)(5a + λ2b)

≥ ordp Û + ordp

4b + 2λ2c

4(5a + λ2b)
− ordp

(2b2 − 5ac)(λ2 − λ1)

2(5a + λ1b)(5a + λ2b)
.

Then, we have

ordp X0 ≥ ordp Û + ordp(2b + λ2c) − ordp(2b2 − 5ac) − ordp(λ2 − λ1)

+ ordp(5a + λ1b)

=
1

4
ordp

F0

5a + λ1b
+ ordp(2b + λ2c) − ordp(2b2 − 5ac)

−
1

2
ordp

2ce − d2

10dm − 4e2
+ ordp(5a + λ1b)

Suppose

min{ordp 2b, ordp λ2c} = ordp b,

min{ordp 5a, ordp λ1b} = ordp λ1b

and since

ordp b2 > ordp ac,

we have

ordp X0 ≥
1

4
ordp

F0

5a + λ1b
+ ordp b − ordp b2 −

1

2
ordp

2ce − d2

10dm − 4e2
+ ordp λ1b

since

ordp(10cm − 2de)2 > ordp(10dm − 4e2)(2ce − d2),
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we have

ordp X0 ≥
1

4
ordp

F0

5a + λ1b
−

1

2
ordp

2ce − d2

10dm − 4e2
+

1

2
ordp

2ce − d2

10dm − 4e2

=
1

4
ordp

fx(x0, y0) + λ1fy(x0, y0)

5a + λ1b
.

Suppose

min{ordp fx(x0, y0), ordp λ1fy(x0, y0)} = ordp fx(x0, y0)

and

min{ordp 5a, ordp λ1b} = ordp λ1b,

we have

ordp X0 ≥
1

4
(ordp fx(x0, y0) − ordp λ1b)

≥
1

4
(ordp fx(x0, y0) − ordp a) .

Hence, by hypothesis,

ordp X0 ≥
1

4
(α − δ) .

Now,

Y0 =
Û − V̂

α1 − α2
.

And hence,

ordp Y0 = ordp(Û − V̂ ) − ordp

(2b2 − 5ac)(λ2 − λ1)

2(5a + λ1b)(5a + λ2b)
.

Suppose

min{ordp Û , ordp V̂ } = ordp Û

and since

ordp(5a + λ1b) = ordp(5a + λ2b),

we have

ordp Y0 ≥ ordp Û − ordp(2b2 − 5ac) − ordp(λ2 − λ1) + 2 ordp(5a + λ1b)

=
1

4
ordp(fx(x0, y0) + λ1fy(x0, y0)) − ordp ac −

1

2
ordp

2ce − d2

10dm − 4e2

+
7

4
ordp(5a + λ1b).

Suppose

min{ordp 5a, ordp λ1b} = ordp λ1b

and since ordp b2 > ordp ac, we have

ordp Y0 ≥
1

4
ordp (fx (x0, y0) + λ1fy (x0, y0)) − ordp b2 −

1

2
ordp

2ce − d2

10dm − 4e2

+
7

4
ordp b +

7

4

(

1

2
ordp

2ce − d2

10dm − 4e2

)

≥
1

4
ordp (fx (x0, y0) + λ1fy (x0, y0)) −

1

4
ordp b −

1

2
ordp

2ce − d2

10dm − 4e2

+
1

2
ordp

2ce − d2

10dm − 4e2

≥
1

4
(ordp (fx (x0, y0) + λ1fy (x0, y0)) − ordp b) .

Hence, by hypothesis,

ordp Y0 ≥
1

4
(α − δ).

We will get the same result if

min{ordp 2b, ordp λ2c} = ordp λ2c,

min{ordp 5a, ordp λ1b} = ordp a
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and

min{ordp fx(x0, y0), ordp λ1fy(x0, y0)} = ordp λ1fy(x0, y0).

Suppose

ξ = X0 + x0 and η = Y0 + y0,

then

X0 = ξ − x0 and Y0 = η − y0.

Thus, we have

ordp (ξ − x0) ≥
1

4
(α − δ) and ordp (η − y0) ≥

1

4
(α − δ).

