SINTESIS DAN KARAKTERISASI KOMPOSIT Fe₃O₄@ZnO DENGAN METODA PRESIPITASI

Didin S. Winatapura, Sari H. Dewi dan Ridwan Pusat Sains dan Teknologi Bahan Maju - BATAN Gd. 42 Kawasan PUSPIPTEK Serpong - Tangerang Email:didinsw@batan.go.id

ABSTRAK

SINTESIS DAN KARAKTERISASI KOMPOSIT Fe₃O₄@ZNO DENGAN METODA PRESIPITASI. Komposit Fe₃O₄@ZnO telah disintesis melalui metoda presipitasi dengan rasio antara Fe₃O₄ dan ZnO adalah 1:1, 1:2 dan 1:3. Karakterisasi sampel dilakukan menggunakan difraktometer sinar-X (XRD), scanning electron microscope (SEM) yang dilengkapi dengan energy dispersive spectrophotometer (EDS), vibrating sample magnetometer (VSM) dan transmission electron microscope (TEM). Pola difraksi sinar-X menunjukkan bahwa sampel tersusun dari fasa nanopartikel Fe₃O₄ dan fasa ZnO. Nilai saturasi magnet (M_s) dari Fe₃O₄ yang diukur dengan VSM diperoleh sekitar 62,92 emu/g, namun kemudian nilai Ms turun hingga 13,60 emu/g dengan penambahan kandungan ZnO. Pengamatan sampel dengan TEM menunjukkan aggregate Fe₃O₄ dengan stuktur berbentuk bola berdiameter sekitar 20 nm dan tertanam dalam *shell* ZnO. Spektrum EDS mengungkapkan bahwa dalam komposit Fe₃O₄@ZnO hanya teramati tiga jenis unsur, yakni Fe, Zn dan O. Hal ini menunjukkan bukti bahwa lapisan diatas permukaan nanopartikel Fe₃O₄ adalah *shell* ZnO. komposit Fe₃O₄@ZnO dengan rasio antara Fe₃O₄ dan ZnO adalah 1: 2 memperlihatkan pelapisan ZnO yang lebih homogen.

Kata Kunci: komposit Fe₃O₄@ZnO, fotokatalis, saturasi magnet

ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF Fe₃O₄@ZnO COMPOSITE THROUGH PRECIPITATION METHOD. Fe₃O₄@ZnO composite has been synthesized trough precipitation method with the ratio between Fe₃O₄ and ZnO are 1:1, 1:2, dan 1:3. Characterization of the sample was performed using X-ray diffractometer (XRD), scanning electron microscope (SEM) equipped with energy dispersive spectrophotometer (EDS), vibrating sample magnetometer (VSM) and transmission electron microscope (TEM). The XRD pattern shows that the sample consisted of Fe₃O₄ nanoparticles and ZnO phases. Magnetic saturation value (M_s) of Fe₃O₄ were measured by VSM obtained about 62.92 emu / g, but then the value of M_s dropped to13.60 emu/g with the addition of ZnO content. TEM observation showed a spherical structure of Fe₃O₄ aggregate about 20 nm in diameter, and embedded in the ZnO shell. EDS spectrum revealed that the Fe₃O₄ @ZnO composites were only observed three types of elements, namely Fe, Zn and O. This shows evidence that the coating on the surface of Fe₃O₄ nanoparticles is the outer shell of ZnO. Fe₃O₄@ZnO composites with Fe₃O₄ and ZnO ratio is 1: 2 shows a more homogeneous coating ZnO.

Keywords: Fe₃O₄@ZnO composites, photo-catalysts, magnetic saturation

PENDAHULUAN

Salah satu metode pengolahan limbah tanpa endapan setelah proses berlangsung adalah menggunakan suatu bahan semikonduktor yang bersifat katalis. Metode pengolahan limbah dengan bahan katalis semikonduktor ini sangat efektif untuk polutan yang bersifat organik [1-3]. Fungsi utama bahan katalis di dalam larutan limbah adalah sebagai elektron donor yang dapat membentuk radikal bebas *OH [4]. Elektron pada pita valensi (PV) tereksitasi ke pita konduktoi (PK) dan kemudian bermigrasi ke permukaan katalis. Mekanisme perpindahan elektron ini sangat bergantung pada lebar celah energi (E_g) antara PV dan PK. Bahan katalis semikonduktor yang banyak dikembangkan adalah TiO₂, ZnO dan CdS. Namun demikian, saat ini ZnO dipertimbangkan sebagai alternatif pengganti TiO₂ karena kelebihan yang dimilikinya, antara lain memiliki *direct band gap* sehingga energi aktivasi cukup berasal dari sinar tampak (misalnya sinar matahari) [4,5].

