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Abstract

In this paper, u -controller based on a structured singular value is used

to reduce the vibration of the flexible structures having the transverse
and torsion vibrations. Meanwhile, in designing control system using
4 -controller yields a controller with the order at least equal to the plant
order. Such controller often can not be used in practical application, thus
the order of controller is reduced by using the weighting balanced
realization.

Keywords:  u -controller; flexible structures, weighting balanced
realization.

1. Introduction

In the vibration control of a flexible structure, it is difficult to identify its modal shape and
physical parameters. Moreover, the instability of the closed-loop system due to
perturbations of the higher-order modes, so called spillover, often arises. For this reason,
demands for the robust control which guarantees stability against perturbations such as
modeling errors, parameters variation are very strong. Meanwhile, in regard to the flexible
structures having multi directional degrees of freedom, there are many occasions, where
the control of transverse and torsion vibrations is required simultaneously. In such a case ,
the securing of robustness is even more difficult because of perturbations due to the
transverse-torsion coupling. Nevertheless, there are cases in which the achievement of
robust stability is not enough. To be more specific, a demand for keeping the control
performance at a target level even under the influence of a perturbation, we call it as robust
performance has been becoming stronger with the recent progress in studies on robust
control.

In this paper, u -controller based on a structured singular values is used to reduce the

vibration of the flexible structure having the transverse and torsion vibrations. The
structure has four-stories and is tower-like in shape. Each story is modeled such that it has
a single-degree-of freedom in the transverse direction and one more degree-of-freedom in
the angle of torsion around the center of the story, which yields the whole structure, has 8
degree-of-freedom.
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Design of control system using the u -controller, in the first iteration we obtain the 30-
order controller. For the better results, more iteration is needed and it is caused to increase
the order of controller. Since the high-order controller is impractical in the real
implementation, then the order of controller can be reduced up to the 8%-order using the
weighted balanced realization. In this case, the robust stability and robust performance can
be maintained by the reduced-order controller.

2. Model of Structure

The structure has four-stories and is tower-like in shape. To simplify the modeling
processes, some assumptions are made. Each story is modeled such that it has a single-
degree-of-freedom in transverse direction (the same direction as the excitation) and one
more degree-of-freedom in the angle of torsion around the centroid of the story, which
yields that the whole structures has 8 degrees-of-freedom. This structure has long and short
spans symmetric with respect to the central axis, but has a deviation on the right and the
long side on the third story due to an auxiliary mass, which thereby creates a coupling
between the transverse and torsion vibration. The mass distribution of each story is
homogeneous and the stiffness of four columns are supposed to be the same in the
direction of the excitation at all stories. On this condition, the distance from the centroid to
the spring of the right side of I th-story and the distance from the centroid to the spring of
the left side of the 7 th-story are equal and all the cross terms have no value.
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Fig 1. Transverse and torsion displacement of the i th-story of structure

Consider the transverse and torsion vibrations of the 7 th-stories as shown in Figure 1. X;

and 6, are the transverse and torsion displacements of the i th-stories. /;; and l;p are the
distances from the centroid to the spring of the left and right sides of the i th-stories. m;
and I, are the mass and moment of inertia. k;; and k; are the spring constants of the left

and the right sides of the i th-stories.
The total kinetic energy of the structure can be written as follows
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and the total potential enegy is

V()= i %[kiR {(xi ) +16; (t))— (x,-_l ) +1,_120, (t))}j + (2)
= Lk {(x,- O+1;,6;( ))_ (xi—l O +110,, (t))}
where x, =1, =6, =0.
By using the Langrange’s equations
afa0)_ a0 _ o
dt (a‘ji (t)J aqi (t) f(t)’ i=1234 (3)

where g,(t) = [x,. @) 6 (t)]T and L=T-V, the dynamics of the structure can be written
in the second-order matrix differential equations as follows
M3 (O)+C o () + K ,x,(0)+d ,Z(0)+b, f(1)=0 )

where xo() =[x () %) %) x@) 6,0) 6,0 6:0) 6,0, M,.C,. and
K, are the inertia, the damping and the stiffness matrices of the structure respectively.

d, is the disturbance vector for the excitation acceleration £, and b, is the input matrix

for the control force.

In the structure, two active dynamic absorbers are mounted at the top of the structure on
both edges in parallel with the vibration control devices. Each absorber is composed of an
auxiliary mass and a moving coil to drive the mass. The equation of the circuit is described
as

L,i(t) + R,i(t) + K, %,(t) = e(t)
J@)=K;i(?)
where x, is the strokes of the actuator, e is the control voltage, f is the control force,
L, is the inductance, R, is the resistance, K, is the induced voltage, K, is the thrust

3

constant and ; is the current. Meanwhile, the equations of motion of the absorbers are
written by

MgV ar () =—fr(t)— Kpxg (1)

- (6)
Moy Var O =—F1 )= Ky %, ()
where m,, is the auxiliary mass, K, is constant and
Var (1) = X g () + x4 (O) +1 20, () +2(F) ™

