
 
 
 
Nonlinear Photonic Crystal For All-Optical Switching Applications (Ayi Bahtiar, Yayah Yuliah 
and Irwan Ary Dharmawan) 

 243 

NONLINEAR PHOTONIC CRYSTAL FOR ALL-OPTICAL  

SWITCHING APPLICATIONS 
 

Ayi Bahtiar, Yayah Yuliah and Irwan Ary Dharmawan 
Department of Physics, Faculty of Mathematics and Natural Science 

Universitas Padjadjaran  

Jl. Raya Jatinangor km.21 Sumedang Jawa Barat, Indonesia 
Tel. 022-7796014, Fax. 022-7792435, e-mail : a.bahtiar@unpad.ac.id 

 
 

ABSTRACT 
 

An all-optical switching device is a crucial component for developing high speed 
data transmission and signal processing in telecommunication network. The device 

is based on nonlinear optical material, whose refractive index depends on light 

intensity. Recently, photonic crystals have been considerable interest both 
theoretically and experimentally for optical switching devices. Due to the practical 

reason, we studied one-dimensional nonlinear photonic crystal for all-optical 
switching devices. We use transfer matrix method and nonlinear coupled mode 

equation to determine photonic bandgap and optical switching process. We applied 

them to different structures: nonlinear Distributed Bragg Reflector (DBR) and 
nonlinear photonic crystals which has similar linear refractive index but has 

opposite sign of nonlinear refractive index. By using an appropriate combination of 
refractive indices, it was found that the first structure can be used for all-optical 

switching at telecommunication wavelength (1.55 Pm). The second structure can 

be used both for all-optical switching and optical limiter at the wavelength of 1 Pm. 

 
Keywords:  all-optical switching, optical limiter, nonlinear photonic crystal, transfer matrix, nonlinear 

coupled mode equation. 

 
KRISTAL FOTONIK NONLINIER UNTUK APLIKASI SAKLAR 

SINYAL OPTIK  
 

 
ABSTRAK 

 

Suatu piranti saklar optik merupakan komponen krusial untuk pengembangan 
transmisi data dan pemrosesan sinyal kecepatan tinggi dalam jaringan 

telekomunikasi.  Piranti ini berbasis pada material optik nonlinier, dimana indeks 
biasnya bergantung pada intensitas cahaya.  Baru-baru ini, kristal fotonik 

merupakan kajian yang sangat menrik baik secara teori maupun eksperimen untuk 

piranti saklar optik. Karena alasan praktis, kami disini mempelajari kristal fotonik 
nonlinier satu-dimensi untuk piranti-piranti saklar optik. Kami menggunakan 

metoda matrik transfer dan persamaan moda tergandeng nonlinier untuk 
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menentukan celah pita fotonik dan proses switching optik.  Dua metoda diatas 

digunakan dalam mempelajari dua struktur yang berbeda, yaitu reflector Bragg 
terdistribusi nonlinier dan kristal fotonik nonlinier yang mempunyai indeks bias 

linier yang sama, namun indeks bias nonlinier yang berlawanan tanda.  Pemilihan 
kombinasi indeks bias yang sesuai, menunjukkan bahwa struktur dapat digunakan 

untuk switching optik pada panjang gelombang telekomunikasi (1,55 Pm), 

sedangkan struktur yang kedua dapat digunakan untuk switching optik dan 

pembatas sinyal optik pada panjang gelombang 1 Pm. 
 

