Preparasi dan Karakterisasi Permukaan Elektroda Berlapis Titanium Dioksida Nanopartikel Menggunakan Atomic Force Microscopy

Muh. Nurdin^{1)*}

1) Jurusan Kimia, FMIPA, Universitas Haluoleo, Kendari, 93232, Indonesia

Abstract

Preparation and characterization of electrode surface coated by titanium dioxide (TiO_2) nanoparticle has been investigated by Atomic Force Microscopy (AFM). Nanoparticle thin film of TiO2 was prepared by applying the sol-gel dip-coating technique by means of titanium tetraisopropoxide (TTIP). The resulting of AFM characterization showed that roughness and particle size are 1.596 nm and 9.8 nm, respectively. This result is suitable for practical application as electrode in photoelectrocatalytic system.

Keywords: Nanoparticle, AFM, TiO₂, characterization

Received: 19 April 2011 Accepted: 30 June 2011

Abstrak

Telah dilakukan penelitian tentang preparasi dan karakterisasi permukaan elektroda berlapis nanopartikel titanium dioksida (TiO_2) dengan menggunakan Atomic Force Microscopy (AFM). Lapis tipis nanopartikel TiO_2 telah dipreparasi dengan menerapkan metode Sol-Gel Dip-Coating menggunakan titanium tetraisopropoksida (TTIP). Hasil karakterisasi AFM menunjukkan roughness 1,596nm dan ukuran partikel 9,8 nm. Hasil yang diperoleh cocok secara praktis untuk penggunaan sebagai elektroda dalam sistem fotoelektrokatalitik.

Kata kunci: Nanopartikel, AFM, TiO₂, karakterisasi.

Diterima: 19 April 2011 Disetujui untuk dipublikasikan: 30 Juni 2011

^{*}Penulis Korespondensi/corresponding author: Telp.+62 401 3191929 Fax. +62 401 3190496 E-mail: mnurdin06@yahoo.com

1. Pendahuluan

Semikonduktor titanium dioksida (TiO₂) digunakan secara luas sebagai fotokatalis, karena bersifat inert secara kimia maupun biologi, non toksik, dan tidak mahal [1-3]. Pada perkembangan penelitian awal, TiO₂ digunakan sebagai fotokatalisis dalam sistem suspensi. Pada saat ini penggunaan TiO_2 sebagai fotokatalisis banyak dilakukan dalam bentuk lapisan tipis, yaitu dengan mengimmobilisasikan TiO₂ pada bermacam-macam material pendukung, di antaranya fiber, pelat titanium, dan gelas silica [4-6]. TiO₂ terilluminasi adalah satu diantara oksidan yang paling kuat oleh karena tingginya potensial oksidasi dari holes yang terbentuk pada pita valensi oleh fotoeksitasi. Keaktifan fotokatalisis yang dimiliki. sifat kimia dan stabilitas fotokimia, dan kemampuan oksidasi yang sangat tinggi, TiO₂ menjadi pilihan para peneliti untuk mengembangkan berbagai metode didasarkan yang pada fotoelektrokatalisis untuk melihat sifat elektrokimia dari senyawa organik [7-10].

Sejumlah catatan riset dalam bidang fotoelektrokatalisis telah dilaporkan, dan banyak asfek fundamental yang dilibatkan dalam proses oksidasi fotoelektrokatalisis masih menyisakan ketidakjelasan [11-14]. Pada saat ini, kebanyakan artikel penelitian dipublikasikan yang pada bidang fotoelektrokatalis ini berfokus pada studi sifat fotokatalisis dari satu atau lebih tipe senyawa organik. Sifat fotokatalisis dari senyawa yang berbeda juga telah dipelajari, tetapi sering dalam kondisi berbeda dengan metode yang berbeda [15-17]. Hal ini membuat sulit untuk sangat menggambarkan kesimpulan informasi dari sebagai petunjuk umum untuk laporan meningkatkan kinerja dari sistem fotoelektrokatalisis yang ada[18-22]. Bahkan dalam upaya mengembangkan sistem fotoelektrokatalisis barupun, data yang ada tidak dapat dibandingkan dan dijadikan sebagai acuan pengembangan. Situasi ini dapat ditandai pada kurangnya metodology penelitian yang tersedia. Pada saat ini, tidak ada metodologi sistematik yang dapat digunakan untuk mengevaluasi objektif kinerja secara dari fotoelektrokatalis untuk mempelajari sifatsifat dari senyawa organik.

