DISAIN DAN UJI TEKNIS MESIN PEMANEN PADI SEMI MEKANIS

Oleh:
Moh Itba' Utomo *, Frans J. Daywin **) dan Radja Godfried Sitomput ***)

RINGKASAN

Dari hasil pengamatan dan perhitungan, didapat bahwa kapasitas lapang mesin lebih baik dan berbeda nyata, sedangkan kehilangan gabahnya lebih besar dan berbeda nyata, dibandingkan dengan pemanenan sabit.

PENDAHULUAN

Pada umumnya petani di Indonesia adalah petani kecil dengan luas lahan garapannya yang sempit. Agar nilai tambah dengan luas lahan garapannya yang sempit. Agar nilai tambah dari penggunaan mesin pemanen dapat dirasakan oleh petani, maka mesin pemanen yang dikembangkan adalah berskala kecil dan mampu dimiliki oleh individu petani.

Untuk itu perlu ditunjang oleh tersedianya desain yang memadai, tepat guna, efisien dan dapat dibuat dengan keterampilan dan bahan-bahan lokal.

Dari permasalahan di atas, maka penelitian ini bertujuan untuk mendesain dan membuat mesin pemanen padi, serta menguji cobanya. Tipe mesin pemanen yang dirancang adalah mesin ketam lepas (reaper) semi mekanis, dimana tenaga motor bakar digunakan untuk menggerakkan pisau pemotong dan roda pelempar, sedangkan untuk mendorong alat digunakan tenaga manusia.

*) Mahasiswa S1, Tingkat Sarjana Jurusan Mekanisi Pertanian FATEA, IPB Bogor
**) Staf Pengajar Jurusan Mekanisi Pertanian, FATEA, IPB Bogor

Th VI (1) Keteknikan Pertanian
PENDEKATAN DISAIN

A. Kriteria Disain

Mesin pemanen ini dirancang untuk dioperasikan pada lahan sawah kering. Daya sangkut tanah rata-rata adalah 7.5 N/cm².

Tinggi pemotongan adalah 15 cm dari permukaan tanah dan lebar pemotongan dua jalur dengan kecepatan maju maksimum direncanakan 2 km/jam. Jarak tanam antara 18 - 22 cm.

Varietas padi yang digunakan sebagai dasar perhitungan adalah Ci sadane. Dari studi pendahuluan, energi pemotongan batang padi adalah 1.15 J/Cm².

B. Disain Fungsional

1. Pisau Pemotong
 Bentuk pisau pemotong yang dirancang adalah berupa pisau berputar (piringan) yang terdiri dari empat buah pisau (mata pisau) pemotong, dan sebuah pisau statis. Dengan demikian diperoleh gerakan pengguntingan.

2. Sabuk Pelempar
 Sabuk pelempar berfungsi sebagai pelempar batang padi yang telah terpotong ke samping kanan, dan sebagai penggerak roda penun- tun.

 Sabuk pelempar yang dirancang adalah berupa sabuk datar dengan beberapa buah papan pelempar.

3. Roda Penunun
 Roda penunun berbentuk piringan (lingkaran) dengan beberapa jari-jari (lengan). Fungsinya adalah mengarahkan batang padi ke pisau pemotong dan membantu dalam pelemparan batang padi.

4. Pembuka Alur
 Fungsi pembuka alur adalah untuk memisahkan rumpun padi yang satu dari rumpun padi yang lain. Selain itu juga sebagai tempat dudukan roda penunun dan pisau statis.

5. Kemudi
 Fungsi kemudi adalah untuk mengarahkan jalannya mesin, sebagai tempat tumpuan untuk mendo- rong mesin, dan tempat dudukan pengatur katup karburator (pengatur putaran mesin).

6. Roda
 Roda merupakan bagian mesin yang menumpu berat total alat yang langsung berhubungan dengan tanah. Dengan adanya roda akan memperkecil gaya gesekan alat dengan tanah, sehingga akan mengurangi dalam pengoperasiannya.