By back substitution in (2.6) and (2.7) and since λ1 6= λ2 we have

g (ξ, η) = fx (ξ, η) = 0

and

h (ξ, η) = fy (ξ, η) = 0.

Thus,

ordp (ξ − x0) ≥
1

4
(α − δ)

and

ordp (η − y0) ≥
1

4
(α − δ)

with (ξ, η) a common zero of g and h. ¤

2.1. Cardinality of V (g, h; pα). Let p be a prime and g(x, y), h(x, y) polynomials in Zp[x,y] and (ξi, ηi) com-

mon zeros of g and h. Let α > 0,

Hi(α) = {(x, y) ∈ Ωp × Ωp : ordp(x − ξi), ordp(y − ηi) = max
j

{ordp(x − ξi), ordp(y − ηi)}

and

ordp g(x, y), ordp h(x, y) ≥ α.

By the method of Loxton and Smith (1982), we can show that the value of |V(g,h;pα)|, the cardinality of

V (g, h; pα) depends on ordp(x − ξi), ordp(y − ηi)with (x, y) ∈ Hi(α) as shown by Mohd Atan (1986) for

polynomials of n ≥ 2 variables. We state the theorem as follow:

Theorem 2.3. Let p be a prime and g(x, y), h(x, y) two polynomials in Zp[x, y]. Let α > 0, (ξi, ηi), i ≥ 1 be

common zeros of g and h, and

γi(α) = inf
x∈H(α)

{ordp(x − ξi), ordp(y − ηi)}

where

H(α) = ∪
i
Hi(α).

If α > γi(α), then

|V (g, h; pα)| ≤
∑

i

p2(α−γi(α)).

By using Theorem (2.3) the following theorem gives the estimate to the cardinality V (g, h; pα) associated with

g = fx, h = fy with f(x, y) polynomials in Zp[x, y] of degree five.

Theorem 2.4. Let p > 5 and

f(x, y) = ax5 + bx4y + cx3y2 + dx2y3 + exy4 + my5 + nx + ty + k

be a polynomial in Zp[x, y]. Suppose α > 0,

ordp(10cm − 2de)2 > ordp(10dm − 4e2)(2ce − d2),

ordp b2 > ordp ac

and

δ = max{ordp a, ordp b, ordp c, ordp d, ordp e, ordp m}.



On the cardinality of the set of solutions to congruence equation associated with quintic form 21

Then,

|V (fx, fy; pα)| ≤

{

p2α (α ≤ δ)

16p
1

3
(3α+δ) (α > δ).

Proof. Clearly |V (fx, fy; pα)| ≤ p2α if α ≤ δ. Suppose now α > δ.

From Theorem 2.3

|V (g, h; pα)| ≤
∑

i

p2(α−γi(α))

with

γi(α) = inf
x∈H(α)

{ordp(x − ξi), ordp(y − ηi)}

where

H(α) = ∪
i
Hi(α)

and

g = fx, h = fy.

From Theorem 2.2,

γi(α) ≥
1

4
(α − δ).

By a theorem Bezout, the number of common zeros does not exceed the product of the degrees of fx and fy . Thus,

|V (fx, fy; pα)| ≤ 16p
1

2
(3α+δ) if α > δ

Hence,

|V (fx, fy; pα)| ≤

{

p2α (α ≤ δ)

16p
1

3
(3α+δ) (α > δ)

¤

3. Conclusion

Our investigation finds that if p is prime, p > 5,

f(x, y) = ax5 + bx4y + cx3y2 + dx2y3 + exy4 + my5 + nx + ty + k

is a polynomial in Zp[x, y], α > 0,

ordp(10cm − 2de)2 > ordp(10dm − 4e2)(2ce − d2)

and

ordp b2 > ordp ac,

then the cardinality for the set of

V = {(x, y) mod pα |fx(x, y), fy(x, y) ≡ 0 mod pα }

associated with f(x, y) is :

|V (fx, fy; pα)| ≤

{

p2α (α ≤ δ)

16p
1

3
(3α+δ) (α > δ)

with α > δ and

δ = max{ordp a, ordp b, ordp c, ordp d, ordp e, ordp m}.

This cardinality is useful in finding the estimate for exponential sums associated with such a polynomial.
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