Kenyataan yang diuraikan di atas memberikan arah perlunya karakterisasi secara sistematis permukaan elektroda berlapis nanopartikel TiO₂ yang telah difabrikasi sebagai evaluasi awal dari serangkaian proses sistematis metode fotoelektrokatalisis. Salah satu instrumen yang dapat digunakan untuk karakterisasi dalam ukuran nano adalah Atomic Force Microscopy (AFM). Instrumen ini mempunyai kemampuan tinggi untuk mempelajari sifat-sifat dan struktur material yang berskala nano [23-25]. Sehingga pada penelitian ini dikaji tentang bagaimana cara sintesis, preparasi dan karakterisasi elektroda lapis tipis nanopartikel TiO₂ dengan menggunakan AFM, yang kedepannya dapat digunakan untuk penentuan degradasi senyawa organik.

2. Bahan dan Metode

2.1. Material dan Bahan Kimia

ITO yang terlapiskan dengan TiO_2 nanopartikel digunakan sebagai substrat penghantar elektroda. Bahan kimia yang digunakan adalah titanium isopropoksida (97%), Aldrich), dan HNO₃ p.a. Semua larutan dipreparasi dengan air yang dideionisasi berkemurnian tinggi (aquabides).

2.2 Sintesis Koloid TiO₂ dan Prosedur Immobilisasi

Tipe prosedur sintesis TiO₂ koloid dikembangkan dan dimodifikasi sesuai yang digunakan oleh Gratzel dan Jiang [10],[13]. Campuran dari 15mL titanium isopropoksida ditambahkan secara perlahan pada suhu kamar ke 150mL 0,1M larutan nitrat dengan asam mengaduk rata. Hydrolisis ion titanium terjadi secara cepat, membentuk nonstoichiometric titanium oksida dan hidroksida slurry (serbuk). Setelah hidrolisis serbuk, dipanaskan hingga 80°C dan diaduk selama 3 x 24jam untuk mendestruksi dari agglomerate dan redispersi ke dalam partikel primer. Koloid yang diperoleh digunakan untuk preparasi elektroda lapisan nanopartikel TiO₂.

ITO glass digunakan sebagai substrat untuk immobilisasi partikel TiO₂. Untuk memperoleh permukaan yang bersih, ITO glass diperlakukan awal dengan dengan detergen, mencucinya air, kloroform, dan etanol. Dengan tujuan menghindari dissolusi asam dari lapisan yang terbentuk, waktu pencucian dijaga kurang dari 30 detik. Konduktan dari substrat diukur sebelum dan setelah perlakuan untuk meyakinkan tidak ada perubahan konduktivitas yang diamati selama pengukuran. Setelah pra perlakuan, ITO glass di *dip-coating* dengan larutan koloid dan dikeringkan pada udara bebas. ITO yang terlapisi selanjutnya dikalsinasi di dalam muffle furnace pada suhu 450°C selama 2 jam. Selanjutnya dikarakterisasi dengan AFM.