Aplikasi sistem reaktor slurry untuk proses fotokatalitik memberikan konsep yang sederhana dengan menghasilkan aktivitas fotokatalis yang tinggi [6]. Hal ini karena pada sistem tersebut, partikel katalis ditebar langsung ke dalam limbah cair. Namun demikian, setelah proses berlangsung akan menghasilkan endapan dan membutuhkan proses penyaringan mekanik yang rumit. Salah satu alternatif untuk mengatasi hal tersebut, maka pembentukan sistem komposit magnet katalis merupakan solusi yang efektif. Bahan fotokatalis setelah proses pengolahan limbah dapat diambil kembali dari cairan limbah dengan menggunakan batangan magnet permanen ataupun sistem elektromagnet lainnya. Penggabungan partikel magnetik Fe₃O₄ dengan bahan fotokatalis ZnO membentuk bahan komposit cukup efektif dan sederhana serta dapat dengan mudah dalam pengambilan kembali fotokatalis. Berbagai metode untuk sintesis sistem komposit Fe₃O₄@ZnO telah dilakukan dengan menghasilkan ukuran dan bentuk partikel yang dapat dikontrol menggunakan metoda solvotermal [7], sol-gel [8] dan kopresipitasi [9] untuk aplikasi baik kesehatan maupun lingkungan. Sifat magnetik pada bahan komposit Fe₃O₄@ZnO berfungsi untuk pengambilan partikel-partikel fotokatalis setelah proses pengolahan limbah dilakukan [10]. Keuntungan lain dari penggabungan partikel magnetik Fe₃O₄ dengan ZnO adalah bisa mengurangi agregasi nanopartikel Fe₃O₄ [11] dan meningkatkan daya tahan katalis [12].

Dalam penelitian ini, komposit Fe₃O₄@ZnO disintesis melalui metoda presipitasi dengan perbandingan (berat) Fe₃O₄: ZnO sebesar 1: 1; 1: 2 dan 1: 3. Adanya variasi komposisi ZnO yang berbeda, diharapkan dapat mengetahui ketebalan *shell* luar ZnO yang optimum setelah terbentuk komposit Fe₃O₄@ZnO. *Shell* luar ZnO akan sangat berpengaruh terhadap aktivitas fotokatalitik maupun sifat magnet Fe₃O₄. *Shell* luar ZnO yang terlalu tebal, maka *surface area* yang dihasilkan kecil, sehingga aktivitas fotokatalitik rendah. Demikian pula sifat magnet *core* Fe₃O₄ akan semakin kecil, sehingga katalis mengalami kesulitan dikumpulkan dengan medan magnet. Tujuan dari penelitian ini adalah melakukan sintesis dan karakterisasi komposit Fe₃O₄@ZnO melalui metoda presipitasi dan mempelajari parameter lain yang mempengaruhinya. Fasa yang terbentuk, morfologi permukaan, morfologi permukaan, analisis unsur, sifat magnet dan morfologi partikel yang terkandung dalam komposit Fe₃O₄@ZnO dianalisi dengan difraktometer sinar-X, *scanning electron microscope* (SEM) yang dilengkapi dengan *enegy dispersive spectrophotometer* (EDS), *vibrating sample magnetometer* (VSM) dan *transmission electron microscope* (TEM).

TATA KERJA

Bahan dan Peralatan

Bahan yang digunakan dalam penelitian ini menggunakan bahan dasar dengan kemurnian tinggi antara lain: FeCl₂.4H₂O dan FeCl₃.6H₂O sebagai prekursor Fe²⁺ dan Fe³⁺ untuk pembentukan Fe₃O₄, ZnCl sebagai prekursor ZnO, NaOH sebagai bahan presipitator yang diperoleh dari katalog Merck. Peralatan untuk pembuatan oksida besi, Fe₃O₄ dan komposit Fe₃O₄@ZnO antara lain: *beaker glass*, pH meter, *thermometer, magnetic* dan *overhead stirrer* serta pompa pheristaltik.

