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Abstract

A connected graph G is primitive provided there exists a positive integer
k such that for each pair of vertices u and v in G there is a walk of length
k that connects u and v. The smallest of such positive integers k is called
the exponent of G and is denoted by exp(G). In this paper, we give a new
bound on exponent of primitive graphs G in terms of the length of the
smallest cycle of G. We show that the new bound is sharp and
generalizes the bounds given by Shao and Liu et. al.

Keywords: primitive graphs; exponents.

1. Introduction

Let G be a finite graph on n vertices. We follow notation and terminologies of graphs in
Brualdi and Ryser [1]. Particularly, a walk of length m from a vertex u to a vertex v is a
sequence of edges of the form
{u =v()svl}’{vl’VZ}’{v29v3}""a{vm—19vm}
or
Vo=V =V = =V = Vp.

A walk w connecting vertices u and v is abbreviated by a uv-walk or w,, and its length is
denoted by £(w,, ). A uv-path is a uv-walk with no repeated vertices except possibly w=v.

A uv-walk is open provided that u=v, and is closed otherwise. A cycle is a closed path and
a loop is a cycle of length 1. A graph G is connected provided that for each pair of
vertices # and v in G there is a uv-walk connecting  and v. A tree is a connected graph
which has no cycles. A connected graph G is primitive provided there is a positive integer
k such that for each pair of vertices x and v there is a wv-walk of length k. The smallest of
such positive integer & is called the exponent of the graph G and is denoted by exp(G). The
exponent set of graphs on n vertices is the set of all possible exponents of graphs on n
vertices.

The following proposition (see [1]) gives necessary and sufficient conditions for
primitivity of a connected graph.

Proposition 1. Let G be a connected graph. The graph G is primitive if and only if G has
cycle of odd length.
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Research on exponents of strongly connected directed graph dated back in 1950 and was
initiated by Wielandt (see [4, 5]). For a primitive directed graph D on n vertices Wielandt
showed that the exp(D) < (n — 1)* + 1. Dulmage and Mendelsohn (see[]) give a bound of
exponent of primitive directed graph in terms of the length of the smallest directed cycles.
They show that for a primitive directed graph D on n vertices the exp(D) < n + s(n — 2),
where s is the length of the smallest cycle in D.

For a primitive graph on » vertices, Shao (see [3]) showed that the exp(G) < 2n — 2.
Moreover Shao showed that the exponent set of graphs on n vertices is the set {1, 2, ..., 2n
—2 J\S, where S, is the set of odd integers in the closed interval [n, 2n — 2]. For primitive
loopless graphs G on n vertices, Liu et.al (see [2]) showed that the exponent set of such
graphs is the set {2, 3, ..., 2n — 4}\S, where S, is the set of odd integers in the closed
interval [n — 2, 2n - 5]. Let G be a primitive graph on » vertices with the smallest odd
cycle of length s. This paper gives new upper bound for exp(G) in terms of 5. We show
that this bound is sharp and generalizes the bounds given by Shao and Liu et.al.

2. Facts about primitive graphs

This section discusses several facts concerning primitive graphs. One feature of primitive
graphs is given by the following lemma that says for each pair of vertices « and v there is a
uv-walk of length even.

The following proposition guarantees that any #v-walk of length even can be extended to a
longer uv-walk of any length even.

Lemma 2. Let G be a connected graph and let w a uv-walk. Then w can be extended to a
uv-walk of length t > {(w)+ 2k for every positive integer k.

Lemma 3. Let G be a primitive graph. Then every uv-path can be extended to a uv-walk
of length even.

Proof. Since G is a primitive graph, G has a cycle C of odd length. Since G is connected,
for each vertex v in G\C and a vertex c in the cycle C there is a ve-path that connects v and
the vertex c.

Let u and v be any two vertices in G. Suppose p,, is any uv-path that connects » and v. If
the length of p,, is even, then p,, is a wv-walk of length even and we are done. So we
assume that the length of p,, is odd. We consider three cases. They are the case when p,,
and C have one vertex in common, p,, and C have a path in common, and p,, and C have
no vertex in common.

Case 1: The path p,, and C have a vertex in common.

