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ABSTRACT

CHARACTERIZATION AND ELECTROCHEMISTRY OF LiFePO
4

BY SONICATION-
HYDROTHERMAL METHODS. Cathode materials of LiFePO

4
for rechargeable-lithium ion battery were

synthesized by combination of sonication and hydrothermal method. The reaction has been carried out by
mixing of FeSO

4
.7H

2
O, H

3
PO

4
, LiOH and ethylene glycol. The mixtures were sonicated by ultrasonic prior to

a hydrothermal process. The crystal structure, microstructure and electrical properties of LiFePO
4

products
were characterized by using X-ray diffraction (XRD), a Scanning Electron Microscope (SEM), and an Impedance
Spectroscopy, respectively. The X-ray data showed that the crystal structure of LiFePO

4
belongs to the

P m n a space group (olivine structure). The crystalline size of sample non-sonic, sonic and commercial
LiFePO

4
were 730.2; 3068.0 and 639.4 Å, respectively. Performances of half cell batteries were measured by

Impedance spectroscopy and by using Battery Analyzer BST-8.The EIS data from half cell batteries of non-
sonic, sonic and commercial LiFePO

4
 were 269.92; 149.85 and 106.2 Ω, respectively. Meanwhile, the specific

capacities at 0.1C of non-sonic, sonic and commercial LiFePO
4

were 98.70; 120.17 and 125.23 mAh/g,
respectively. As confirmed by SEM image, the particle distribution of sonic-LiFePO

4
were more homogenous,

and had properties similar to the commercial ones. It is concluded that the sonication procedure carried out
prior to hydrothermal has improved performance of the lithium ion battery.

Keywords: Lithium-ion Battery, LiFePO
4

cathoda, Sonication, Hydrothermal

ABSTRAK

KARAKTERISASI DAN ELEKTROKIMIA LiFePO
4
YANG DISINTESIS DENGAN METODE

SONIKASI-HIDROTERMAL. Telah dilakukan sintesis bahan katoda LiFePO
4

untuk baterai isi ulang
ion-lithium dengan kombinasi sonikasi dan metode hidrotermal. Dengan mereaksikan campuran dari FeSO

4
.7H

2
O,

H
3
PO

4
, LiOH dan etilena glikol. Campuran disonikasi dengan ultrasonik sebelum proses hidrotermal. Hasil

sintesis dikarakterisasi masing-masing, struktur kristal dengan difraksi sinar-X (XRD), struktur mikro dengan
Scanning Electron Microscope (SEM), dan sifat listrik dengan Spektroskopi Impedansi (EIS). Dari data X-ray
menunjukkan bahwa struktur kristal dari LiFePO

4
memiliki grup ruang P m n a (struktur olivin). Ukuran kristal

dari sampel LiFePO
4

tidak-disonikasi, sonikasi dan komersial masing-masing sebesar 730,2; 3068 dan
639,4 Å. Unjuk kerja sel baterai impedan diukur dengan Spektroskopi Impedansi dan charge/discharge dengan
Battery Analyzer BST-8. Dari data EIS diperoleh hasil impedansi baterai dari bahan LiFePO

4
tidak-disonikasi,

sonikasi dan komersial masing-masing sebesar 269,92; 149,85 dan 106,2 Ω. Sedang hasil charge/discharge pada
0,1C diperoleh kapasitas-spesifik LiFePO

4
tidak-disonikasi, sonikasi dan komersial masing-masing sebesar

98,70; 120,17 dan 125,23 mAh/g. Hal ini juga ditunjukkan pada gambar SEM bahwa distribusi partikel LiFePO
4

hasil sonifikasi lebih homogen dan memiliki sifat yang mirip dengan komersial. Dengan demikian dapat
disimpulkan bahwa sonifikasi sebelum hidrotermal telah meningkatkan kinerja baterai ion-lithium.

