ANALISIS KAPASITAS TAMPUNGAN EMBUNG BULAKAN UNTUK MEMENUHI KEKURANGAN KEBUTUHAN AIR IRIGASI DI KECAMATAN PAYAKUMBUH SELATAN

¹Dafit Garsia, ²Bambang Sujatmoko, ²Rinaldi

¹Mahasiswa Jurusan Teknik Sipil, Fakultas Teknik Universitas Riau

²Dosen Jurusan Teknik Sipil, Fakultas Teknik Universitas Riau

Kampus Bina Widya Jl. HR Soebrantas KM 12,5 Simpang Baru, Pekanbaru 28293

email: dafit.garsia@gmail.com

ABSTRAK

Musim kemarau sering menyebabkan ratusan hektar sawah masyarakat mengalami kekeringan, ditambah lagi dengan berkurangnya debit sumber air irigasi. Masalah ini bisa dialami oleh masyarakat petani di berbagai daerah termasuk di Kecamatan Payakumbuh Selatan. Sebagai alternatif pemecahan masalah jika terjadi hal yang demikian adalah dengan membangun embung yang dimanfaatkan untuk menyimpan air di musim penghujan dan digunakan di musim kemarau. Skripsi ini akan membahas tentang ketersediaan air, kebutuhan air irigasi, analisis kapasitas embung, waktu operasi bukaan pintu air, luas sawah yang bisa diairi dan menghitung dimensi pelimpah. Dari hasil perhitungan diperoleh debit air yang tersedia sekitar 159,33 l/dt, kebutuhan air irigasi maksimum sebesar 1,204 l/dt/ha, kapasitas tampungan maksimum embung untuk irigasi sekitar 12.577,177 m³. Luas sawah yang bisa diairi dihitung setiap satu jam pada masing-masing bukaan pintu air setinggi 0,1 m, 0,15 m, 0,20 m, 0,25 m, dan 0,30 m selama 10 jam dan luas maksimum sawah yang bisa diairi secara berturut-turut seluas 195,424 ha, 284,876 ha, 368,494 ha, 445,991 ha dan 517,042 ha pada satu jam pertama. Selanjutnya pada satu jam kesepuluh luas sawah yang bisa diairi secara berturut-turut seluas 182,966 ha, 237,896 ha, 268,727 ha, 276,084 ha dan 261,411 ha. Pelimpah menggunakan mercu tipe Ogee dengan tinggi mercu 7,94 m dan tinggi jagaan 1 m.

Kata kunci: embung, kebutuhan air, kapasitas tampungan.

ABSTRACT

The dry season often causing hundreds of hectares of rice fields suffer from drought, coupled with reduced discharge of irrigation water sources. This problem can be experienced by the farmers in various areas, including in the District of South Payakumbuh. As an alternative to solving the problem if there is such a thing is to build a small dam that is used to store water for the rainy season and used for the dry season. This paper will discuss about availability of water, irrigation water requirements, analyze capacity small dam, operating time opening the sluicegate, rice area which can be irrigated and calculate the dimensions of the spillway. From the calculation of available water discharge approximately 159.33 l / dt, maximum irrigation water requirement of 1.204 l/sec/ha, the maximum reservoir for irrigation around 12577.177 m³. Rice area which can be irrigated calculated every hour on each opening the sluicegate as high as 0.1 m, 0.15 m, 0.20 m, 0.25 m, and 0.30 m for 10 hours and a maximum rice area which can be irrigated successively measuring 195.424 ha, 284.876 ha, 368.494 ha, 445.991 ha and 517.042 ha in the first hour. Furthermore, at the tenth hour rice area which can be irrigated successively an area of 182.966 ha, 237.896 ha, 268.727 ha, 276.084 ha and 261.411 ha. Spillway using Ogee type summit with a summit height of 7.94 m and 1 m high surveillance.

Keywords: small dam, water requirements, storage capacity.

PENDAHULUAN Latar Belakang

Pertanian merupakan profesi yang cukup banyak digeluti oleh masyarakat Kota Payakumbuh di samping beberapa profesi yang digeluti oleh masyarakat di bidang lainnya. Berdasarkan data dari Biro Pusat Statistik Kota Payakumbuh tahun 2012, jumlah penduduk Kota Payakumbuh yang bekerja di bidang pertanian sebanyak 11.404 jiwa atau sekitar 22,054%.