Metodologi

Proses sintesis magnet Fe₃O₄ diawali dengan melarutkan prekursor Fe²⁺ dan Fe³⁺ dengan perbandingan 2: 1 di dalam air de-ionisasi, sambil diaduk dan dialiri gas nitrogen (N₂). Setelah larutan Fe mencapai suhu 70 °C, larutan NaOH 3-M dimasukkan perlahan-lahan ke dalam larutan Fe dengan kecepatan tinggi. Penambahan larutan NaOH dihentikan setelah mencapai pH 12, namun suhu larutan masih tetap 70 °C sambil terus diaduk selama 3 jam. Endapan Fe₃O₄ hasil sintesis dicuci dengan air dan etanol dengan perbandingan 1: 1 hingga pH 7.

Endapan Fe₃O₄ didispersi dalam 100 ml air sambil diaduk dan pada suhu 70 °C ditambahkan perlahan-lahan larutan ZnCl dan NaOH hingga pH = 12. Larutan Fe₃O₄@ZnO terus diaduk selama 24 jam dan kemudian dicuci hingga pH = 7, dikeringkan dan dikalsinasi pada suhu 300 °C selama 2 jam. Variasi komposisi (molar) Fe₃O₄: ZnO adalah 1: 1; 1: 2 dan 1: 3. yang dinotasikan FZn-1, FZn-2 dan FZn-3. Fe₃O₄@ZnO hasil proses sintesis kemudian dikarakterisasi dengan peralatan difraktometer sinar-X (XRD), scanning electron microscope (SEM) yang dilengkapi dengan *enegy dispersive spectrophotometer* (EDS), vibrating sample magnetometer (VSM) dan transmission electron microscope (TEM).

HASIL dan PEMBAHASAN

Pola XRD serbuk Fe₃O₄ dan Fe₃O₄@ZnO diperlihatkan pada Gambar 1. Berdasarkan pola XRD pada Gambar 1, tampak bahwa nanopartikel Fe₃O₄ terbentuk dengan fasa tunggal dan sesuai dengan data base JCPDS no. 19-0629. Dengan melihat puncak difraksi yang cenderung melebar,

diperkirakan ukuran kristalit Fe₃O₄ cukup kecil. Gambar 1b merupakan pola XRD serbuk nanokomposit Fe₃O₄@ZnO. Dari Gambar 1b terlihat bahwa pola XRD yang terbentuk tersusun dari dua fasa, yaitu fasa Fe₃O₄ yang ditandai (•) dan fasa ZnO ditandai (+).

Gambar 1. Pola difraksi sinar-X untuk sistem fasa a). Fe₃O₄, b). Fe₃O₄@ZnO dari sampel FZn-3.

Sifat kemagnetan nanopartikel Fe₃O₄ dan komposit Fe₃O₄ @ZnO dari sampel FZn-1, FZn-2 dan FZn-3 diukur menggunakan VSM dengan rentang medan magnet 1 T. Hasil pengukuran sifat magnetik nanopartikel Fe₃O₄ diperlihatkan pada Gambar 2a. Dari Gambar 2a tampak bahwa kurva magnetisasi nanopartikel Fe₃O₄ hampir tidak menghasilkan histerisis dengan nilai koersivitas (H_c) sangat rendah. Ini menunjukkan bahwa nanopartikel Fe₃O₄ berperilaku superparamagnetik. Perilaku nanopartikel Fe₃O₄ setelah terbentuk komposit Fe₃O₄ @ZnO ditunjukkan pada Gambar 2b - 2d. Berdasarkan kurva histerisis M – H pada Gambar 2, tampak jelas adanya perbedaan yang signifikan antara nilai magnet saturasi (M_s) nanopartikel Fe₃O₄ dengan komposit Fe₃O₄ @ZnO dengan jumlah kandungan ZnO yang berbeda. Dari kurva histerisis M – H pada Gambar 2, dapat ditentukan nilai M_s dan H_{ci} dari semua sampel, seperti dicantumkan pada Tabel 1.

Berdasarkan kurva histerisis M – H pada Gambar 2a, nilai M_s dari nanopartikel Fe₃O₄ terukur sekitar 62,92 [emu/g]. Namun, setelah terbentuk komposit Fe₃O₄@ZnO, nilai M_s terus menyusut dengan penambahan jumlah kandungan ZnO, seperti ditunjukkan pada Gambar 2b-d. Pada sampel FZn-1 dengan perbandingan (berat) Fe₃O₄/ZnO adalah 1/1, Nilai M_s terukur sekitar 34,18 [emu/g], hampir setengah dari nilai M_s nanopartikel Fe₃O₄ (Gambar 2b). Pada sampel FZn-2 (Gambar 2c), nilai M_s tampak turun lagi ke 20,20 emu/g sepertiga dari nilai M_s nanopartikel Fe₃O₄.

