$\lambda\textsc{-}\mathsf{BACKBONE}$ COLORING NUMBERS OF SPLIT GRAPHS WITH TREE BACKBONES

A.N.M. Salman

Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132, Indonesia msalman@math.itb.ac.id

Abstract. In the application area of frequency assignment graphs are used to model the topology and mutual interference between transmitters. The problem in practice is to assign a limited number of frequency channels in an economical way to the transmitter in such a way that interference is kept at an acceptable level. This has led to various different types of coloring problem in graphs. One of them is a λ -backbone coloring. Given an integer $\lambda \ge 2$, a graph G = (V, E) and a spanning subgraph H of G (the backbone of G), a λ -backbone coloring of (G, H) is a proper vertex coloring $V \to \{1, 2, \ldots\}$ of G in which the colors assigned to adjacent vertices in H differ by at least λ . The λ -backbone coloring number $BBC_{\lambda}(G, H)$ of (G, H) is the smallest integer ℓ for which there exists a λ -backbone coloring of split graphs. A split graph is a graph whose vertex set can be partitioned into a clique (i.e. a set of mutually adjacent vertices) and an independent set (i.e. a set of mutually non adjacent vertices), with possibly edges in between. We determine sharp upper bounds for λ -backbone coloring numbers of split graphs with tree backbones.

1. Introduction

In [3] backbone colorings are introduced, motivated and put into a general framework of coloring problems related to frequency assignment. We refer to [3] and [2] for an overview of related research, but we repeat the relevant definitions here. For undefined terminology we refer to [1].

Let G = (V, E) be a graph, where $V = V_G$ is a finite set of vertices and $E = E_G$ is a set of unordered pairs of two different vertices, called edges. A function $f : V \to \{1, 2, 3, ...\}$ is a vertex coloring of V if $|f(u) - f(v)| \ge 1$ holds for all edges $uv \in E$. A vertex coloring $f : V \to \{1, ..., k\}$ is called a k-coloring, and the chromatic number $\chi(G)$ is the smallest integer k for which there exists a k-coloring. A set $V' \subseteq V$ is independent if G does not contain edges with both end vertices in V'. By definition, a k-coloring partitions V into k independent sets V_1, \ldots, V_k .

Let *H* be a spanning subgraph of *G*, i.e., $H = (V_G, E_H)$ with $E_H \subseteq E_G$. Given an integer $\lambda \ge 2$, a vertex coloring *f* of *G* is a λ -backbone coloring of (G, H), if $|f(u) - f(v)| \ge \lambda$ holds for all edges $uv \in E_H$. The λ -backbone coloring number BBC $_{\lambda}(G, H)$ of (G, H) is the smallest integer ℓ for which there exists a λ -backbone coloring $f : V \to \{1, \ldots, \ell\}$.

A path is a graph P whose vertices can be ordered into a sequence v_1, v_2, \ldots, v_n such that $E_P = \{v_1v_2, \ldots, v_{n-1}v_n\}$. A cycle is a graph C whose vertices can be ordered into a sequence v_1, v_2, \ldots, v_n such that $E_C = \{v_1v_2, \ldots, v_{n-1}v_n, v_nv_1\}$. A tree is a connected graph T that does not contain any cycles.

A complete graph is a graph with an edge between every pair of vertices. The complete graph on n vertices is denoted by K_n . A graph G is complete *p*-partite if its vertices can be partitioned into p nonempty independent sets V_1, \ldots, V_p such that its edge set E is formed by all edges that have one end vertex in V_i and the other one in V_i for some $1 \le i < j \le p$.

A star S_q is a complete 2-partite graph with independent sets $V_1 = \{r\}$ and V_2 with $|V_2| = q$; the vertex r is called the *root* and the vertices in V_2 are called the *leaves* of the star S_q . In our context a *matching* M is a collection of pairwise disjoint stars that are all copies of S_1 . We call a spanning subgraph H of a graph G

- a *tree backbone* of G if H is a (spanning) tree;
- a *star backbone* of G if H is a collection of pairwise disjoint stars;
- a *matching backbone* of G if H is a (perfect) matching.

Obviously, $BBC_{\lambda}(G, H) \ge \chi(G)$ holds for any backbone H of a graph G. In order to analyze the maximum difference between these two numbers the following values can be introduced.