Dalam bidang pertanian salah satu faktor penentu keberhasilan dalam memperoleh hasil pertanian yang memuaskan adalah cukupnya ketersediaan air. Dalam pergantian bulan di setiap tahun musim selalu berganti. Adakalanya musim kemarau dan musim penghujan.

Jika pada bulan tertentu berada pada musim penghujan maka para petani tidak perlu khawatir dalam memperoleh air yang cukup bagi kebutuhan tanaman mereka. Tetapi jika bulan itu berada pada musim kemarau atau curah hujan yang turun hanya sedikit maka akan terjadi berkurangnya debit air dari sumber air irigasi sehingga debit air yang tersedia tidak bisa mencukupi kebutuhan air bagi tanaman para petani.

Masalah ini tidak mustahil juga bisa dialami oleh masyarakat petani di Kota Payakumbuh pada umumnya dan masyarakat petani di Kecamatan Payakumbuh Selatan khususnya, terlebih bagi mereka yang bekerja di sawah yang jenis tanamannya tidak lain adalah padi yang selalu menuntut air yang lebih banyak dibanding tanaman lainnya.

Sebagai salah satu alternatif pemecahan masalah dalam memenuhi kekurangan kebutuhan air irigasi tersebut dan mengingat tersedianya sumber air baku berupa mata air bulakan di Kelurahan Limbukan Kecamatan Payakumbuh Selatan adalah dengan membangun embung yang berfungsi sebagai wadah penampung air, dan diharapkan embung ini bisa memenuhi kekurangan kebutuhan air irigasi tersebut.

Perumusan Masalah

Embung bulakan ini nantinya direncanakan sebagai sumber air untuk

menutupi kekurangan kebutuhan air irigasi di Kecamatan Payakumbuh Selatan, sehingga perlu dianalisis berapa kapasitas tampungan embung untuk menutupi kekurangan kebutuhan air tersebut.

Tujuan dan Manfaat Penelitian

Adapun tujuan dari penelitian ini adalah sebagai berikut:

- a. Menghitung ketersediaan air.
- b. Menghitung kebutuhan air irigasi.
- c. Menganalisis kapasitas embung.
- d. Menganalisis waktu operasi pintu air.
- e. Menganalisis luas sawah yang bisa diairi
- f. Menghitung dimensi pelimpah

Sebagai manfaat, tugas akhir ini diharapkan dapat memberikan solusi dalam memenuhi kekurangan kebutuhan air irigasi bagi masyarakat di Kecamatan Payakumbuh Selatan dengan merencanakan embung untuk menampung air.

TINJAUAN PUSTAKA Analisis Frekuensi

Tujuan dari analisis frekuensi data hidrologi adalah mencari hubungan antara besarnya kejadian ekstrim terhadap frekuansi kejadian dengan menggunakan distribusi probabilitas. Analisis frekuensi dapat diterapkan untuk data debit sungai atau data hujan. Data yang digunakan adalah data debit atau hujan maksimum tahunan, yaitu data terbesar yang terjadi selama satu tahun, yang terukur selama beberapa tahun.

Metode jenis distribusi probabilitas yang digunakan terdiri dari distribusi normal, distribusi log normal, distribusi Gumbel, dan distribusi log Pearson III. Parameter statisitik yang digunakan dalam analisis frekuensi adalah: nilai rata-rata (\bar{x}) , standar deviasi (s), koefisien variasi (C_v), koefisien kemencengan (C_s), dan koefisien ketajaman (C_k).

Metode jenis distribusi yang dipilih selanjutnya diuji apakah jenis distribusi yang dipilih sesuai dengan data yang ada dengan cara uji Chi-kuadrat dan Smirnov Kolmogorov.

Uji Chi-kuadrat dimaksudkan untuk menentukan apakah persamaan distribusi

yang telah dipilih dapat mewakili distribusi statistik sampel data yang dianalisis. Pengambilan keputusan uji ini menggunakan parameter χ^2 , yang dapat dihitung dengan rumus berikut:

$$\chi_h^2 = \sum_{t=1}^G \frac{\left(Oi - Ei\right)^2}{Ei} \dots (1)$$

di mana:

 χ_h^2 : nilai Chi-Kuadrat terhitung

G: jumlah sub kelompok

O_i : jumlah nilai pengamatan pada sub kelompok i

E_i : jumlah nilai teoritis pada sub kelompok i

Uji kecocokan Smirnov-Kolmograf sering disebut juga uji kecocokan non parametrik, karena pengujiannya tidak menggunakan fungsi distribusi tertentu. Dalam uji smirnov dipilih nilai jarak penyimpangan terbesar (Δ_{maks}) kemudian nilai tersebut dibandingkan dengan nilai penyimpangan kritik (Δ_{kritik}). Jika nilai Δ_{maks} lebih kecil dari nilai Δ_{kritik} maka jenis distribusi tersebut bisa diterima atau mewakili distribusi frekuensi data yang tersedia.

