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Abstract

The special nonlinear mathematical programming problem which is
addressed in this paper has a structure characterized by a subset of
variables restricted to assume discrete values, which are linear and
seperable from the continuous variables. The strategy of releasing
nonbasic variables from their bounds, combined with the “active
constraint” method and the notion of superbasics, has been developed
for efficiently tackling such a problem by ignoring the integrality
requirements, this strategy is used to force the appropriate non-integer
basic variables to move to their neighbourhood integer points. A study
of criteria for choosing a nonbasic variable to work with in the
integerizing strategy has also been made. Successful implementation of
these algorithms was achieved on various test problems. The result
show that the proposed integerizing strategy is promosing in tackling
certain classes of mixed integer programming problems.

1. Introduction

The special Mixed-Integer nonlinear programming problem which is addressed to assume
discrete values, which are linear and separable from the continuous variables. This
problem is defined by the following mixed-integer nonlinear programming (MINLP)
program.

Minz=c"y+f(x) ey
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where f: " — R and r: R" - R’, g: R" — R" are continuous and generally well-
behaved function defined on the n-dimensional compact polyhedral convex set

X = {x:xeR"’ A]xSal}; U= {y:er, integer, AzySaz} is a discrete set, say the

nonnegative integer points of some convex polytope, where for most applications Y is the
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unit hypercube Y = {0,1}™. B, A,, A,, and c, a,, a, are respectively matrices and vectors of
comfortable dimensions; the vectors are column vectors unless specified otherwise. There
has been little reported evidence of previous attempts to solve large nonlinear integer
programs. Survey papers by Hansen [5] and Cooper [2] both point out that the paucity
computational testing on algorithms that have been proposed. One of the more promosing
approaches to nonlinear (0-1) programs is their reductionto an multilinear (0-1) program,
followed by linearization to an equivalent set covering problem. Balas and Mazzola [1]
present a linearization technique without having to generate additional variables and
present computational experience on (0-1) programs of size up to fifty variables and
twenty constraints. The applicability of this approach to larger problems needs further
investigation. Vassilev and Enova [9] propose an approximate algorithm as a
generalization of the algorithm of internal feasible integer directions. A direct search
approach for solving such a problem is proposed by Murtagh and Sugden [8]. Fletcher and
Leyffer [4] use outer approximation use for solving MINLP problems in which
nonlinearities appear in the integer variables.

2. The Basic Approach

Before we proceed to the case of MINLP problems, it is worthwhile to discuss the basic
strategy of process for linear case, i.e, Mined Integer Linear Programming (MILP)
problems.

Consider a MILP problem with the following form

Minimize P=c' x (&)
subject to Ax < b 6)

x20 @)
x; integer for some j€ J ®

A component of the optimal basic feasible vector (Xg)x , to MILP solved as a continuous
can be written as

(xE)k =B - @, (xzv)r TeeT @, (xzv)j_' T, — m(xy)n_m ®

Note that, this expression can be found in the final tableau of Simplex procedure. If (xg)y is
an integer variable and we assume that c, is not an integer, the partitioning of 8 into the

integer and fractional components is that given
Bi=[B]+£,0< £ <1 (10)

Suppose we wish to increase (xp)y to its nearest integer, ( [ #]+ 1). Based on the idea of
suboptimal solutions we may elevate a particular nonbasic variable, say (xn)j+, above its
bound of zero, provided ¢ y», as one of the element of the vector & i* is negative. Let A *



IRCMSA 2005 Proceedings 259

be amount of movement of the nonbasic variable (xx);», such that the numerical value of
scalar (xg)y is integer. Referring to Eqn. (9), A j+ can then be expressed as

1-
A, = A (1)
J _a’y.
while the remaining nonbasic stay at zero. It can be seen that after substituting (11) into ()

for (xn);+ and taking into account the partitioning of S given in (10), we obtain

ek =[F]1+1

Thus, (Xg)x is now an integer.

It is now clear that aa nonbasic variable plays an important role to integerize the
corresponding basic variable. Therefore, the following result is necessary in order to
confirm that must be a non-integer variable to work with in integerizing process.

Theorem 1. Suppose the MILP problem (5)-(8) has an optimal solution, then some of the
nonbasic variables, (xy);, j = 1, ... , n, must be non-integer variables.

Proof.

Solving problem as a continuous of slack variables (which are non-integer, except in the
case of equality constraint). If we assume that the vector of basic variable xg consists of
all the slack variables then all integer variables would be in the nonbasic vector xy and
therefore integer-valued.

3. Derivation Of The Method

It is clear that the other components, (xB )M , of vector xg will also be affected as the
numerical value of the scalar (xw)j increases to Aj+. Consequently, if some element of
vector «,, ie,a, for i #k, are ppsitive, then the corresponding element of xz will

decrease, and eventually may pass throught zero. However, any component of vector x
must not go below zero due to the non-negativity restriction. Therefore, a formula, called
the minimum ratio test is needed in order to see what is the maximum movement of the
nonbasic (xy);+ such that all components of x remain feasible. This ratio test would include
two cases.

1. A basic variable, (xB )i’ . » decreases to zero (lower bound) first.
2. the basic variable, (xg),, increases to an integer.