 $\mathcal{T}_{\lambda}(k) = \max \{ \operatorname{BBC}_{\lambda}(G, T) \mid T \text{ is a tree backbone of } G, \text{ and } \chi(G) = k \}$ $\mathcal{S}_{\lambda}(k) = \max \{ \operatorname{BBC}_{\lambda}(G, S) \mid S \text{ is a star backbone of } G, \text{ and } \chi(G) = k \}$ $\mathcal{M}_{\lambda}(k) = \max \{ \operatorname{BBC}_{\lambda}(G, M) \mid M \text{ is a matching backbone of } G, \text{ and } \chi(G) = k \}.$

For the case $\lambda = 2$, the behavior of the first values is determined in [3] as summarized in the following result. **Theorem 1.1.** $T_2(k) = 2k - 1$ for all $k \ge 1$.

The above theorem shows the relation between the 2-backbone coloring number and the classical chromatic number in case the backbone is a tree. The 2-backbone coloring number roughly grow like 2k, where $\chi = k$. In [4], we studied the other two cases: We first determined all values $S_{\lambda}(k)$, and observed that they roughly grow like $(2 - \frac{1}{\lambda})k$. Then we determined all values $\mathcal{M}_{\lambda}(k)$ and observed that they roughly grow like $(2 - \frac{2}{\lambda+1})k$. Their precise behavior is summarized in the two following theorems.

Theorem 1.2. For $\lambda \ge 2$ the function $S_{\lambda}(k)$ takes the following values:

(a) $S_{\lambda}(2) = \lambda + 1;$ (b) for $3 \le k \le 2\lambda - 3$: $S_{\lambda}(k) = \lceil \frac{3k}{2} \rceil + \lambda - 2;$ (c) for $2\lambda - 2 \le k \le 2\lambda - 1$ with $\lambda \ge 3$: $S_{\lambda}(k) = k + 2\lambda - 2;$ $S_{2}(3) = 5;$ (d) for $k = 2\lambda$ with $\lambda \ge 3$: $S_{\lambda}(k) = 2k - 1;$ $S_{2}(4) = 6;$ (e) for $k \ge 2\lambda + 1$: $S_{\lambda}(k) = 2k - \lfloor \frac{k}{\lambda} \rfloor.$

Theorem 1.3. For $\lambda \geq 2$ the function $\mathcal{M}_{\lambda}(k)$ takes the following values:

(a) for $2 \le k \le \lambda$: $\mathcal{M}_{\lambda}(k) = \lambda + k - 1$; (b) for $\lambda + 1 \le k \le 2\lambda$: $\mathcal{M}_{\lambda}(k) = 2k - 2$; (c) for $k = 2\lambda + 1$: $\mathcal{M}_{\lambda}(k) = 2k - 3$; (d) for $k = t(\lambda + 1)$ with $t \ge 2$: $\mathcal{M}_{\lambda}(k) = 2t\lambda$; (e) for $k = t(\lambda + 1) + c$ with $t \ge 2$, $1 \le c < \frac{\lambda+3}{2}$: $\mathcal{M}_{\lambda}(k) = 2t\lambda + 2c - 1$; (f) for $k = t(\lambda + 1) + c$ with $t \ge 2$, $\frac{\lambda+3}{2} \le c \le \lambda$: $\mathcal{M}_{\lambda}(k) = 2t\lambda + 2c - 2$.

A split graph is a graph whose vertex set can be partitioned into a *clique* (i.e. a set of mutually adjacent vertices) and an *independent set* (i.e. a set of mutually nonadjacent vertices), with possibly edges in between. The size of a largest clique and the size of a largest independent set in G are denoted by $\omega(G)$ and $\alpha(G)$, respectively. Split graphs were introduced by Hammer and Földes [7]; see also the book [6] by Golumbic. They form an interesting subclass of the class of perfect graphs. Hence, split graphs satisfy $\chi(G) = \omega(G)$.

The sharp upper bounds for the λ -backbone coloring numbers of split graphs with star or matching backbones are determined in [5] as follows.

Theorem 1.4. Let $\lambda \ge 2$ and let G = (V, E) be a split graph with $\chi(G) = k \ge 2$. For every star backbone $S = (V, E_S)$ of G,

$$\mathsf{BBC}_{\lambda}(G,S) \leq \begin{cases} k+\lambda & \text{if either } k=3 \text{ and } \lambda \geq 2 \text{ or } k \geq 4 \text{ and } \lambda=2\\ k+\lambda-1 & \text{in the other cases.} \end{cases}$$

The bounds are tight.