Menghitung Debit Andalan

Pengukuran debit andalan dilakukan dengan membagi lebar saluran menjadi sejumlah pias, dengan lebar dapat dibuat sama atau berbeda. Kecepatan aliran dan kedalaman air diukur di masing-masing pias, yaitu pada vertikal yang mewakili pias tersebut. Debit disetiap pias dihitung dengan mengalikan kecepatan rata-rata dan luas tampang alirannya. Debit saluran adalah jumlah debit di seluruh pias. Ada bebepara metode untuk menghitung debit diantaranya adalah metode tampang tengah dan tampang rata-rata.

Analisis Kebutuhan Air Irigasi Pertanian

Kebutuhan air bagi tanaman didefinisikan sebagai tebal air yang dibutuhkan untuk memenuhi jumlah air yang hilang melalui evapotranspirasi suatu tanaman sehat, tumbuh pada areal luas, pada tanah yang menjamin cukup lengas

tanah, kesuburan tanah, dan lingkungan hidup tanaman cukup baik sehingga secara potensial tanaman akan berproduksi baik dan harga ini diberi simbol ET_{Crop}.

Evapotranspirasi

Evapotranspirasi adalah penguapan dari permukaan lahan yang ditumbuhi tanaman. Berkaitan dengan tanaman, evapotranspirasi adalah sama dengan kebutuhan air konsumtif yang didefenisikan sebagai penguapan total dari lahan dan air yang diperlukan oleh tanaman.

Banyak cara dalam menghitung evapotranspirasi, salah satunya adalah evapotranspirasi metode Penman modifikasi. Evapotranspirasi metode Penman modifikasi menggunakan persamaan sebagai berikut:

$$ET_0 = c[W.R_n + (1-W)f(u)(e_a - e_d)] \dots (2)$$

di mana:

ET₀: evapotranspirasi tetapan

c : faktor penyesuaian yang tergantung dari kondisi cuaca siang dan malam.

W : suatu faktor yang tergantung dari temperatur dan ketinggian

 R_n : radiasi netto dalam evaporasi ekivalen (mm/hari)

f(u) : faktor yang tergantung dari kecepatan angin

(e_a-e_d): perbedaan tekanan uap jenuh ratarata dengan tekanan uap rata-rata yang sesungguhnya dan dinyatakan dalam mbar, pada temperatur ratarata.

Penggunaan konsumtif

Penggunaan konsumtif adalah jumlah air yang digunakan oleh tanaman untuk proses evapotranspirasi. Adapun penggunaan konsumtif dapat dihitung dengan persamaan:

$$ET_C = Kc \cdot ET_0 \quad \dots \quad (3)$$

di mana:

ET_C: penggunaan konsumtif (mm/hari)

Kc : koefisien tanaman

ET₀ : evapotranspirasi potensial (mm)

Perkolasi

Perkolasi adalah gerakan air ke bawah dari zona tidak jenuh yang terletak di antara permukaan sampai ke permukaan air tanah (zona jenuh). Laju perkolasi dapat mencapai 1 - 3 mm/hari.

Curah hujan efektif

Curah hujan efektif adalah curah hujan andalan yang jatuh di suatu daerah dan digunakan tanaman untuk pertumbuhan.

Untuk irigasi padi curah hujan efektif bulanan diambil 70% dari curah hujan minimum tengah bulanan dengan periode ulang 5 tahun (Perencanaan Jaringan Irigasi, KP-01, 1986), dengan persamaan sebagai berikut:

$$R_e = 0.7 \times \frac{1}{15} R(setengahbulan)_5 \dots (4)$$

di mana:

 $R_{e}\;\;$: curah hujan efektif, dalam mm/hari.

R_{(setengah bulan)5}: curah hujan minimum tengah bulanan dengan periode ulang 5 tahun/mm

Penggantian lapisan air

Besar kebutuhan air untuk penggantian lapisan air adalah 50 mm.bulan (atau 3,3 mm/hari selama ½ bulan) selama sebulan dan dua bulan setelah transplantasi.