Kata kunci: Baterai ion-lithium, Katoda LiFePO
4
, Sonikasi, Hidrotermal
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INTRODUCTION

Efficient low cost lithium ion battery methods are
currently being developed for large scale manufacturing.
Most of the research in lithium ion batteries are focusing
on improvement of materials for cathodes and electrolytes
for better performance and safety [1-3]. The different
methods are researched to show the benefits of using
lithium iron phosphate (LiFePO

4
) as cathode material

over other Li-ion based materials such as manganese or
cobalt based lithium cathodes. Solid state reaction [4]
co-precipitation [5], ball-milling and ball-milling
microwave heating [6,7], doping and sol-gel [8] are
various techniques being used to synthesize LiFePO

4

powders. However, some drawbacks, namely, poor
electronic conductivity, low density, and low ionic
diffusivity, which have limited its application [9]. The
electronic conductivity [10] of LiFePO

4
is ~ 10-9 S.cm-1, it

is much lower than that of LiCoO
2

(~10-3 S.cm-1) and
LiMn

2
O

4
(2 × 10-5- 5 × 10-5 S.cm-1) [11]. However, LiFePO

4

is a good Li ion battery cathode for its high theoretical
capacity, cycle/thermal stability, and environmental
benefits over other Li ion type batteries. The structure
of LiFePO

4
is also shown to have an olivine structure

providing a safer charging/discharging than other
cathode materials. This material shows good theoretical
capacity at 170mAh/g and a flat voltage of 3.4 V, but low
conductivity is the major disadvantage of these types
of cathodes [8,12].

Electronic conductivity of LiFePO
4

could be
improved by carbon coating metal doping [13,14],
and low ionic diffusivity may be improved through
reduction of particle size. Previously, it was reported
that particle sizes depend on the synthesis method and
the media of preparation (pH, pressure, etc.) used [15].
One of the most relevant methods for reducing particle
size was the hydrothermal method [16,17]. The
hydrothermal method is also a simple method which
involves low temperature reaction. The reaction
temperature of hydrothermal synthesis of LiFePO

4

(LFP) was usually in exceed of 175oC to minimize
iron disorder and to obtain material with correct
lattice parameters and volume. Sonochemistry or
sonication methode is one of the earliest techniques used
to prepare nanosized compounds. However, there were
no studies that combine both the ultrasonic and
hydrothermal methods on synthesizing LiFePO

4
.

Therefore in the present work, the sonication method
was performed prior to a hydrothermal process in
order to obtain a more homogenous microstructure
and better capacities. In order to confirm the crystal
structure and microstructure the LiFePO

4
-sonic was

characterized by X-ray diffraction and scanning electron
microscope. Furthermore, performance of the battery was
analyzed by impedance spectroscopy and battery
analyzer. The results were compared with the commercial
LiFePO

4
.

EXPERIMENTAL

Material Preparation

Cathode materials of LiFePO
4

were prepared via
a sonication-hydrothermal process. The starting
materials were FeSO

4
.7H

2
O (Sigma-Aldrich, 99.0%),

H
3
PO

4
(Aldrich, 85.0%), LiOH (Merck, 98.0%) and

ethylene glycol (Merck, 99.5%), with mole ratio 3 : 1 : 1 :
1/3. First LiOH was dissolved in 60 mLof deionized water,
H

3
PO

4
, FeSO

4
·7H

2
O. Ethylene glycol was added

subsequently, with stirring to get suspension. In this
study a sonication was applied for 30 minutes to
homogenize the mixture prior to the hydrotermal process.
After sterring and with/ without sonication, the mixed
solution was transferred into a 90 mL home made teflon-
lined stainless steel autoclave. It was sealed off tightly
followed by heating in an electric mufle oven at
temperatures of 180°C for 24 hours, then cooled down
to room temperature. Details of the hydro thermal method
has been described elsewhere [18,19]. The solid grey-
green precipitates was filtered and washed several times
with ethanol and distilled water and then dried at vacuum
oven at 110oC for 10 hrs then heated at 600oC for 6 hrs.

Structural Characterization

For comparison, a commercial powder LiFePO
4

was used in the present work. The samples are then
labelled as nonsonic-LiFePO

4
, sonic-LiFePO

4
and

commercial-LiFePO
4
. The crystal structure of those

LiFePO
4
were characterized by X-ray diffraction (XRD)

using a PANalytical EMPYREAN Series-2, using Cu
K, scan range from 10o to 80o. The morphology of the
samples was observed by using Scanning Electron
Microscopy (SEM, JSM-6510A).