Penurunan magnet saturasi pada komposit Fe₃O₄@ZnO ini dapat dipahami mengingat dalam sampel tersebut terdapat fraksi ZnO yang tidak bersifat magnet yang dapat menurunkan jumlah momen magnetik dalam bahan komposit Fe₃O₄@ZnO. Semakin tinggi kandungan ZnO dalam bahan komposit Fe₃O₄@ZnO, maka jumlah momen magnetik Fe₃O₄ akan semakin berkurang. Akibatnya, nilai magnet saturasi juga semakin rendah. Sifat magnet yang dimiliki oleh komposit Fe₃O₄@ZnO ini sangat diperlukan, mengingat dalam aplikasinya sifat magnet tersebut menggantikan fungsi saringan mekanik dalam proses pengolahan limbah cair. Bila kekuatan magnet

yang dimiliki oleh komposit Fe₃O₄@ZnO ini sangat lemah, maka akan menyulitkan dalam pengumpulan dan daur ulang kembali bahan katalis dari air limbah.

Gambar 2. Kurva histerisis a). Fe₃O₄, b). FZn-1, c). FZn-2 dan d). FZn-3 hasil pengukuran dengan VSM.

Tabel	 Sit 	fat magnet	nanopartikel	Fe ₃ O ₄ (dan Fe₃C)₄ @ZnO	hasil	pengukuran	dengan '	VSM

Sampal	Rasio		Sifat Magnet		
Samper	Fe ₃ O ₄	ZnO	M₅ [emu/g]	H₀[kOe]	
Fe ₃ O ₄	1	-	62,92	0,02	
FZn-1	1	1	34,18	0,05	
FZn-2	1	2	20,20	0,05	
FZn-3	1	3	13,60	0,01	

Struktur morfologi dari komposit Fe₃O₄@ZnO diamati dengan peralatan SEM. Gambar 3 memperlihatkan morfologi komposit Fe₃O₄@ZnO dari sampel FZn-1, FZn-2 dan FZn-3 untuk kandungan ZnO yang berbeda-beda. Gambar 3a adalah *image* SEM sampel FZn-1, ukuran serbuk yang kecil (<<1 µm) meskipun telah dilapisi ZnO. Oleh karena sifat magnet yang cukup tinggi, sehingga diantara partikel Fe₃O₄ dengan tetangga terdekatnya cenderung membentuk agregat. Gambar 3b memperlihatkan *image* SEM dari morfologi sampel FZn-2. Ukuran butir tampak sedikit lebih besar dari butiran pada sampel FZn-1. Dengan kandungan ZnO yang dua kali besar, agregasi antar butir sudah mulai berkurang (Gambar 3c). Dengan penambahan kandungan ZnO tiga kali lebih besar pada sampel FZn-3, ukuran butir semakin besar dan permukaan butir lebih halus. Perbedaan pada ukuran butir tersebut sangat erat terkait dengan ketebalan lapisan ZnO pada permukaan nanopartikel Fe₃O₄. Untuk mengetahui gambaran morfologi yang lebih mendalam, komposit Fe₃O₄@ZnO diamati dengan TEM, seperti ditunjukkan pada Gambar 4.

Selain itu, analisis EDS dilakukan untuk menentukan komposisi dari komposit Fe₃O₄@ZnO. Hasil pengamatan dengan spektrum EDS untuk ketiga komposit Fe₃O₄@ZnO dari dampel FZn-1, FZn-2 dan FZn-3 ditampilkan dalam Tabel 2. Berdasarkan Tabel 2 ditunjukkan bahwa komposit Fe₃O₄@ZnO tersusun dari tiga jenis unsur, yaitu Fe, Zn dan O. Hasil-hasil pengamatan yang diperoleh dalam penelitian ini memiliki kemiripan dengan hasil-hasil penelitian yang telah dilakukan oleh peneliti terdahulu [7].

Gambar 3. Image SEM komposit Fe₃O₄@ZnO sampel a). FZn-1, b). FZn-2 dan c). FZn-3.