2.3 Metode Karakterisasi

Mikrostruktur, ukuran parikel dan topografi lapisan TiO2 dipelajari dengan menggunakan AFM. Untuk pengukuran AFM telah digunakan tapping mode untuk tujuan investigasi topografi permukaan dari TiO₂. AFM yang digunakan adalah Nanoscope IIIa (Digital Instrument, Veeco, Metrology Group) menggunakan optical beam deflection untuk memonitor silicon penempatan cantilever vang mempunyai *spring constant* 42 Nm⁻¹ dan resonance frequency sebesar 300kHz. Hal itu telah dilakukan dengan silicon probes yang berada di atas cantilever pada tapping mode. Metode ini secara signifikan menunjukkan perbaikan resolusi lateral pada permukaan dan resolusi pengamatan lapisan tipis. Gambar AFM diperoleh pada kondisi laboratorium pada scan rate 1 Hz dan semua scan dalam ukuran 1,0 x 1,0 μ m². *Roughness* dari permukaan telah dilakukan dengan mengukur roughness parameter (RMS), yang didefinisikan sebagai rata-rata RMS dari tinggi (Z) yang diperoleh dari mean data plane.

$$RMS = \sqrt{\frac{\sum_{i=1}^{N} (Z_i - Z_{ave})^2}{N}}$$

Dimana Zi adalah nilai Z pada saat pengukuran dan N adalah jumlah titik di

antara kursor. Metode yang digunakan untuk partikel analisis dapat dilakukan dengan ketinggian. Analisis tipe ini bekerja dengan baik pada material dengan menentukan ukuran partikel yang dihubungkan ke tinggi.

3. Hasil dan Pembahasan

3.1 Sintesis dan Immobilisasi TiO₂

Sintesis TiO₂ yang dilakukan menggunakan metode sol gel. Proses sol gel diartikan sebagai preparasi material keramik dengan cara pembuatan sol. mengubah sol menjadi gel, dan penghilangan pelarut. Sol dapat dipreparasi dari zat anorganik maupun zat organik. Gel akan terbentuk bila molekulmolekul prekursor berpolimerisasi membentuk rantai-rantai yang saling berikatan silang pada titik-titik tertentu menjadi makromolekul hingga pelarut terjebak di dalamnya. Wujud akhir adalah fasa padat makromolekul dan fasa cair pelarut yang kontinyu[10],[13]. Substrat untuk imobilisasi TiO₂ yang digunakan pada penelitian ini adalah konduktif gelas (ITO) yang memiliki nilai hambatan rendah. Untuk meyakinkan bahwa konduktif gelas tidak mengalami kerusakan sebelum dan sesudah pelapisan TiO₂ maka perlu diukur nilai hambatannya. Nilai hambatan ITO sebelum dan sesudah pelapisan dapat dilihat pada Table 1.

Tabel 1. Nilai hambatan ITO

Yang diukur	Hambatan (Ω)
ITO-ITO (1)	28,2
ITO–ITO (2)	26,2
ITO-ITO (3)	27,8
ITO– kawat tembaga	47,6
ITO-TiO ₂	802
TiO ₂ -TiO ₂	8380000

Nilai hambatan pada ITO sebelum dan sesudah pelapisan tidak mengalami perubahan yang nyata dan masih cukup kecil, ini menunjukan bahwa ITO yang digunakan tetap baik dan tidak mengalami kerusakan. Nilai hambatan antar permukaan TiO₂ yang tinggi menunjukkan bahwa lapisan ITO telah tertutup oleh lapisan semikonduktor TiO2, sehingga arus yang dihasilkan pada permukaan ini adalah arus photocurrent bukan arus karena proses elektrokimia murni akibat adanya kontak langsung antara larutan dengan ITO. Data pelapisan ini juga diperkuat dengan semakin bertambahnya berat ITO, yang berasal dari lapisan tipis TiO₂. Kenaikan berat ITO setelah pelapisan dapat dilihat pada Tabel 2, dengan rata-rata kenaikan

berat TiO_2 sebesar 0,14%, loading ratarata 0,4653 mg/cm².