Cathode Preparation

The cathode was prepared by mixing the active
materials with artificial carbon and then grounding the
mixture for 30 minutes. Polyvinylidene fluoride (PVDF)
was dissolved in N-methyl-2-pyrrolidinone (NMP)
solution using magnetic stirring and simultaneously
heated at 80oC for 2 hours. The weight ratio of active
materials with artificial carbon and PVDF was 85:10:5.
The slurry was formed in the vacuum mixer for 1h, and
the slurry was pasted onto an aluminum current collector
using doctor blade. It was dried on oven vacuum at
110 oC for 10 hrs.

CellAssembly and Electrochemical Testing

In the present work, three half-cell battery was
prepared from LiFePO

4
nonsonication-hydrothermal/Li

(nonsonic-LiFePO
4
), sonication-hydrothermal/Li (sonic-

LiFePO
4
) and LiFePO

4
commercial/Li (commercial-

LiFePO
4
).All of half-cell battery were constructed inside
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an argon filled glove box Vigor with the content of O
2

less than 1 ppm. The performance of battery was
evaluated in CR2016 coin-type cells, using 20 mm
diameter coin cells (CR2016) with Celgard 2500™
separator, Li (reference electrode) and electrolyte (1M
LiPF6 dissolved in ethylene carbonate (EC):dimethyl
(DMC) 1:2 solution). The crimped coin cells were placed
in a stainless steel cell (MTI Corporation) for
electrochemical characterization. The impedance
spectroscopy was done by LCR Hioki Tester. The
charge–discharge experiment was conducted using a
battery analyzer system (BTS-8, MTI, 5V/1mA) from 2.5
to 4.2V for several cycles at 0.1C.

RESULTS AND DISCUSION

Materials Characterizations

The crytal structure of nonsonic, sonic and
commercial-LiFePO

4
powders were analyzed by XRD to

verify phase purity. The XRD results were illustrated in
Figure1(a), (b) and (c), respectively. In order to analyze
the purity of the LiFePO

4
-sonic, the data was analyzed

by using High Score Plus refinement application code.
It was clear that the sonication process has increased
the crystalinity of the LiFePO

4
, in comparison to the

sample without sonication, with the average of crystallite
size of 3068.0 Å. Meanwhile, non-sonic LiFePO

4
showed

smaller crystallitesizes with the average of 730.2 Å, and
higher background scattering.

Figure1(b) and 1(c) showed the comparison of
sonic-LiFePO

4
and commercial-LiFePO

4
. It is shown that

sonic- LiFePO
4
has the identical XRD pattern with the

commercial-LiFePO
4
. It can be seen here, that the

dominant diffraction peaks can be indexed as the
orthorhombic LiFePO

4
phase with space group Pnma,

according to the standard pattern of JCPDF 016-2282. It
means that the synthesized LiFePO

4
via sonication-

hydrothermal process was successfully formed and the
phase was pure 100% LiFePO

4
. Similar result was

observed for LiFePO
4
-commercial in Figure 1(c),

with100% pure LiFePO
4
. However, by close inspections,

it is shown that there was a discrepancy between the
sonic-LiFePO

4
and commercial-LiFePO

4
, such as the

broadening of the crystalline Bragg peaks. The peaks
belong to the sonic-LiFePO

4
are much sharper in

comparison to the peaks of commercial-LiFePO
4
.As listed

in Table 1, the crystallite sizes were 730.2 Å, 3068 Å and
639 Å for non-sonic, sonic and commercial-LiFePO

4
,

respectively. The microstructures were observed by SEM
shown in Figure 2(a),2(b) and 2(c), for nonsonic, sonic
and commercial-LiFePO

4
, respectively. Figure 2(a)

showed that the particles of non sonic LiFePO
4

was
agglomerated and not well distributed.

Similar result was observed for the microstructure
of sonic and commercial-LiFePO

4
. For nonsonic

LiFePO
4

the particle sizes were not well distributed. The
morphologies are rather like hexahedral sheets, which
resulted from the anisotropic surface energy of LiFePO

4
.