Theorem 1.5. Let $\lambda \ge 2$ and let G = (V, E) be a split graph with $\chi(G) = k \ge 2$. For every matching backbone $M = (V, E_M)$ of G,

$$\mathsf{BBC}_{\lambda}(G,M) \leq \begin{cases} \lambda+1 & \text{if } k=2\\ k+1 & \text{if } k \geq 3 \text{ and } \lambda \leq \min\{\frac{k}{2}, \frac{k+5}{3}\}\\ k+2 & \text{if } k=9 \text{ or } k \geq 11 \text{ and } \frac{k+6}{3} \leq \lambda \leq \lceil \frac{k}{2} \rceil\\ \lceil \frac{k}{2} \rceil + \lambda & \text{if } k=3, 5, 7 \text{ and } \lambda \geq \lceil \frac{k}{2} \rceil\\ \lceil \frac{k}{2} \rceil + \lambda + 1 & \text{if } k=4, 6 \text{ or } k \geq 8 \text{ and } \lambda \geq \lceil \frac{k}{2} \rceil + 1. \end{cases}$$

The bounds are tight.

In this paper we study the special case of λ -backbone colorings of split graphs with tree backbones. In the next section we present sharp upper bounds for the λ -backbone coloring numbers of split graphs with tree backbones.

2. Split graphs with tree backbones

In 2003 Broersma et al. [3] determined sharp upper bounds for the λ -backbone coloring numbers of split graphs along trees for $\lambda = 2$ as summarized in the following theorem.

Theorem 2.1. Let G = (V, E) be a split graph with $\chi(G) = k \ge 1$. For every tree backbone $T = (V, E_T)$ of G,

$$BBC_2(G,T) \le \begin{cases} 1 & \text{if } k = 1 \\ 3 & \text{if } k = 2 \\ k+2 & \text{if } k \ge 3. \end{cases}$$

The bound is tight.

We study λ -backbone colorings of split graphs along trees for other values of λ and generalize the result in Theorem 2.1 as follows.

Theorem 2.2. Let $\lambda \ge 2$ and let G = (V, E) be a split graph $\chi(G) = k \ge 1$. For every tree backbone T of G,

$$\mathsf{BBC}_{\lambda}(G,T) \leq \begin{cases} 1 & \text{if } k = 1\\ 1+\lambda & \text{if } k = 2\\ k+\lambda & \text{if } k \geq 3 \end{cases}$$

The bounds are tight.

Proof of the upper bounds. Let G = (V, E) be a split graph with a spanning tree $T = (V, E_T)$. Let C and I be a partition of V such that C with |C| = k is a clique of maximum size, and such that I is an independent set. Since split graphs are perfect, $\chi(G) = \omega(G) = k$. The case k = 1 is trivial. If k = 2 then G is bipartite, and we use colors 1 and $\lambda + 1$. For $k \ge 3$, we consider the restriction of the tree T to the vertices in C, and we distinguish two cases.

In the first case, the restriction of T to C forms a star $K_{1,k-1}$. Let v_1, \ldots, v_{k-1} denote the k-1 leaves of this star, and let v_k denote its center. For $i = 1, \ldots, k-1$ we color v_i with color i, and we color v_k with color $k + \lambda - 1$. This yields a λ -backbone coloring for the vertices in C. All vertices $u \in I$ are leaves in the tree T. Any vertex $u \in I$ with $uv_k \notin E_T$ can be safely colored with color $k + \lambda$. It remains to consider vertices $u \in I$ with $uv_k \notin E_T$. In the graph G, such a vertex u is nonadjacent to at least one of the vertices v_1, \ldots, v_{k-1} , say to vertex v_j (otherwise, the clique C could be augmented by vertex u and would not be of maximum size as we assumed). In this case we may color u with color j.