Specifically, corresponding to each of these two cases above, one would compute

6, = min {—ﬁ—} (12)
i=k| a.>0 aij‘

0,=A, (13)
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How far one can release the nonbasic ¢ froms its bound of zero, such that vector x remains
feasible, will depend on the ratio test @~ given below

0" =min (8, 6,) (14
Obviously, if 4 "= 0,, one of the basic variable (xB )'_sk will hit the lower bound before

(xg)x becomes integer. If 8" = 4 ,, the numerical value of the basic variable (xp)x Will be
integer and feasibility is still maintained. Analogously, we would be able to reduce the
numerical value of the basic variable (xg)y to its closest integer [ #]. In this case the
amount of movement of a particular nonbasic variable, (xy)j, corresponding to any
positive element of vector « j, is given by

A =

5

L (15)
a .

b

In order to maintain the feasibility, the ratio test * is still needed. Consider the movement
of a particular nonbasic variable, A, as expressed in Eqns. (11) and (15). The only factor
that one needs to calculate is the corresponding element of vector & . A vector & ; can be
expressed as

aJ=B’1 a, ,j=1 .., n¢nm (16)

Therefore, in order to get a particular element of vector a, we should be able to
distinguish the corresponding column of matrix [B]'. Suppose we need the value of

element a,., letting v: be the k-th coJumn vector of [B] ", we then have

v, =€ B an
Subsequently, the numerical value of a,. can be obtained from

@, =v, a, (18)
In Linear Programming (LP) terminology the operation conducted in Eqns. (17) and (18) is
called the pricing operation. The vector of reduced costs d; can be used to measure the
deterioration of the objective function value caused by releasing a nonbasic variable from
its bound. Consequently, in deciding which nonbasic should be released in the integerizing
process, the vector d; must be taken into account, such that deterioration is minimized.
Recall that the minimum continuous solution provides a lower bound to any integer-
feasible solution. Nevertheless the amount of movement of a particular nonbasic variable
as given in Eqns. (11) or (15), depends in some way on the corresponding element of

vector ¢, . Therefore it can be observed that the deterioration of the objective function
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value due to releasing a nonbasic variable (xw)+ so as to integerize a basic variable (xg)y
may be measured by the ratio
d

k

ag_,

(19

where |a| means the absolute value of scalar a.

In order to minimize the deteoration of the optimal continuous solution we then use the
following strategy for deciding which nonbasic variable may be increased from its bound
of zero, that is,

}, j=1 ..,n-m (20)

The notion of suboptimal solutions to the LP can be extended analogously to the case of
nonlinear programming (NLP), although the optimal solution to the NLP problem may be
global or local depending on the convexity of the problem functions. It should be
emphasized that local solution to a NLP problem cannot be considered as a suboptimal
solution in terms of the global solution. In other words, suboptimality has nothing to do
with the global or local nature of the solution. The framework of the approach to handle
the MINLP problem is provided by MINOS code. Therefore the optimal continuous
solution to the nonlinear problem, as well as the linear problem is obtained by using the
MINOS software. From the “active constraint™ strategy in minos and the partitioning of
the linearized constraints corresponding to basic (B), superbasic (S) and nonbasic (N)

variables we can write
xB
BSN b 1
X =
11" s,

Xs

or
Bxg+ Sxg + Nxy=b (22)
xy=by 23)

The basic matrix B is assumed to be square and nonsingular, we get

x, = f-Wx, —ax, 29
where
B=B"b 25)
W=B's (26)
a=B'N @7

Expression (23) indicates that the nonbasic variables are being held equal to their bound. It
is evident through the “nearly” basic expression of Eqn. (24), the integerizing strategy
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discussed in the previous section, designed initially for MILP problem can be implemented
for the nonlinear case. Particularly, we would be able to release a nonbasic variable from
its bound, Eqn. (23) and exchange it with a corresponding basic variable in the integerizing
process, although the solution would be degenerate. Furthermore, the Theorem (1) above
can also be extended for MINLP problem.

Theorem 2. Suppose the MINLP problem has a bounded optimal continuous solution,
then we can always get a non-integer y; in the optimum basic variable vector.

Proof.
1. If these variables are nonbasic, then they will be at their bound. Therefore they have
integer value

2. Ifay;is superbasic, it is possible to make y; basic and bring in a nonbasic at its bound
to replace it in the superbasic.

However, the ratio test expressed in (14) cannot be used as a tool to guarantee that the

integer solution optimal found still remains in the feasible region. Instead, we use the

feasibility test from Minos in order to check whether the integer solution is feasible or

infeasible.

4. Pivoting

Currently, we are in apposition where a particular basic variable, (xg), is being integerized
, there by a corresponding nonbasic variable, (xy);, is being released from its bound of
zero. Suppose the maximum movement of (xy);» satisfies

6 =A,
7
such that (xp)y is integer valued. To exploit the manner of changing the basis found in
MINOS, we would be able to move (xy);+ into B to replace (xg), and integer-valued (xg);
into S in order to maintain the integer solution. we now have a degenerate solution since a
basic variable is at its bound. The integerizing process continues with a new set of [B, S].
In this case, eventually we may end up with all of the integer variables being superbasic.

Theorem 3. A suboptimal solution exists to the MILP and MINLP problem in which all of
the integer variables are superbasic.

Proof.
1. If all of the integer variables are in N, then they will be at bound.
2. If aninteger variable is basic it is possible to either
e Interchange it with a superbasic continuous variable, or
® Make this integer variable superbasic and bring in a nonbasic at its bound to
replace it in the basis which gives a degenerate solution.
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The other case which can happen is that a different basic variables (xB ).-:k may hit its
bound before (xg)x becomes integer. Or in other words, we are in a situations where

8 = A,
In this case we move the basic variable (xg); into N and its position in the basic variable

vector would be replaced by nonbasic (xn);+. Note that (xp), is still a non-integer basic
variable with a new value.

5. Conclusion

The strategy of releasing nonbasic variables from their bounds, combined with the “active
constraint” method and the nation of superbasics, has been developed for efficiently
ackling mixed integer nonlinear programming problems. After solving a problem by
ignoring thee integrality requirements, this strategy is used to force the appropriate non-
integer basic variables to move to their neighbourhood integer points. Computational
testing of the procedure presented this paper has demonstrated that it is a viable approach
for large problems.
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