Kata Kunci : switching optik, pembatas sinyal optik, kristal fotonik nonlinier, matrik transfer, 
persamaan moda tergandeng nonlinier 

 

INTRODUCTION 
 

All-optical switching and optical limiter are key elements for optical signal 
processing in high speed telecommunication networks. All-optical switching is used 

for optical signal distribution that transmitted by high bandwidth and high speed 

optical fibers, whereas optical limiter can be used to filter, shape and multiplex 
optical signal and to limit the optical power. These devices are commonly based on 

total internal reflection, self-focusing, self-defocusing, two-photon absorption and 
photorefractive. A good and reliable of these devices must be fast respond, 

resistant to optical damage, not degrade if subjected to the high-intensity light and 
stable in the working environment. Many concepts have been proposed and 

studied for realizing these devices, such as nonlinear directional coupler, Mach-

Zehnder interferometer, Nonlinear X-switch (Stegeman, 1997), nonlinear 
microcavities (Gubler, 2000) and nonlinear Bragg waveguide (Bader et al., 2002). 

These devices are based on nonlinear optical materials whose refractive index 
depends on light incident intensity: 

 

Inn)I(n nl0 r                            (1) 
 

In order to realize all-optical switching and optical limiter devices, they need 

materials that possess high nonlinear refractive index which is very difficult to be 
achieved by existing materials.  Therefore, as the   best of our knowledge, until 

now there is no all-optical switching devices have been realized.  

Recently, photonic crystals have been considerable interest both theoretically and 
experimentally. Photonic crystals are periodically structured dielectric materials with 

different refractive indices, generally possessing photonic band gaps (PBG): ranges 
of frequency in which light cannot propagate through the structure (Joannopoulos 

et al., 1995, Sakoda, 2001).  Photonic crystals structure is expected to be a key for 

future photonic devices.  In this paper, we modeled all-optical switching and optical 
limiter devices rely upon one-dimensional (1D) photonic crystals consisting 

nonlinear optical materials. These structures are basically multilayer structures, 
which are easy to be fabricated into any desired substrate and integrated to the 

other devices.  We studied two different structures, i.e. nonlinear Distributed Bragg 
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Reflector (DBR) and nonlinear photonic crystal composed of nonlinear optical 

materials with identical linear refractive index but opposite sign of their nonlinear 
refractive indices.  

We used matrix transfer method for determining PBG and nonlinear coupled mode 
equation for studying electromagnetic field propagation within the structure as well 

as all-optical switching and optical limiter mechanism.  We analyzed the devices by 

varying parameters, as number of layers, incident intensity, and the strenth of the 
nonlinear response of optically active materials.   

 
METHOD 

 

We studied nonlinear photonic crystals for all-optical signal processing 
applications theoretically using transfer matrix and nonlinear coupled mode 

equation. The outputs of the structure were obtained by solving those equations 
numerically.  The structure of photonic crystal is schematically shown in Figure 1. 

It consist of periodically two dielectric materials with refractive indices and 

thicknesses n1, d1 and n2, d2, respectively.  The period of the structure is /. 

 
 

 
Figure 1.  Structure of 1D photonic crystal with propagation direction z. 
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Matrix transfer method 

We assume that the electromagnetic field E propagates to the right and to the left 
within the layer with refractive index n1 has amplitudes of A1 and B1, respectively.  

Whereas the light within the layer of n2 propagates with amplitudes of C1 and D1, 
respectively.  Therefore, the propagation of light in the photonic crystal structure 

becomes (Yeh, 1998) : 
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Parameters  k1 and  k2 are called propagation constants (k1 = Zn1 and k2 = Zn2). 

By applying boundary conditions at z = d1 and z =/, we obtain : 
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By eliminating of (C1, D1) matrix, we obtain : 
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where the components of M are : 
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The matrix of M is called matrix transfer of a unit cell. If the structure of photonic 

crystal consist of  N unit cell and the light comes from the left side of the structure 
and interacts within the structure leads to waves which propagate to the right and 

to the left with amplitudes of t and r, respectively, then :  
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The transmitted light is then expressed by T = |t|2. 

 

Nonlinear coupled mode equation 
Propagation of light process in 1D photonic crystal is governed by Maxwell 

equations. We assume that no charge and electric current sources in the dielectric 
materials and no magnetic materials. Therefore, the electromagnetic wave 

equation can be expressed by (Sakoda, 2001): 
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where 
00/1 HP c  is the light velocity in vacuum and n(z) is the refractive index 

of the structure.   