Suppose c is the vertex in common between the path p,, and the cycle C. Hence the path
P can be decomposed into the path p,, and the path p,,. Consider the wv-walk w created
by moving from u to v as follows. We start at  and follow the path p,. from u to ¢, then



Proceeding of The IRCMSA 2005 39

follow the cycle C back to c, and finally follow the path p,, from ¢ and end at v. Then w is
a uv-walk of length even.

Case 2: The path p,, and C have a path in common.

Suppose path p,, is the path in common between the path Pw and the cycle C. Then the
path p,, can be decomposed into the path p,., p. and DPx Let w be the walk that starts at ,
follows the path p,, to c, follows the cycle C back to c, follows the path p. to x, and
finally follows the path p,, to end at v. Then w is a uv-walk of length even.

Case 3: The path p,, and C have no vertex in common.

Let p,. be a path that connects the vertex u and a vertex c in the cycle C. The walk w that
starts at u, follows the path p,. to the vertex ¢ in C, moves around the cycle C back to c,
follows the path p,, back to u, and finally follows the path p,, to v is a uv-walk of length
even.

Therefore, each uv-path can be extended to a uv-walk of length even. [
Similarly one can show the following fact.

Lemma 4 Let G be a primitive graph. Then every uv-path can be extended to a uv-walk of
odd length.

3. New upper bound for exponents

In this section we give a new upper bound for exponent of a primitive graph in terms of the
length of the smallest odd cycle. We then show that our bound is sharp and generalizes the
bounds given by Shao and Liu et.al. Let G be a primitive graph and let C be the smallest
cycle of odd length s in G. Let u be a vertex in G but not in C, and let Dux be a path that
connects » and a vertex x in C. Let £(p,,,) be the length of the path p,, and define

L= ‘
e g\lg’f‘d_{ (Pw)}

Theorem 5 Let G be a primitive graph with smallest cycle of length s. Then
exp(G) < s+24-1.

Proof. Let C be the cycle ¢, —c, —-+-—c,_, — ¢, — ¢, of length s. For each pair of vertices u
and v in G, we show there is a uv-walk of length s+2¢-1. We note that since s is odd,
then s+2¢~1is even. Let p,, be a uv-path that connects u and v. It is not hard to show that
for each pair of vertices u and v there is a uv-path such that Upyy <s+2L-1. If p,,is of

even length, Lemma 2 guarantees that the path p,, can be extended to a uv-walk of length
s+2£-1. So we assume that p,, is of odd length. Lemma 3 guarantees that the path p,,
can be extended to a uv-walk w of length even. Next we show that we can choose the uv-
walk w such that the length of w is exactly s+2¢—1. We consider two cases: the case

when p,, and C have vertices in common and the case when Pw and C have no vertices in
common.
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Case 1. The path p,, and the cycle C have vertices in common.

We claim that there is a uv-walk w such that £(w) is even and ¢(w) < s+2¢—1.Suppose
the path p,, and the cycle C have exactly one vertex in common c. Then the walk w that
starts at 4, moves to c along the path p,., moves along the cycle C back to c, and finally
moves to v along the path p,, is a uv-walk of length even. Since p,, is of odd length, then
Upy) =P, )+Up,)<2¢-1.This implies £(w)<s+2¢—1. Proposition 2 implies
there is a uv-walk of length exactly s+2/—1.

Now assume that the path p,, and the cycle C have more than one vertex in common.

Without loss of generality let the path ¢, —c,,; —---~¢,,;,; be the path of length k that
lies in both p,, and C. Consider the path p’ where p’ is the path
G =€ = T O TGy TGy T = Gy

The path p started at vertex u, moves to vertex ¢; along the path Pu,» then moves to
vertex ¢;,,, along the path p’, and finally moves to vertex v along the path Do,y 152

uv-path of length even. More over £(p)<s+2¢-1.Lemma 2 implies that we can find a
uv-walk of length exactly s +2¢-1.

Case 2. The path p,, and the cycle C have no vertex in common.

In this case all uv-path in G have no vertex in common with the cycle C. This implies there
is a rooted subtree T of G rooted at ¢ in C such that both vertices  and v are in 7. We
consider two cases. They are the case when v is in the uc-path from u to ¢ and the case
when v is not in the uc-path. Suppose v is in the uc-path. Then the walk w that starts at u,
moves to v along the path p,,, moves to c along the path p,., moves around the cycle C and
back to c, and finally moves to v along the path p,. is a uv-walk of even length. Since
£(p,,) < £, then £(w) < s+2¢—1. Hence Lemma 2 implies that there is a uv-walk of length

exactly s+2/-1.