Gambar 4. *Bright field image* TEM komposit Fe₃O₄@ZnO sampel a). FZn-1, b). FZn-2 dan c). FZn-3.

Tabel 2. Hasil pengamatan spektrum EDS untuk rasio kandungan Fe dan Zn dalam kompositFe3O4@ZnO

Sampal	% atom					
Samper	Fe	Zn	0			
FZn-1	26,95	29,46	43,59			
FZn-2	16,80	33,79	49,41			
FZn-3	14,08	38,92	46,69			

Gambar 4a - 4c menunjukkan image TEM dari sampel FZn-1, FZn-2 dan FZn-3 menggunakan metoda bright field image. Dari morfologi TEM pada Gambar 4a nampak bahwa agregat nanopartikel Fe₃O₄ memperlihatkan morfologi bentuk bola berukuran lebih kecil dari 20 nm. Klaster-klaster ini teratur menyerupai struktur seperti rantai disebabkan adanya interaksi dipole magnet diantara partikel Fe₃O₄ terdekat [13]. Berdasarkan pada Gambar 4a, sudah terlihat jelas adanya lapisan ZnO (warna abu-abu) yang melapisi agregat nanopartikel Fe₃O₄. Sifat magnet sampel FZn-1 ini masih tinggi, namun distribusi lapisan ZnO sebagian masih tipis dan tidak terdistribusi secara homogen. Gambar 6b adalah image TEM sampel FZn-2, dengan kandungan ZnO dua kali lebih besar dari Fe₃O₄. Dari Gambar 64b tampak agregat nanopartikel Fe₃O₄ (warna hitam) telah tertanam dalam lapisan ZnO (warna abu-abu). Diameater agregat partikel Fe₃O₄ dari hasil pengamatan TEM ini berukuran lebih kecil dari 20 nm dan diameter lapisan ZnO diperoleh sekitar 30 nm. Berdasarkan hasil pengatan TEM ini terlihat lapisan ZnO telah terdistribusi lebih homogen. Morfologi sampel FZn-2 ini memiliki nilai M₅ tiga kali lebih kecil dari nilai Ms Fe₃O₄, lihat pada Gambar 2. Gambar 4c merupakan image TEM dari sampel FZn-3. Dapat dilihat dengan jelas bahwa agregat nanopartikel Fe₃O₄ telah tertutupi oleh lapisan ZnO. Pada sampel FZn-3, jumlah kandungan ZnO tiga kali lebih banyak dari pada kandungan Fe₃O₄, sehingga tampak lapisan ZnO

yang terbentuk sangat tebal. Berdasarkan hasil pengamatan dengan TEM, ketebalan lapisan ZnO lebih besar dari 20 nm dan tidak terdistribusi secara homogen. Besar ukuran butiran. Dalam hal ini dapat dikaitkan dengan nilai M_s komposit Fe₃O₄@ZnO dari sampel FZn-3 ini, enam kali lebih kecil dari nilai M_s nanopartikel Fe₃O₄, lihat pada Gambar 2.

KESIMPULAN

Komposit Fe₃O₄@ZnO telah berhasil disintesis melalui metoda presipitasi. Hasil pengukuran dengan difraktometer sinar-X menegaskan terjadi pembentukan komposit yang tersusun dari fasa Fe₃O₄ dan fasa ZnO. Nilai M_s nanopartikel Fe₃O₄ yang diukur dengan VSM diperoleh sekitar 62,92 emu/g. Setelah terbentuk komposit Fe₃O₄@ZnO, nilai M_s terus menyusut setelah dienkapsulasi dalam lapisan ZnO. Semakin besar jumlah kandungan ZnO yang melapisi permukaan nanopartikel Fe₃O₄, nilai M_s semakin rendah. Hasil pengamatan dengan TEM menunjukkan bahwa komposit Fe₃O₄@ZnO tersusun dari *core* berupa agregat nanopartikel Fe₃O₄ tertanam dalam *shell* ZnO. Pada komposit Fe₃O₄@ZnO dari sampel FZn-3, agregat partikel Fe₃O₄ berukuran lebih kecil dari 20 nm dan lapisan ZnO diperoleh sekitar 30 nm. Distribusi lapisan ZnO pada sampel FZn-2 relatif lebih homogen bila dibandingkan distribusi lapisan ZnO pada sampel FZn-1 dan FZn-3. Nilai M_s yang terukur dengan VSM pada sampel FZn-2 diperoleh sekitar 20,20 emu/gr tiga kali lebih kecil dari nilai M_s core Fe₃O₄. Hasil pencacahan dengan spectrum EDS mengungkapkan bahwa dalam ketiga komposit Fe₃O₄@ZnO hanya terdapat tiga jenis unsur, yaitu Fe, O dan Zn.