Yar ()= X () + x4 () +176,(1)+2(2)
Subscripts R and L denote the right and the left sides.
For control analysis and design purposes, the model of structure and absorbers arc
transformed into state space form. By the combination of the state variables of structure,
absorbers, strokes, and defining the state vector x as



178 Roberd Saragih

x=[xp Xo I Fag X X2 X3 x4 6 6, 63 0, X %, X X4 6
. . P
0, 6, 0, ip il

the state equation of the control object can be written by
X(t) = Ax(t)+ Be(t)+ Dz(t)

y() = Cx(®) (8)

3. Design of Controller

Structured singular value g has been newly introduced in order to cover the defective
points of the conventional design of H-infinity control. What is meant by a structured
singular value, in contrast to the conventional singular value o which is defined for a
closed loop system, is a value that is defined by the following equation, relative to a
systtm M obtained by the loop-closing connection of a controller K and a block
structure A:

1
p)= min{o(A)[ /- MA = 0} <

It has been guaranteed theoretically that in this case, robust performance is realized within
an error built into a generalized plant, as long as the value of g is less than one. Then the
object of the x design is to obtain an internally stable controller. However, there are no
known methods at present to obtain such a controller analytically, and it is, moreover,
difficult to uniquely determine the value of 4 itself. For this reason, the method used at
present in u -synthesis involves the iteration of the disturbance strength scaling, the
design of the H-infinity controller and the calculation of the y values. This computation

method is called D-K iteration. Although the convergence of the D-K iteration is not
guaranteed, this is the only method of solution at the present time. The procedure of the D-
K iteration is as follows:

(i) Design an H-infinity controller for the plant of the equation (8).

(ii) Using the controller obtained by the step (i) and a block structure A
describing the connection of a closed loop transform, the generalized plant as a closed loop
system, and calculate x for this system M.

(iii) Compute the scaling matrix D which minimizes x4 (in general, D is a
function of frequency), approximate it by using rational functions and multiply D to the
generalized plant.

(iv) Design H-infinity controller again for the generalized plant which has been
scaled (this is called a u -controller in here).

(v) Repeat steps (ii) through (iv) until the condition 4 is satisfied.
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4. Reduced-order Controller

In this section we introduce the procedure to reduce the order of controller[3] obtained by
1 -synthesis. The state space equation of the control system obtained in Section 3 can be
written in the form
() = A1)+ By(t)
u(t) = Cx(1)
Suppose the control system with the » th-order, minimal, asymptotically stable system to
be balanced with respect to the asymptotically stable input and output weightings W, (s)

and W, (s), respectively. The transfer function of the weightings input and output is as
follows:

(10)

W,(s)=H,(sI-F,)" G, + D

Wa(s)‘—‘Ho(SI—Fo)-lGo +D,
The frequency weighted balanced realization algorithm as follows
(1) Given

a  AB,C with Re[a(i)]<0

b. F,G,,H,,D, with Re[A(F,)]<0

c. F,G, H,,D,with Re[i(F,)]<0
(2) Solvefor U and Y from

4 B T T T D .
4 BH |\ U Uy | |U Uy f;AT oT +| BDi [DiTBT Gf]:()
0 Ft U21 U22 U21 U22 Hi B F: Gi

7 cTa™lly vy Y 7Y y AT T R
4 C CT;O S A. 01,1¢ ?v [DOC Ha]=0
0 F, Y3 Yo Y5 Y»|G,C F, H,
(3) Solve for eigenvalues and eigenvectors of UY
UY =TAT™', A=diag{i;}, ;2 4, 2--> 4,.
2=diag{0',-}, o; =Jl_,,i=1,2~--n .
F=T"'4T,G=T7'B,H=CT.
(4) Partitioning of the frequency weighted balanced realization

F=|f Aelgo|Big_fe ¢
i B

1

2
(5) The r th-order reduced order controller is then given by K, (s)= é, (sI - ;1“ )l§1 ,

where the portioning was done such that 4,; is rxr and o,,, <o,.
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5. Simulation Results

In the simulation, u -synthesis was carried out by the using of the computer aided control

system design tool Matlab [1]. In this case, the following 3-block structure was used as the
block of structure A in consideration of three loops, (1) sensitivity of strokes to
observation disturbances, (2) sensitivity of the transverse displacement and torsion angle to
shaking accelerations, and (3) robust performance with respect to reduced-order errors.
Moreover, it is conjectured that the order of approximation of the D matrix is raised, the
robust performance is improved, instead, the order of the x -controller ends up increasing

as well. Coupling relations of perturbations can be described, so that it is possible to
describe more accurately.

As shown in Fig.1 and Fig. 2 , from the impulse response of the transverse and torsion
displacements, the performance of the 8®-order controller are effective to reduce the
vibration of structure.
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Fig. 2 Time response of the transverse displacement
controlled(bold), no controller(dash)
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Fig.3 Time response of the torsion displacement
Controlled(bold), no controller(dash)
6. Conclusion

This paper provided modeling and designing of controller for flexible structure having the
transverse-torsion coupled vibration modes. In designing of controller, the z -controller is
utilized and the robust performance can be improved. The order of controller can be
reduced up to 8™ order by using the weighting balanced realization.
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