Brt awal (mg)	Brt 5X lpsn (mg)	Selisih berat (mg)	% Kenai kan brt	Luas permuka an (cm ²)	Loading (mg/ cm ²)
833,2	834,3	1,1	0,13	0.8 x3.0	0,583
853,0	854,2	1,2	0,14	0.8 x3.2	0,688
857,9	869,1	1,2	0,14	0.8 x3.2	0,688

Tabel 2. Kenaikan berat ITO dilapisi TiO₂

3.2 Karakterisasi Lapis Tipis dengan AFM

Gambar 1 menunjukkan gambar AFM dari lapisan tipis yang dibuat. Gambar tersebut merupakan tampilan dari arah atas dari roughness analysis. Hasil pengukuran dari parameter yang dianalisis dapat dilihat pada Tabel 3. Dengan perlakuan hidrolisis hidrotermal TTIP selama 3 x 24 jam pada suhu 80 [°]C memungkinkan lapisan nanopartikel dapat dievaluasi dengan beberapa parameter, seperti surface raughness analysis, root mean square (RMS), mean roughness (Ra), height of particle (Rmax), surface area dan surface area difference antara image dua dimensi dan image tiga dimensi yang dapat dilihat pada Tabel 3.

Parameter lainnya adalah section analysis termasuk height distance, surface *distance, horizontal distance*, RMS dan Ra yang ditandai dengan tanda garis, yang dapat dilihat pada Gambar 2 dan Tabel 3.

Gambar 1. Gambar AFM pada penampakan dari atas dua dan tiga dimensi (*tapping mode*) dari lapisan TiO₂ sol-gel (*scan range* $1,0 \times 1,0 \mu m^2$, *vertical scale*: 20 nm) dikalsinasi pada 450 °C.

Gambar 2. Gambar AFM:Topografi dan Section analysis dari lapisan tipis TiO_2 (scan range 1,0 × 1,0 µm², vertical scale: 20 nm) yang dikalsinasi pada 450 °C.

Tabel 3. *Roughness* dan *Section Analysis* dari permukaan TiO₂

Parameter	Roughness	Section
RMS (nm)	1,596	3,099
Ra (nm)	1,524	1,771
Rmax (nm)	14,.493	7.746
Surf. Area	1,036	-
(um ²) Surf. Area. Diff(%)	3,628	-
Surface dist (nm)	-	157,45
Horizont distance (nm)	-	152,34

Hydrolysis alkoxide mengikuti reaksi umum berikut $M(OR)_4 + 4H_2O \rightarrow M(OH)_4$ + 4ROH [dalam hal ini, M= Ti dan R= CH(CH₃)₂]. Pada keadaan ini, sol yang terbentuk ditransformasikan secara perlahan menjadi gel (*sol-gel process*). Proses terbentuknya gel dapat diikuti dengan pengamatan secara visual. Hal ini penting untuk memperoleh lapisan transparan dan lapisan yang rata.

Fundamental dari proses kimia yang terlibat dalam sol-gel didasarkan pada reaksi hidrolisis dan kondensasi, yang mengantarkan terbentuknya pada macromolecular network. Jika hidrolisis berjalan lambat (misalnya pada larutan encer) atau pada perlakuan proses dipping pada tahap awal, hasil lapisannya sangat tipis, relatif halus, tidak ada serapan sinar dan memungkinkan untuk berbagai macam aplikasi. Pada sisi lain, kecepatan hidrolisis yang tinggi adalah tidak dikehendaki ketika membentuk agregat yang besar sehingga konsekuensinya akan mempercepat proses pengendapan. Selanjutnya, dengan maksud seperti ini, pembentukan sol mencapai tahap gelasi sangat cepat, yang tidak dikehendaki pada aplikasi coating pada industri (low "self life"). Pengamatan ini secara jelas menunjukkan bahwa sifat lapisan dan surface roughness diperoleh dari keseimbangan beberapa faktor yang memainkan peranan penting.

Gambar 3 secara umum menunjukkan bahwa lapisan TTIP memberikan karakteristik permukaan dari kedalaman atau tinggi yang tidak merata dan mempunyai kedalaman substrat maksimum sekitar 9,9 nm dengan ukuran partikel 9,8 nm. Distribusi kedalaman/ketinggian maksimum dari TTIP menunjukkan lebar maksimum. Perbedaan seperti ini dapat direfleksikan dalam nilai *roughness* RMS (standar deviasi dari nilai Z), Z adalah batasan tinggi total yang dianalisis dari lapisan.

