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Abstract. In the application area of frequency assignment graphs are used to model the topology and mutual in-

terference between transmitters. The problem in practice is to assign a limited number of frequency channels in an

economical way to the transmitter in such a way that interference is kept at an acceptable level. This has led to various

different types of coloring problem in graphs. One of them is a λ-backbone coloring. Given an integer λ ≥ 2, a graph

G = (V, E) and a spanning subgraph H of G (the backbone of G), a λ-backbone coloring of (G, H) is a proper

vertex coloring V → {1, 2, . . .} of G in which the colors assigned to adjacent vertices in H differ by at least λ. The

λ-backbone coloring number BBCλ(G, H) of (G, H) is the smallest integer ℓ for which there exists a λ-backbone

coloring f : V → {1, 2, . . . , ℓ}. In this paper we consider the λ-backbone coloring of split graphs. A split graph is

a graph whose vertex set can be partitioned into a clique (i.e. a set of mutually adjacent vertices) and an independent

set (i.e. a set of mutually non adjacent vertices), with possibly edges in between. We determine sharp upper bounds for

λ-backbone coloring numbers of split graphs with tree backbones.

1. Introduction

In [3] backbone colorings are introduced, motivated and put into a general framework of coloring problems related

to frequency assignment. We refer to [3] and [2] for an overview of related research, but we repeat the relevant

definitions here. For undefined terminology we refer to [1].

Let G = (V,E) be a graph, where V = VG is a finite set of vertices and E = EG is a set of unordered

pairs of two different vertices, called edges. A function f : V → {1, 2, 3, . . .} is a vertex coloring of V if

|f(u) − f(v)| ≥ 1 holds for all edges uv ∈ E. A vertex coloring f : V → {1, . . . , k} is called a k-coloring,

and the chromatic number χ(G) is the smallest integer k for which there exists a k-coloring. A set V ′ ⊆ V is

independent if G does not contain edges with both end vertices in V ′. By definition, a k-coloring partitions V into

k independent sets V1, . . . , Vk.

Let H be a spanning subgraph of G, i.e., H = (VG, EH) with EH ⊆ EG. Given an integer λ ≥ 2, a vertex

coloring f of G is a λ-backbone coloring of (G, H), if |f(u) − f(v)| ≥ λ holds for all edges uv ∈ EH . The

λ-backbone coloring number BBCλ(G, H) of (G, H) is the smallest integer ℓ for which there exists a λ-backbone

coloring f : V → {1, . . . , ℓ}.

A path is a graph P whose vertices can be ordered into a sequence v1, v2, . . . , vn such that EP = {v1v2,
. . . , vn−1vn}. A cycle is a graph C whose vertices can be ordered into a sequence v1, v2, . . . , vn such that

EC = {v1v2, . . ., vn−1vn, vnv1}. A tree is a connected graph T that does not contain any cycles.

A complete graph is a graph with an edge between every pair of vertices. The complete graph on n vertices

is denoted by Kn. A graph G is complete p-partite if its vertices can be partitioned into p nonempty independent

sets V1, . . . , Vp such that its edge set E is formed by all edges that have one end vertex in Vi and the other one in

Vj for some 1 ≤ i < j ≤ p.

A star Sq is a complete 2-partite graph with independent sets V1 = {r} and V2 with |V2| = q; the vertex r
is called the root and the vertices in V2 are called the leaves of the star Sq. In our context a matching M is a

collection of pairwise disjoint stars that are all copies of S1. We call a spanning subgraph H of a graph G

• a tree backbone of G if H is a (spanning) tree;

• a star backbone of G if H is a collection of pairwise disjoint stars;

• a matching backbone of G if H is a (perfect) matching.

Obviously, BBCλ(G, H) ≥ χ(G) holds for any backbone H of a graph G. In order to analyze the maximum

difference between these two numbers the following values can be introduced.
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Tλ(k) = max {BBCλ(G, T ) | T is a tree backbone of G, and χ(G) = k}

Sλ(k) = max {BBCλ(G, S) | S is a star backbone of G, and χ(G) = k}

Mλ(k) = max {BBCλ(G, M) | M is a matching backbone of G, and χ(G) = k} .

For the case λ = 2, the behavior of the first values is determined in [3] as summarized in the following result.

Theorem 1.1. T2(k) = 2k − 1 for all k ≥ 1.