UCAPAN TERIMA KASIH

Penelitian ini didanai oleh Daftar Isian Proyek Anggaran Tahun 2013 dengan judul kegiatan "Pembuatan prototipe Bahan Nano Komposit Magnet untuk Pengolahan Limbah".

DAFTAR PUSTAKA

- [1]. YANG S, HE H, WU D, CHEN D, LIANG X, QIN Z, FAN M, ZHU J and YUAN P, *Applied Catalysis* B: *Environmental* 89, p.527-535, 2009
- [2]. REDA S.M, Synthesis of ZnO and Fe3O4 Nanoparticles by Sol-gel Method and their Application in Dye Sensitized Solar Cell, *Materials Science in Semiconductor Processing*, 12, 417 – 425, 2010
- [3]. SAFARI M, ROSTAMI H. M, ALIZADEH M, ALIZADEHBIRJANDI A, ALI NAKHLI S. A and AMINZADEH R, Response Surface Analysis of Photocatalytic Degradation of Methyl Tert-butyl Ether by Core/shell Fe3O4/ZnO Nanoparticles, *Journal of Environmental Health Science and Engineering*, 12, p. 7 – 13, 2014
- [4]. YADOLLAH ABDOLLAHI, ABDULLAH A, ZAINAL Z and NOR AZAH YUSOF, Photocatalytic Degradation of *p*-Cresol by Zinc Oxide under UVIrradiation, *International Journal of Advanced Engineering Sciences and Technologies*, 8, p.135-144, 2011
- [5]. SINGH S, BARICK K. C, and BAHADUR D, Functional Oxide Nanomaterials and Nanocomposites for the Removal of Heavy Metals and Dyes, *Nanomaterials and Nanotechnology*, 3, p. 1-19, 2013
- [6]. ZHAO MENG and ZHANG JUAN, Wastewater treatment by photocatalytic oxidation of Nano-ZnO, Global Environmental Policy in Japan, 12, pp. 1 – 9, 2008
- [7]. KYONG-HOON CHOI, WEON-SIK CHAE, EUN-MEE KIM and JONG-HO JUN, A Facile Fabrication of Fe₃O₄/ZnO Core-Shell Submicron Particles With Controlled Size, IEEE Transactions on Magnetics, 47, pp. 1 4, 2011
- [8]. HASANPOUR A, NIYAIFAR M, and ASAN M, Synthesis and Characterization of Fe3O4 & ZnO Nanocomposites by Sol- Gel Method, Proceedings of the 4th International Conference on Nanostructures (ICNS4), Iran 12-14 March, 2012
- [9]. NIKAZAR M., ALIZADEH M., REZA LALAVI and HOSSEIN R.M., The optimum conditions for synthesis of Fe₃O₄/ZnO core/shell magnetic nanoparticles for photo-degradation of phenol, *Iranian Journal of Environmental Health Science & Engineering*, 12, pp. 2-6, 2014
- [10]. ZHU Y. F., FAN D. H., and W. SHEN W. Z., J. Phys. Chem. C, 111, p.18629-18635, 2007
- [11]. LEE H. K., DO S.H. and KONG S. H., Proceeding of the world congress on engineering and computer science, WCECS, II, October 20-22, 2010.

- [12]. MOJTABA SAFARI, ROSTAMI M. H, MEHRIANA ALIZADEH M, ATEFEH ALIZADEHBIRJANDI and AMINZADEH R., Response Surface Analysis of Photocatalytic Degradation of Methyl Tert-butyl Ether by Core shell Fe₃O₄/ZnO Nanoparticles, *Journal of Environmental Health Science and Engineering*, 12, pp. 1-21, 2014.
- [13]. PEDRO M. ÁLVAREZA, JARAMILLO J, LÓPEZ-PI[®]NERO F and PLUCINSKI P. K., Preparation and Characterization of Magnetic TiO₂ Nanoparticles and their Utilization for the Degradation of Emerging Pollutants in Water, *Applied Catalysis B: Environmental* 100, pp. 338–345, 2010.