Gambar 3. Gambar AFM:Topografi dan particle size/height dari lapisan tipis TiO₂ (scan range $1,0 \times 1,0 \ \mu\text{m}^2$, vertical scale: 20 nm) yang dikalsinasi pada 450 °C.

Pada kenyataannya, dengan kondisi preparasi yang dilakukan, lapisannya terdiri dari nanopartikel dengan ukuran partikel 9,8 nm telah diukur dengan AFM untuk lapisan TiO_2 sol-gel TTIP yang dikalsinasi pada 450 °C.

4. Kesimpulan

Hasil karakterisasi TiO₂ dengan AFM menunjukkan roughness 1,596nm, kedalaman/ketinggian maksimum pembentukan partikel sekitar 9,9nm dengan ukuran partikel rata-rata 9,8nm.

5.Ucapan Terima kasih

Penulis mengucapkan terima kasih kepada Prof. Atsushi Ikai (*Dynamic and Chemical Resources Laboratory*, Tokyo Institute of Technology) atas diskusi dan pengukuran sample (Karakterisasi AFM). Dirjen Dikti melaui DP2M atas dana riset ini.

6. Pustaka

- Bahnemann, D.W., Kholuiskaya, S.N., Dillert, R., Kulak, A.I., Kokorin, A.I., 2002, Photodestruction of Dichloroacetic Acid Catalyzed by Nano-sized TiO₂ Particles. *Applied Catalysis B: Environmental* 36, 161-169.
- Blount, M.C., Kim, D.H., and Falconer, J.L., 2001, Transparent Thin-Film TiO₂ Photocatalyst with High Activity. *Environ. Sci. Technol.*35, 2988-2994.
- Chang, H.D., Wu, N.M., and Zhu, F.
 A., 2000, Kinetic Model for

Photocatalytic Degradation of Organic Contaminants in A Thin-Film TiO₂ Catalyst. *Wat.Res.* Vol. 34, No.2, 407-416.

- Dijkstra, M.F.J., Ponneman, H.J., Wilkenman, J.G.M., Kelly, J.J., & Beenackers, A.A.C.M., 2002, Modeling The Photocatalytic Degradation of Formic Acid in A Reactor with Immobilized Catalyst, *Chem. Engin. Sci.*, 57, 4895-4907.
- Dingwang, C., Fengmei, L., & Ray, A.K., 2001, External and Internal Mass Transfer Effect on Photocatalytic Degradation, *Cat. Today*, 66, 475-485.
- Elangovan.E., and Ramamurthi, K., 2003, Effect of Substrate Temperatur on Electrical and Optical Properties of Spray Deposited SnO₂:Sb Thin Films. *Journal of Optoelectronics and Advanced Materials*. Vol.5, No. 2. June, 415-420.
- Burgeth, G., Kisch, H., 2002, Photocatalytic and photoelectrochemical properties of titania chloroplatinate (IV). *Coordination Chemistry Reviews* 230, 41-47.
- Waldner,G., Pourmodjib, M., Bauer.M., Neumann-Spallart., 2003, Photoelectrocatalytic degradation of

4-chlorophenol and oxalic acid on titanium dioxide electrodes. *chemosphere* 50, 989–998.