Pola tanam

Pola tanam adalah suatu sistem dalam menentukan jenis tanaman atau pergiliran tanaman produksi pada suatu daerah tertentu yang disesuaikan dengan persediaan air yang ada pada periode musim hujan dan musim kemarau.

Kebutuhan air untuk penyiapan lahan

Kebutuhan air netto selama penyiapan lahan dihitung dengan persamaan:

$$NFR = IR - R_e \quad(5)$$

di mana:

NFR: kebutuhan air netto

IR : kebutuhan air di tingkat

persawahan (mm/hari)

R_e : curah hujan efektif (mm/hari)

Kebutuhan air di sawah

Kebutuhan air di sawah untuk tanaman padi dihitung dengan persamaan:

NFR =
$$ET_C + P + WLR - R_e$$
(6) di mana:

NFR : kebutuhan air di sawah (mm/hari) ET_C : penggunaan konsumtif (mm/hari)

P : perkolasi (mm/hari) WLR : penggantian lapisan air

R_e : curah hujan efektif (mm/hari)

Efisiensi irigasi

Efisiensi irigasi adalah angka perbandingan antara jumlah air yang dikeluarkan dari pintu pengambilan dengan jumlah air yang dimanfaatkan

Mengacu pada Direktorat Jenderal Pengairan (1986) maka efisiensi irigasi diambil 90% dan tingkat tersier 80%. Angka efisiensi irigasi keseluruhan tersebut dihitung dengan cara mengkonversi efisiensi di masing-masing tingkat yaitu 0,9 \times 0,9 \times 0,8 = 0,648 \approx 65%. Guna menghitung kebutuhan air pada bangunan pengambilan digunakan persamaan di bawah ini.

$$DR = \frac{NFR}{Ef.primer \times Ef.Sekunder \times Ef.tersier}..(7)$$

Evaporasi

Evaporasi adalah penguapan yang terjadi dari permukaan air (seperti laut, danau dan sungai), permukaan tanah (genangan air di atas tanah dan penguapan dari permukaan air tanah yang dekat dengan permukaan tanah), dan permukaan tanaman (intersepsi).

Banyak cara dalam menentukan evaporasi, salah satunya adalah dengan menggunakan persamaan yang diusulkan oleh Herbeck (1962) sebagai berikut:

$$E = N u (e_a - e_d)$$
(8)

dengan:

$$N = \frac{0.0291}{A_{.005}} \dots (9)$$

di mana:

E : evaporasi (cm/hari)

u : kecepatan angin pada jarak 2 m di atas permukaan air (m/detik)

ea : tekanan uap jenuh (mbar)
ed : tekanan uap udara (mbar)
A_s : luas permukaan danau (m²)

Embung

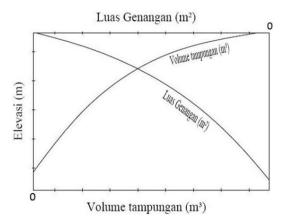
Embung adalah suatu cekungan yang berfungsi untuk menampung kelebihan air pada saat debit tinggi dan melepaskannya pada saat dibutuhkan.

Menghitung volume waduk/embung

Berdasarkan data topografi luas waduk dapat dicari dengan persamaan sebagai berikut (Soedibyo, 1988):

$$V_n = \frac{1}{3} \times \Delta h \times (F_{n-1} + F_n + \sqrt{F_n \times F_{n-1}})...(10)$$

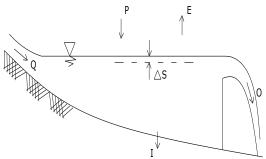
di mana:


 V_{n-1} volume genangan pada elevasi ke-n

Δh : perbedaan tinggi antara dua kontur/elevasi

F_{n-1}: luas genangan sebelum elevasi ke-n

F_n: luas genangan pada elevasi ke-n


Setelah semua luas dan volume masing-masing diketahui lalu digambarkan pada sebuah grafik hubungan antara elevasi, luas dan volume waduk seperti Gambar 1. berikut.

Gambar 1. Grafik hubungan antara elevasi, luas, dan volume Sumber: Soedibyo, 1988

Neraca air di waduk/embung

Neraca air di danau atau waduk didasarkan pada persamaan kontinuitas yang merupakan hubungan antara air masuk, air keluar dan jumlah tampungan. Neraca air di waduk bisa dilihat pada Gambar 2. berikut.