We studied two different structures, i.e. nonlinear Distributed Bragg Reflector 

(DBR) and nonlinear photonic crystal composed of nonlinear optical materials with 
identical linear refractive index but opposite sign of their nonlinear refractive 

indices. 
 

(a).  Nonlinear Distributed Bragg Reflector  
  Basically, the structure of nonlinear Distributed Bragg Reflector (DBR) is 

equal to the structure depicted in Figure 1, but the layer-1 is made from nonlinear 

optical material, therefore the refractive index of the structure becomes :  
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where n  is the depth variation of the refractive index and / is period. Subtitution 

of this equation into equation (8) leads to the wave equation :  
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If the electric field and light intensity are defined, respectively, as :  
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and by using slowly varying amplitude (SVA) approximation, equation (10) 

becomes : 
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where n2k0 = D,  c2/nZ N  and G
2

1
�E G . Equation (12) is called nonlinear 

coupled mode equation. By using definition : 
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and subsituting it into equation (12), then by separating their real and imaginary 

parts, we obtain :   
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The transmitted light is defined by :  
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Substitution equation (15) into equation (14) leads to :  
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By substituting the following definitions of x = 2z/L, |C|2 = 2/3DL, y = |A|2/|B|2  

and I0 = |T|2/|C|2 , where L is the length of the photonic crystal structure and I0 is 
the normalized output light intensity to |T|2 into equation (16), we obtain :  
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The solution of equation (17) is a Jacobian elliptic equation :  
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If the normalized input light intensity is defined by Ii = y (x = 0), then the relation 

between output and input intensity is : 
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(b).  Photonic crystal with equal linear refractive index but opposite sign 

of nonlinear refractive index  
The structure of this 1D nonlinear photonic crystal consist of periodic dielectric 

materials with refractive indices : 
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where n01, nnl1 and n02, nnl2 are linear and nonlinear refractive indices of layer-1 and 

layer-2, respectively.  In order to obtain an analytical expression for the 

evolution of forward and backward propagating light inside the structure, we use 
the nonlinear coupled mode equation by defining A1(z) and A2(z) are amplitudes of 

the forward and backward propagating light and also by assuming that absorption 
of the materials are neglected (Brzozowski & Sargent, 2000) : 
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n  are the average linear 

and nonlinear refractive indices of the structure, respectively.  In this work, we 
assumed that n01 = n02 and nnl1 = nnl2, therefore, the equation (22) becomes : 
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The solution of equation (23) is taken at resonance condition (2Zn0/c = 2S//), by 

applying the boundary conditions at the position z = L, where L is the length of the 

structure and A2(L) = 0, i.e. no radiation is incident on the structure from the right 
and A1(L) = A1out. By taking the squared modulus of A1out yield the intensity of the 

forward propagating within the structure :   
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where Iout = |A1out|
2. The input light intensity is obtained at z = 0:  
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with a = 2n0/Nnnl  and N = 2L// is number of layers. Equation (25) is a 

characteristic equation of optical limiter. 

 

RESULTS AND DISCUSSION 
  

(a). Nonlinear Distributed Bragg Reflector  
We used the combination of linear refractive indices of layer-1 and layer-2 are 

1.8 and 1.6, respectively. The layer-1 is made from nonlinear optical material with 

nonlinear refractive index  nnl = 2.2 x 10-5 cm2/GW. We calculated the 
transmittance of the structure using matrix transfer [Equation (17)] by varying 

light input intensity as shown in Figure 2(a). The light intensity leads to the change 
of photonic bandgap position to the longer wavelength. If we take the constant 

wavelength at 1.555 Pm, it is clear that its transmission increases ~ 70% with the 

increase of light intensity as shown in Figure 2(b).  This behaviour (change of 

transmittance from low to high with light intensity) is a characteristic of all-optical 
switching device. 
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Figure 2. (a). Transmittance as function of wavelength with varying input light 