The above theorem shows the relation between the 2-backbone coloring number and the classical chromatic

number in case the backbone is a tree. The 2-backbone coloring number roughly grow like 2k, where χ = k. In

[4], we studied the other two cases: We first determined all values Sλ(k), and observed that they roughly grow

like (2− 1

λ
)k. Then we determined all values Mλ(k) and observed that they roughly grow like (2− 2

λ+1
)k. Their

precise behavior is summarized in the two following theorems.

Theorem 1.2. For λ ≥ 2 the function Sλ(k) takes the following values:

(a) Sλ(2) = λ + 1;

(b) for 3 ≤ k ≤ 2λ − 3: Sλ(k) = ⌈ 3k
2
⌉ + λ − 2;

(c) for 2λ − 2 ≤ k ≤ 2λ − 1 with λ ≥ 3: Sλ(k) = k + 2λ − 2; S2(3) = 5;

(d) for k = 2λ with λ ≥ 3: Sλ(k) = 2k − 1; S2(4) = 6;

(e) for k ≥ 2λ + 1: Sλ(k) = 2k − ⌊ k
λ
⌋.

Theorem 1.3. For λ ≥ 2 the function Mλ(k) takes the following values:

(a) for 2 ≤ k ≤ λ: Mλ(k) = λ + k − 1;

(b) for λ + 1 ≤ k ≤ 2λ: Mλ(k) = 2k − 2;

(c) for k = 2λ + 1: Mλ(k) = 2k − 3;

(d) for k = t(λ + 1) with t ≥ 2: Mλ(k) = 2tλ;

(e) for k = t(λ + 1) + c with t ≥ 2, 1 ≤ c < λ+3

2
: Mλ(k) = 2tλ + 2c − 1;

(f) for k = t(λ + 1) + c with t ≥ 2, λ+3

2
≤ c ≤ λ: Mλ(k) = 2tλ + 2c − 2.

A split graph is a graph whose vertex set can be partitioned into a clique (i.e. a set of mutually adjacent vertices)

and an independent set (i.e. a set of mutually nonadjacent vertices), with possibly edges in between. The size of

a largest clique and the size of a largest independent set in G are denoted by ω(G) and α(G), respectively. Split

graphs were introduced by Hammer and Földes [7]; see also the book [6] by Golumbic. They form an interesting

subclass of the class of perfect graphs. Hence, split graphs satisfy χ(G) = ω(G).

The sharp upper bounds for the λ-backbone coloring numbers of split graphs with star or matching backbones

are determined in [5] as follows.

Theorem 1.4. Let λ ≥ 2 and let G = (V,E) be a split graph with χ(G) = k ≥ 2. For every star backbone

S = (V,ES) of G,

BBCλ(G, S) ≤

{

k + λ if either k = 3 and λ ≥ 2 or k ≥ 4 and λ = 2
k + λ − 1 in the other cases.

The bounds are tight.

Theorem 1.5. Let λ ≥ 2 and let G = (V,E) be a split graph with χ(G) = k ≥ 2. For every matching backbone

M = (V,EM ) of G,

BBCλ(G, M) ≤























λ + 1 if k = 2
k + 1 if k ≥ 3 and λ ≤ min{k

2
, k+5

3
}

k + 2 if k = 9 or k ≥ 11 and k+6

3
≤ λ ≤ ⌈k

2
⌉

⌈k
2
⌉ + λ if k = 3, 5, 7 and λ ≥ ⌈k

2
⌉

⌈k
2
⌉ + λ + 1 if k = 4, 6 or k ≥ 8 and λ ≥ ⌈k

2
⌉ + 1.

The bounds are tight.

In this paper we study the special case of λ-backbone colorings of split graphs with tree backbones. In the next

section we present sharp upper bounds for the λ-backbone coloring numbers of split graphs with tree backbones.
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2. Split graphs with tree backbones

In 2003 Broersma et al. [3] determined sharp upper bounds for the λ-backbone coloring numbers of split graphs

along trees for λ = 2 as summarized in the following theorem.

Theorem 2.1. Let G = (V,E) be a split graph with χ(G) = k ≥ 1. For every tree backbone T = (V,ET ) of G,

BBC2(G, T ) ≤







1 if k = 1
3 if k = 2
k + 2 if k ≥ 3.

The bound is tight.

We study λ-backbone colorings of split graphs along trees for other values of λ and generalize the result in

Theorem 2.1 as follows.