In the second case, the restriction of T to C does not form a star. In this case the restriction of T to C has a proper 2-coloring $C = C_1 \cup C_2$ with $|C_1| = a \ge |C_2| = b \ge 2$. Then there exist a vertex $x \in C_1$ and a vertex $y \in C_2$ for which $xy \notin E_T$. Let $v_1, \ldots, v_a = x$ be an enumeration of the vertices in C_1 , and let $y = v_{a+1}, \ldots, v_{a+b}$ be an enumeration of the vertices in C_2 . For $i = 1, \ldots, a$ we color vertex v_i with color i + 1. For $i = 1, \ldots, b$ we color vertex v_{a+i} with color $a + \lambda + i - 1$. This yields a λ -backbone coloring of C with colors in $\{2, \ldots, k + \lambda - 1\}$. We color each vertex $u \in I$ with color

$$\begin{cases} k+\lambda & \text{if } uv \in E_T \text{ and } v \in C_1 \\ 1 & \text{if } uv \in E_T \text{ and } v \in C_2. \end{cases}$$

This yields a λ -backbone $(k + \lambda)$ -coloring of (G, T), since the colors of a vertex v_i with $i \in \{1, \ldots, a\}$ and of any vertex $u \in I$ such that $uv_i \in E_T$ have distance at least $k + \lambda - (i + 1) \ge k + \lambda - (k - 2 + 1) > \lambda$, and since the colors of a vertex v_i with $i \in \{a + 1, \ldots, b\}$ and of any vertex $u \in I$ such that $uv_i \in E_T$ have distance at least $a + \lambda + i - 1 - 1 \ge k/2 + \lambda - 1 \ge \lambda$.

Proof of the tightness of the bounds. The cases k = 1 and k = 2 are trivial. For $k \ge 3$, we consider a split graph with a clique of k vertices v_1, \ldots, v_k and with an independent set of (k-2)(k-1)/2 vertices $u_{i,j}$ with $1 \le i < j \le k-1$. Every vertex $u_{i,j}$ is adjacent to all vertices v_s with $s \ne i$. The tree backbone T contains the k-1 edges $v_k v_s$ with $1 \le s \le k-1$. The vertices $u_{i,j}$ form the leaves of T; in the tree, vertex $u_{i,j}$ is adjacent only to v_j . Clearly, $\chi(G) = k$.

Suppose to the contrary that $BBC_{\lambda}(G,T) \leq k + \lambda - 1$, and consider such a backbone coloring. The vertices v_1, \ldots, v_k in the clique must be colored with k pairwise distinct colors. Since they form a star, either vertex v_k has color 1, and colors $2, \ldots, \lambda$ are not used on the clique, or vertex v_k has color $k + \lambda - 1$, and colors $k, \ldots, k + \lambda - 2$ are not used on the clique. Both cases are symmetric, and we assume without loss of generality that v_k has color

A.N.M. Salman

 $k + \lambda - 1$ and that colors $k, \ldots, k + \lambda - 2$ are not used on the clique. Let v_i be the vertex that has color k - 2, and let v_j be the vertex that has color k - 1. The vertex $u_{i,j}$ is adjacent to all clique vertices except v_i ; hence, it could only be colored with color k - 2 or with a color in $\{k, \ldots, k + \lambda - 2\}$. But these λ colors are forbidden for $u_{i,j}$, since in the tree backbone it is adjacent to vertex v_j with color k - 1. Since there is no feasible color for $u_{i,j}$, we arrive at the desired contradiction.

3. Acknowledgments

This research was supported by the Research Fund of Institut Teknologi Bandung, Program: Riset Unggulan ITB 2006.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976).
- [2] H.J. Broersma, A general framework for coloring problems: old results, new results and open problems, *Lecture Notes in Computer Science* 3330(2004), 65–79.
- [3] H.J. Broersma, F.V. Fomin, P.A. Golovach, and G.J. Woeginger, Backbone colorings for networks, *Lecture Notes in Computer Science* **2880**(2003), 131–142.
- [4] H.J. Broersma, J. Fujisawa, L. Marchal, D. Paulusma, A.N.M. Salman, and K. Yoshimoto, λ-Backbone colorings along pairwise disjoint stars and matchings, *submitted* (2006).
- [5] H.J. Broersma, L. Marchal, D. Paulusma, and A.N.M. Salman, Improved upper bounds for λ-backbone colorings along matchings and stars, *submitted* (2006).
- [6] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York (1980).
- [7] P.L. Hammer and S. Földes, Split graphs, Congressus Numerantium 19(1977), 311-315.