intensity, and (b). Transmittance of 1.555 Pm as function of input light 

intensity 
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In order to study the effect of the depth variation of refractive index caused 

by the combination of the change of nonlinear refractive index and the length of 

the structure (NL) on the switching behavior, we applied equation (20) and the 

results are shown in Figure 3. The behavior of its switching is called optical 

bistability. It is clear that optical bistability depends on the value of NL; it occurs on 

the large value of NL.  If the length of the structure is kept constant, the optical 

bistability occurs when the nonlinear refractive index is increased.   

 
Figure 3.  Optical bistability for different value of NL 

 

(b). Photonic crystal with equal linear refractive index but opposite sign 
of nonlinear refractive index 

In this structure, the refractive indices of each layers are n1 = 1.5 + 0.01 I  
and n2 = 1.5 ± 0.01 I. The thicknesses of the layers are given the values 

corresponding to a quarter wave structure for a wavelength of  1 Pm and 

refractive index of n0 = 1.5 (d1 = d2 = 0.1667 Pm). Transmittance of the structure 

for various numbers of layers with very low input intensity (0.5 GW/cm2) is shown 

in Figure 4. For low numbers of layers, no photonic bandgap is observed. The PBG 
get deeper and sharper with the increase numbers of layers due to the large 

numbers interaction of waves which are reflected and transmitted at each 
interface.  
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Figure 4.   Evolution of transmittance spectra of the structure with n0 = 1.5 and 

|nnl| =  0.01 cm2/GW for different numbers of layers.  The input light 
intensity is 0.5 GW/cm2. 

 

To study the potential of this structure for all-optical switching device, we plot 
in Figure 5(a) the transmittance spectra of this structure with 200 layers for three 

different values of input intensities, i.e. 0.5 , 1.0 and 1.5 GW/cm2. The width and 
depth of the PBG are increased with the increase value of the input light intensity.  

The solid vertical line indicates the change of transmission at the wavelength of 

0.995 Pm with different input intensity.  Its transmittance decreases allmost 100% 

(all-optical switching) when the input intensity is increased from 0.5 GW/cm2 to 1.5 
GW/cm2, as shown in Figure 5(b).  This behaviour is caused by the increase of 

different of refractive index 'n = n1 - n2. Therefore, the width of the bandgap also 
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Figure 5.  (a). Evolution of transmittance spectra of the structure with 200 layers 

for three different input intensity,  (b). Transmission changes of the 

wavelength of 0.995 Pm as the input intensity increases. 

 

We also plot the relation between output and input light intensity in Figure 
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is the most desired for optical limiter, i.e. a device to maintain the low output 

intensity for the large input intensity. The limiting value is then called as limiter 
intensity which is decreased with the increase numbers of layers and the increase 

of nonlinear refractive index value as shown in Figure 6(b). 

 
Figure 6.  Output intensity as a function of input intensity for the structure (a) 

with numbers of layers 300, 500 and 100 layers, (b) with nonlinear 

refractive index of 0.01 cm2/GW and 0.02 cm2/GW. 
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CONCLUSION 

 
Two structures of 1D nonlinear photonic crystals for all-optical switching and 

optical limiter devices, i.e. nonlinear Distributed Bragg Reflector (DBR) and 
nonlinear photonic crystal composed of nonlinear optical materials with identical 

linear refractive index but opposite sign of their nonlinear refractive index were 

studied.  It was concluded that an appropriate combination of refractive indices of 
two materials is resulted from tuning up the position of PBG.  The first structure 

can be used for all-optical switching at the widely used telecommunication 

wavelength (1.55 Pm) and the second structure might be used both for all-optical 

switching and optical limiter devices. The limiter intensity is reduced with the 

increase of number of layers (N) and the magnitude of nonlinear refractive index 

of the layers (nnl). 
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