- 9. Gunlazuardi, J and Lindu, W.A., 2005, Photocatalytic Degradation of Pentachlorophenol in aqueous Solution Employing Immobilized TiO₂ Supported on Titanium Metal. *Journal of Photochemistry and Photobiology A: Chemistry* 173, 51-55
- Hagfeldt, A, and Gratzel, M., 1995, Light-Induced Redox Reactions in Nanocrystalline Systems. *Chem. Rev.* 95, 49-68.
- Harper, J.C., Christensen, P.A., Egerton, T.A., & Scott, K., 2001, Mass Transport Characterization of a Novel Gas Sparged Photoelectrochemical Reactor, J. App. Electrochem., 31, 267-273.
- Harper,J.C., Christensen,P.A., Egerton, T.A, Curtis,T.P., Gunlazuardi,J., 2001, Effect of Catalyst Type on the Kinetics of the Photoelectrochemical Disinfection of Water Inoculated with *E.coli. Journal of Applied Electrochemistry* 31, 623-628.
- Jiang, D., Zhao, H., Zhang, S, and John, R., 2003, Characterization of Photoelectrocatalytic Processes at

Nanoporous TiO₂ Film Electrodes: Photocatalytic Oxidation of Glucose. *J. Phys. Chem. B.* 107, 12774-12780.

- Y.C., Sasaki, S., Yano, K., 14. Kim, Ikebukuro, K., Kazuhito Hashimoto, and Isao Karube, I., 2000, Relationship between Theoretical Oxygen Demand and Photocatalytic Chemical Oxygen Demand for Specific Classes of Organic Chemicals. Analyst 125, 1915-1918.
- 15. Kim, Y.C., Sasaki,S., Yano, K., Ikebukuro, K., Hashimoto, K., and Karube, I., 2002, A Flow Method with Photocatalytic Oxidation of Dissolved Organic Matter Using a Solid-Phase (TiO₂) Reactor Followed by Amperometric Detection of Consumed Oxygen. Anal. Chem 74, 3858-3864.
- Linsebigler, A.L., Lu, G., and Yates, Jr, J.T., 1995, Photocatalysis on TiO₂ Surfaces: Principles, Mechanisms, and Selected Results. *Chem. Rev*, 95, 735-758.
- 17. Mc Murray, T.A., Byrne, J.A., Dunlop,
 P.S.M., Winkelman, J.G.M.,Eggins,
 B.R., & Mc Adams, E.T., 2004,
 Intrinsic Kinetics of Photocatalytic
 Oxidation of Formic Acid and Oxalic
 Acid on Immobilised TiO₂

Films, *App. Catal. A: General*, 262, 105-110.

- Pera-Titus, M., Garcia-Molina, V., Banos, M.A., Gimenez, J., and Esplugas, S., 2004, Degradation of Chlorophenol by Means of Advance Oxidation Prosesses: a General Review, *App. Cat. B: Environmental*, 47, 219-256.
- Triandi, T.R., & Gunlazuardi, J., 2001, Preparasi Lapisan Tipis TiO2 sebagai Fotokatalisis: Karakterisasi antara Ketebalan dan Aktivitas Fotokatalisis, *Makara*, 5, 81-91.
- Wang, Y., Pillay, D., and Hwang, G.S., 2004, Dynamics of Oxygen Species on reduced TiO₂ (110) rutile. *Physical Review B*. 70: 193410, 1-4.
- Zhang, Z., Anderson, W.A., & Moo-Young, M., 2004, Experimental Analysis of a corrugated Plate Photocatalytic Reactor, *Chem. Engin. J.*, 99, 145-152.
- 22. Zhao, H., Jiang, D., Zhang, S., Catterall Kylie, and John, R., 2004, Development of Direct Photoelectrochemical Method for Determination of Chemical Oxygen Demand. *Anal. Chem.* 76, 155-160.

- Binnig, G., Quate, F., and Gerver, C., 1986, Atomic force microscope. *Phys. Rev.Lett.*, 56, 930–933.
- Zhong, Q., Inniss, D., Kjoller, K., and Elings, V.B., 1993, Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. *Surface Science Letters*, 290, L688–L692.
- Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., Fritz, M., Vie, D., Hansma, H. G., Prater, C. B., J. Massie, L. F.,Gurley, J., and Elings, V., 1994, Tapping mode atomic force microscopy inliquids. *Appl. Phys. Lett.*, 64, 1738–1740.