Now assume v does not lie in the uc-path. Since the path p,, is of odd length, the length of
Puc and p,. are not the same. Without loss of generality we may assume that the path p, is
shorter than the path p,., that is £(p,,) < #( Py)- Notices that the walk w that starts at
moves along the path p,. to ¢, moves around the cycle C and back to ¢, and finally moves
along the path p,, and ends at v, is a uv-walk of length even. Moreover, #(w)<s+2¢-1
and hence Lemma 2 guarantess that we can find a uv-walk of length exactly s+2¢~1.

Now we can conclude that for each pair of vertices # and v in G, there is a uv-walk of
length exactly s+2¢~1.Hence the exp(G)<s+2£—1. ]

Notice that the bound given in Theorem 5 implies that in order to have a primitive graph
with large exponent, then the graph should have small value of s and large value of £. As
a direct consequence of Theorem 5 we have the following corollary.

Corollary 6 Let G be a primitive graph on n vertices. If G has a loop, then the exp(G) <
2n - 2. Otherwise, the exp(G) < 2n— 4.
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Proof. If G has a loop, then s = 1. This implies / < n— 1. Theorem 5 implies exp(G) <2n-—

2. If G has no loops, then s > 3 and / < n — 3. Theorem 5 implies exp(G) < 2n — 4.
(]

Let G be a connected graph on n vertices. Let C ¢ ~¢, —---—¢,_; —¢, —¢; be a cycle of
length s in G. Let P be the path v, — v, —---—v, of length n — 5. A (v,, v,)~lollipop is a

connected graph consisting of a cycle C of length s and a path P of length n — 5. For
example, Figure 1 gives a (vs,v,)-lollipop.

Vs

%

Fig. 1. (ve,v,)-lollipop

Shao shows that the graph G that attains the bound exp(G) < 2n — 2 is the (v;,v,)-lollipop.
While Liu et.al. show that the graph that attains the bound exp(G) < 2n — 4 is the (v3,v,)-
lollipop.

The following theorem shows that the bound given by Theorem 5 is actually a sharp
bound.

Theorem 7. Let G be a (v,,v,)-lollipop and s is odd. Then exp(G)=2n—s—1.

Proof. Since £=n—-35, Theorem 5 implies that exp(G) < s+2¢~1=2n—s—1. It remains

to show that exp(G) = 2n — s — 1. Notice that the smallest closed walk of odd length from
v, to itself is of length 2n — 5. This implies there is no closed walk of length 2r — 5 — 2 from
v, to itself. Hence the exp(G) 2 2n—s—1. ]

As a direct consequence of Theorem 7 we have the following corollary that gives a
formula for exponents of cycles of length odd.

Corollary 8. Let G be a cycle of length odd n. Then the exp(G) =n -~ 1.

We note that Theorem 7 and Corollary 8 give classes of primitive graphs that attain the
upper bound given in Theorem 5. The following theorem gives a more general class of
primitive graphs that attain the bound in Theorem 5. We employ the following
terminologies. A forest is a disconnected graph which has no cycles. A cycle-forest is a
connected graph with exactly one cycle. A typical example of a cycle forest is given by
Figure 2.

Theorem 9. Let G be a cycle-forest on n vertices with the cycle of length s. Then
exp(G)=s+2¢-1.
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V.

Fig 2. A cycle forest.

Proof. Let C be the cycle in G of length s. Let a be a vertex in G\C and x be a vertex in C
such that

t=Upg)=, max (Kp.))

Notice that for each pair of vertices » and v in G there is a uv-path p,, with
Up,,)<s+2¢~-1. Proposition 2 guarantees that for each pair of vertices # and v in G
there is a uv-walk w,, of length exactly s+2¢~1. Hence, exp(G)<s+2£—1. We note
that the smallest closed walk w,, of odd length is the walk that starts at a, moves to x
along the path p,. , moves around the cycle C once and back to x, and finally moves back
to a along the path p,, . The length of this walk is s+ 2£. This implies there is no closed
walk from a to a in G of length s+2¢—1.Hence exp(G)=s+2¢—1. Now we can
conclude that exp(G) =s+2£-1. (]
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