On the microstructure of an LiFePO
4
/C composite

generated through sonication-hydrothermal showed a
more uniform morphology compared with nonsonic-
LiFePO

4
[20].

Electrochemical Characterizations

Before analyzing the battery performance, it was
measured by impedance spectroscopy. The EIS results

Figure 1. (a). The XRD patterns of (a). nonsonic-LiFePO
4

(b). sonic-LiFePO
4

and (c). commercial-LiFePO
4
.

(a) (b)

(c)
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of non-sonic, sonic and commercial- LiFePO
4
are shown

in Figure 3. The intercept on X-axis in the high frequency
region indicates an internal resistance of the cell, and
the diameter of the semicircle represents the effect caused
by charge transfer and electrochemical double layer. The
straight line at a 45° angle after the semicircle represents
the resistance in the bulk electrode [21]. From the data

shown in Figure 3, it is shown that the impedance of
commercial-LiFePO

4
was lower than both sonic and

nonsonic LiFePO
4
. However, by close inspection it

becomes clear that there was slightly different of resistant
between the sonic and commercial-LiFePO

4
, namely

149.85 and 106.2, respectively, mean while the non-
sonic LiFePO

4
was about 269.92 . It means that the

Nonsonic- hydrothemal Sonic-hydrothermal Powder Commercial
Formula /Unit Crystal Li4Fe4O16 Li4Fe4O16 Li4Fe4O16

Formula mass (g/mol) 631.0376 631.0376 631.0376
Calculate Density (g/cm3) 3.5892 3.6011 3.6072
Weight Fraction (%) 100 100 100
Space group (No.) P n m a (62) P n m a (62) P n m a (62)
Lattice Parameters :

a (Å) 10.3295(4) 10.3390(4) 10.3169 (4)
b (Å) 6.0056 (2) 6.0032 (2) 6.0018 (2)
c (Å) 4.7010(2) 4.6921 (2) 4.6908 (2)
FWHM (2Th=35.57°) 0.1665 0.1063 0.1763
alpha (o) 90 90 90
beta (o) 90 90 90
gamma (o) 90 90 90
Preferred Orientation
Parameters and Direction

1.020686

[0 01] 0.743721
[01 0 ] 0.984201
[0 1 0]
Crystallite Size (Å) 3068.0 730.2 639.4
% Strain 0.000 0.028 0.008
Formula /Unit Crystal Li4Fe4O16 Li4Fe4O16 Li4Fe4O16

Formula mass (g/mol) 631.0376 631.0376 631.0376
Calculate Density (g/cm3) 3.5892 3.6011 3.6072
Weight Fraction (%) 100 100 100
Space group (No.) P n m a (62) P n m a (62) P n m a (62)

Lattice Parameters :
a (Å) 10.3295(4) 10.3390(4) 10.3169 (4)
b (Å) 6.0056 (2) 6.0032 (2) 6.0018 (2)
c (Å) 4.7010(2) 4.6921 (2) 4.6908 (2)
FWHM (2Th=35.57°) 0.1665 0.1063 0.1763

Table 1. Crystal structure analysis of nonsonic, sonic and commercial-LiFePO4

Figure 2. The SEM image of (a). nonsonic-LiFePO4, (b). sonic-LiFePO4

and (c). commercial-LiFePO4

3068.0730.2
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sonic-LiFePO
4

has better electronic conductivity
compared to the nonsonic ones (Table 2) [22].

The effects of carbonaceous materials on the
physical and electrochemical performance of LiFePO

4

are reviewed by Kang Fei-Yu et al [23]. The introduction
of an in-situ grown carbon coating would be beneficial
to limiting the LiFePO

4
growth and increasing the

electric conductivity. The structure and precursors of
the in-situ grown carbons have a great influence in
the rate performance of the hybrids, which can be
related to an improved electron and ion transfer rate. In
this case, the addition of ethylene glycol as a carbon
source would affect the ionic conductivity and ion
transport. Though, the crystal growth could not be
limited, due to the sonication prior to hydrothermal
process. Furthermore, performance of half-cells of
nonsonic, sonic and commercial LiFePO

4
with the counter

electrode lithium metal, Li, were analyzed by using battery
analyser. Fig.4(a), 4(b) and 4(c) showed charge
discharges of nonsonic-LiFePO

4
/Li, sonic-LiFePO

4
/Li

and commercial -LiFePO
4

/Li, respectively. The
characteristic showed a flat discharge plateau at
around 3.2 V, which represents a LiFePO

4
working

voltage. The charge discharge processes were done for
10 cycles at 0.1 C.