7. Rangka Utama
 Rangka utama terdiri dari dua bagian, yaitu rangka transmisi dan rangka pemotong. Rangka transmisi fungsinya sebagai dudukan motor penggerak, transmisi daya, roda dan kemudi, sedangkan rangka pemotong adalah sebagai dudukan pisau pemotong, sabuk pelempar dan pembuka alur.

8. Motor Penggerak dan Sistim Transmisi Daya
 Fungsi motor penggerak adalah sebagai sumber tenaga untuk meng- gerakkan pisau pemotong dan sabuk pelempar. Motor yang digunakan adalah Kawasaki KF 34 dengan daya maksimum 3,4 HP pada 3 600 rpm. Tenaga dari motor dapat sampai ke bagian mesin yang memerlukan dengan melalui beberapa sistim transmisi daya.
C. Disain Struktural

1. Pisau Pemotong
 a. Jarak poros pisau disesuaikan dengan jarak tanam, dan ditentukan 20 cm.
 b. Diameter luar pisau ditentukan 19,4 cm, sehingga terdapat jarak antara ujung pisau yang satu dengan yang lain sebesar 0,6 cm.
 c. Putaran pisau pemotong yang sesuai dengan kecepatan maju alat adalah 194 rpm, dan sebagai perhitungan digunakan 200 rpm.
 d. Tebal mata pisau adalah 0,0117 cm. Pisau dibuat dari baja dengan tebal pisau > 0,0117 cm, dan ditentukan sebesar 0,4 cm.
 e. Pisau menempel pada piringan dengan menggunakan dua baut. Diameter baut adalah 0,49 cm, berarti diameter baut yang dapat digunakan > 0,49 cm.

2. Sabuk Pelempar
 a. Kecepatan pelemparan ditentukan 1,5 kali kecepatan maju alat, maka diameter puli sabuk yang sesuai adalah 8 cm.
 b. Sabuk yang digunakan adalah sabuk rata, lebar 4 cm dan panjang 99 cm.
 c. Jumlah papan pelempar adalah 11 buah. Tebal plat besi untuk papan pelempar sebesar 0,17 cm, tebal plat yang dapat digunakan > 0,17 cm.
 d. Papan pelempar menempel pada sabuk dengan menggunakan dua baut. Diameter baut besi adalah 0,36 cm, diameter baut dapat digunakan > 0,36 cm.

3. Roda Penunun
 a. Diameter luar roda penunun adalah 18 cm
 b. Jumlah lengan roda adalah 7 buah, dengan sudut antar lengan sebesar 0,61 cm, berarti diameter besi beton yang dapat digunakan adalah 0,61 cm.

4. Pembuka Alur
 a. Besi siku untuk rangka adalah 2,5 x 2,5 x 0,2 cm.
 b. Tebal multipleks untuk pembuka alur adalah 0,9 cm.

5. Kemudi
 a. Panjang kemudi adalah 117 cm
 b. Diameter luar besi pipa untuk kemudi adalah 2,35 cm dan yang digunakan adalah besi pipa 1 inci dengan diameter luar 2,72 cm.

6. Roda
 a. Lebar roda depan 10 cm, diameter roda adalah 4,8 cm dan yang digunakan adalah 30 cm.
 b. Diameter poros (baja pejal) untuk gandar roda depan adalah 1,38 cm dan yang digunakan adalah 1,95 cm.
 c. Lebar roda belakang adalah 2,5 cm, diameter roda adalah 1,2 cm dan yang digunakan adalah 28 cm.
 d. Diameter poros (baja pejal) untuk gandar roda belakang adalah 0,25 cm dan yang digunakan adalah 1,0 cm.

7. Rangka Utama
 a. Besi siku untuk rangka pemotong adalah 2,8 x 2,8 x 0,2 cm, dan yang digunakan adalah 3 x 3 x 0,2 cm.
 b. Besi siku untuk rangka transmisi adalah 1,8 x 1,8 x 0,2 cm, dan yang digunakan adalah 4 x 4 x 0,2 cm.