Theorem 2.2. Let λ ≥ 2 and let G = (V,E) be a split graph χ(G) = k ≥ 1. For every tree backbone T of G,

BBCλ(G, T ) ≤







1 if k = 1
1 + λ if k = 2
k + λ if k ≥ 3.

The bounds are tight.

Proof of the upper bounds. Let G = (V,E) be a split graph with a spanning tree T = (V,ET ). Let C and I be a

partition of V such that C with |C| = k is a clique of maximum size, and such that I is an independent set. Since

split graphs are perfect, χ(G) = ω(G) = k. The case k = 1 is trivial. If k = 2 then G is bipartite, and we use

colors 1 and λ + 1. For k ≥ 3, we consider the restriction of the tree T to the vertices in C, and we distinguish

two cases.

In the first case, the restriction of T to C forms a star K1,k−1. Let v1, . . . , vk−1 denote the k − 1 leaves of

this star, and let vk denote its center. For i = 1, . . . , k − 1 we color vi with color i, and we color vk with color

k + λ − 1. This yields a λ-backbone coloring for the vertices in C. All vertices u ∈ I are leaves in the tree T .

Any vertex u ∈ I with uvk /∈ ET can be safely colored with color k + λ. It remains to consider vertices u ∈ I
with uvk ∈ ET . In the graph G, such a vertex u is nonadjacent to at least one of the vertices v1, . . . , vk−1, say

to vertex vj (otherwise, the clique C could be augmented by vertex u and would not be of maximum size as we

assumed). In this case we may color u with color j.

In the second case, the restriction of T to C does not form a star. In this case the restriction of T to C has

a proper 2-coloring C = C1 ∪ C2 with |C1| = a ≥ |C2| = b ≥ 2. Then there exist a vertex x ∈ C1 and

a vertex y ∈ C2 for which xy /∈ ET . Let v1, . . . , va = x be an enumeration of the vertices in C1, and let

y = va+1, . . . , va+b be an enumeration of the vertices in C2. For i = 1, . . . , a we color vertex vi with color i + 1.

For i = 1, . . . , b we color vertex va+i with color a+λ+ i−1. This yields a λ-backbone coloring of C with colors

in {2, . . . , k + λ − 1}. We color each vertex u ∈ I with color
{

k + λ if uv ∈ ET and v ∈ C1

1 if uv ∈ ET and v ∈ C2.

This yields a λ-backbone (k + λ)-coloring of (G, T ), since the colors of a vertex vi with i ∈ {1, . . . , a} and of

any vertex u ∈ I such that uvi ∈ ET have distance at least k + λ− (i + 1) ≥ k + λ− (k − 2 + 1) > λ, and since

the colors of a vertex vi with i ∈ {a+1, . . . , b} and of any vertex u ∈ I such that uvi ∈ ET have distance at least

a + λ + i − 1 − 1 ≥ k/2 + λ − 1 ≥ λ.

Proof of the tightness of the bounds. The cases k = 1 and k = 2 are trivial. For k ≥ 3, we consider a split

graph with a clique of k vertices v1, . . . , vk and with an independent set of (k − 2)(k − 1)/2 vertices ui,j with

1 ≤ i < j ≤ k − 1. Every vertex ui,j is adjacent to all vertices vs with s 6= i. The tree backbone T contains the

k − 1 edges vkvs with 1 ≤ s ≤ k − 1. The vertices ui,j form the leaves of T ; in the tree, vertex ui,j is adjacent

only to vj . Clearly, χ(G) = k.

Suppose to the contrary that BBCλ(G, T ) ≤ k + λ − 1, and consider such a backbone coloring. The vertices

v1, . . . , vk in the clique must be colored with k pairwise distinct colors. Since they form a star, either vertex vk has

color 1, and colors 2, . . . , λ are not used on the clique, or vertex vk has color k+λ−1, and colors k, . . . , k+λ−2
are not used on the clique. Both cases are symmetric, and we assume without loss of generality that vk has color
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k +λ− 1 and that colors k, . . . , k +λ− 2 are not used on the clique. Let vi be the vertex that has color k− 2, and

let vj be the vertex that has color k − 1. The vertex ui,j is adjacent to all clique vertices except vi; hence, it could

only be colored with color k − 2 or with a color in {k, . . . , k + λ − 2}. But these λ colors are forbidden for ui,j ,

since in the tree backbone it is adjacent to vertex vj with color k − 1. Since there is no feasible color for ui,j , we

arrive at the desired contradiction.
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