The spesific capacity of lithium ion battery made
from nonsonic and sonic-LiFePO

4
were 98.7 and 120.17

mAh/g, respectively, meanwhile from commercial LiFePO
4

was 125.23 mAh/g, at 0.1C. It is concluded that the
sonication prior to hydrothermal has improved
performance of the lithium ion battery or similar
performance as the commercial ones.

In order to achieve an excellent electrochemical
performance of LiFePO

4
, it is necessary to take advantage

of and to combine these approaches to optimize electron
and ion transfer rates. Also, it is most important to
minimize the carbon content in LiFePO

4
carbon hybrids

to increase volumetric energy density. The primary
particle size that determines electrochemical
performance, including cycling, rate capability, and low-
temperature performance, could be successfully
controlled via this method.

The cyclic performances after 10th cycles for
nonsonic, sonic and commercial-LiFePO

4
/Li were

shown in Fig. 5 to observe its capacity retentions.
The nonsonic-LiFePO

4
/Li showed the first discharge

at 98.70 mAh/g then decreased to 81.16 mAh/g after
10th cycles or decreased about 17.7%. The sonic-
LiFePO

4
/Li showed the first discharge at 120.17 mAh/g

then decreased to 114.26 mAh/g after 10th cycles or
decreased about 4.90%. For the commercial LiFePO

4
/Li,

the first discharge at 125.23 mAh/g and decreased
to 120.64 mAh/g for the 10th cycles which was about
3.70%. The capacity retentions of the sonic- LiFePO

4

is rather similar to the commercial ones. It is shown
that the sonication prior to hydrothermal process
improved performance of the lithium ion batteries.

Figure 4. (a). Specific capacity of (a). nonsonic-LiFePO4/
Li, (b). sonic-LiFePO4/Li and (c). commercial-LiFePO4/Li.

Figure 3. Impedance plots of half cells of non-sonic,
sonic and commercial-LiFePO4/Li

Battery lithium ion R
(Ω ) 

W
(Ω.s-2)

Specific Capacity
(mAh/g)

nonsonic- LiFePO4 /Li 269.92 1728.2 98.70
sonic-LiFePO4 /Li 149.85 1128.3 120.17
commercial-LiFePO4 /Li 106.2 939.61 125.23

Table 2. Resistance and specific capacities of nonsonic, sonic and
commercial.
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Figure 5. Cycling performance of nonsonic, sonic and
commercial-LiFePO4/Li.

CONCLUSION

LiFePO
4
as cathode material for Li-ion battery was

successfully synthesized by sonication-hydrothemal
method. The addition of ethylene glycol during
sonication had increased the electronic conductivity
since it became a source of carbon. The charge–discharge
results show that both sonic and commercial-LiFePO

4

showed good performance of the lithium ion battery,
but the specific capacity was slightly higher for
commercial LiFePO

4
. In this case, the highest spesific

capacity obtained for sample prepared by sonication-
hydrothermal was 120.70 mAh/g, while from commercial
was 125.23 mAh/g at 0.1C. It was assumed that the
crystallite sizes as the results of the hydrothermal process
had affected performance of the electrical conductivity
and also the battery. The sonication prior to
hydrothermal has also proved the growth of the LiFePO

4

crystal more homogenous due to smaller particles of the
raw material mixtures. It is concluded that the sonication
prior to hydrothermal has improved performance of the
lithium ion battery.

For further study, it is important to understand
the temperature effect of sonication-hydrothermal
methods for the nucleation rate of the LiFePO

4
crystal.

The primary particle size that determines electrochemical
performance, including, rate capability, and low
temperature performance, could be successfully
controlled via this method. Hence, this would be the
most promising method for commercial production of
LiFePO

4
/C directed to hybrid electrical vehicles and pure

electrical vehicle market.
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