8. Transmisi Daya
 Sistem transmisi daya direncanakan mereduksi putaran mesin sebesar 17 kali, dengan komponen-komponennya sebagai berikut (Gambar 1):

Th VI (1) Keteknikan Pertanian 9
- Sabuk dan puli mereduksi 3,54 kali
- rantai dan sproket mereduksi 3,0 kali
- roda gigi kerucut lurus mereduksi 1,6 kali, dan
- rantai dan sproket 1 mereduksi 1 kali.

TEMPAT DAN METODA PENELITIAN

A. Waktu dan Tempat Penelitian

1. Waktu Penelitian
 Penelitian dilakukan mulai dari tanggal 5 Maret 1985 sampai dengan tanggal 12 Februari 1986, dengan perincian sebagai berikut:

2. Tempat Penelitian

B. Metode Penelitian

1. Alat-alat yang digunakan
 a. Mesin pemanen yang dibuat
 b. Sabit
 c. Mistar/rol meter
 d. Patok pembatas
 f. Uji teknis tanggal 11 Agustus 1985
 g. Modifikasi rangka pembuka alur dan sistem pengaitan dari tanggal 7-20 September 1985.
 h. Uji teknis tanggal 10 November 1985.

10 Keteknikan Pertanian Th VI (1)
Biaya pemanenan dengan menggunakan mesin per hektar dengan menggunakan metoda "Sinking-Fund" (Irwanto, 1982) pada tahun 1, 2 dan 3 (umur ekonomis) yaitu Rp. 41.213,5; Rp. 42.172,6 dan Rp. 42.636,3. Upah pemanenan dengan menggunakan sabit diasumsikan 1/10 bagian hasil. Potensi hasil gabah pengamatan adalah 4.616,7 kg/ha, maka upah pemanenan sebesar 461,67 kg/ha. Apabila tingkat harga gabah Rp. 120,-/kg, maka upah pemanenan sabit per hektar adalah Rp. 55.400,-

Kehilangan gabah waktu pemanenan dengan menggunakan mesin adalah 1,536 persen, sedangkan dengan menggunakan sabit adalah 0,59 persen.

Jika tingkat produksi gabah per hektar tidak seragam, tetapi upah pemanenan, persen kehilangan gabah dan kapasitas lapang mesin sama dengan keadaan sekarang. Maka tingkat produksi dimana upah pemanenan dengan mesin sama dengan upah pemanenan dengan sabit pada tingkat harga gabah Rp. 120,-/kg selama umur ekonomis, masing-masing adalah 4.367,4 kg/ha; 4.448,5 kg/ha dan 4.197,3 kg/ha.

KESIMPULAN DAN SARAN

A. Kesimpulan

Kapasitas lapang mesin adalah 28,82 jam per hektar dan sabit adalah 60,08 jam per hektar.

Kehilangan gabah dengan menggunakan mesin adalah 1,536 persen dan sabit adalah 0,59 persen.

Upah pemanenan dengan menggunakan mesin selama umur ekonomis yaitu 41.213,5; 42.172,6 dan 42.636,3 rupiah per hektar.

B. Saran

Modifikasi lebih lanjut terhadap bentuk konstruksi roda, agar tenaga untuk mendorong alat menjadi lebih ringan.

HASIL DAN PEMBAHASAN

Dari hasil pengujian mesin pada variasi pada: Cisadane dengan jarak tanam 20 x 20 cm, diketahui kapasitas lapang efektif mesin adalah 28,82 jam per hektar sedangkan kapasitas pemanenan sabit adalah 60,08 jam per hektar per orang. Tenaga untuk mendorong mesin adalah satu orang, dengan demikian penggunaan mesin pemanen ini akan menambah tenaga kerja pemanenan 1,1 orang equivalent.
DAFTAR PUSTAKA