Gambar 2. Neraca air di waduk

Gambar 2. menunjukkan neraca air di danau/waduk yang secara matematis dapat dinyatakan dalam bentuk berikut:

$$\Delta S = Q + P - E - I - O \dots (11)$$

di mana:

 ΔS : perubahan volume tampungan

Q : aliran permukaan yang masuk ke

P: hujan yang masuk di waduk E: volume eyaporasi dari waduk

I : volume infiltrasi dari waduk ke dalam

tanah

O: aliran keluar dari waduk

Perencanaan Bendungan Defenisi bendungan

Bendungan atau dam adalah konstruksi yang dibangun untuk menahan laju air menjadi waduk, danau, atau tempat rekreasi.

Tinggi ruang bebas (tinggi jagaan / freeboard)

The Japanese National Committee on Large Dam (JANCOLD) telah menyusun standar minimal tinggi ruang bebas seperti Tabel 1. Di dalam standar ini maka yang diambil sebagai permukaan air tertinggi adalah FSL (Full Supply Level) dan bukan TWL (Top Water Level).

Tabel 1. Standar ruang bebas menurut JANCOLD

No.	Tinggi Bendungan (m)	Bendungan Beton	Bendungan Urugan		
1	< 50	1,0 m	2,0 m		
2	50 - 100	2,0 m	3,0 m		
3	> 100	2,5 m	3,5 m		

Sumber: Soedibyo, 1988

Bangunan pelimpah

Bangunan pelimpah adalah bangunan beserta instalasinya untuk mengalirkan air banjir yang masuk ke dalam waduk agar tidak membahayakan keamanan bendungan.

Debit air yang melalui pelimpah dari bendungan dapat dihitung dengan suatu persamaan sebagai berikut:

$$Q = CLH_e^{3/2}$$
(12)

di mana:

Q: debit air di atas mercu bendungan/debit air yang melalui pelimpah (m³/det)

C: koefisien debit

L: panjang efektif mercu (m)

H_e: tinggi energi total pada mercu (m)

Pengaruh kecepatan masuk dapat diabaikan bila tinggi (h_p) dari pelimpah melebihi 1,33 H_d . Dengan H_d adalah tinggi tekan rancang tanpa tinggi kecepatan masuk. Berdasarkan keadaan ini dan dengan tinggi tekan rancangan (yakni h_p/H_d melebihi 1,33 dan $H_e = H_d$, untuk kecepatan masuk diabaikan), koefisien debit C diketahui sebesar $C_d = 4,03$

Perencanaan permukaan mercu Ogee

Untuk merencanakan permukaan mercu Ogee bagian hilir, US Army Corp of Engineering telah mengembangkan persamaan berikut:

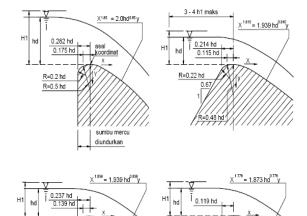
$$\frac{Y}{H_d} = \frac{1}{K} \left(\frac{X}{H_d}\right)^n \dots (13)$$

di mana:

X dan Y : koordinat-koordinat permukaan

hilir (lihat Gambar 3)

H_d : tinggi energi rencana di atas


mercu

K dan n : parameter (lihat Tabel 2)

Tabel 2. Harga-harga K dan n

	6	
Kemiringan permukaan hilir	K	n
Vertikal	2,000	1,850
3:1	1,936	1,836
3:2	1,939	1,810
1:1	1,873	1,776

Sumber: Irigasi dan Bangunan air, Gunadarma

Gambar 3. Bentuk-bentuk mercu Ogee (USACEWES)
Sumber: KP 02, 1986

Bangunan pengeluaran (*outlet work*) Perhitungan tinggi bukaan pintu air pada bangunan pengambilan

Tinggi bukaan pintu air pada bangunan pengambilan dihitung berdasarkan persamaan berikut.

$$Q = \mu \times b \times h\sqrt{2gz} \quad \dots (14)$$

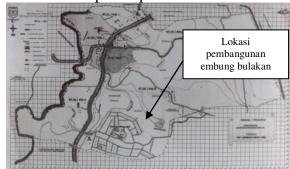
di mana:

R = 0.68 ho

Q : debit (m^3/dt)

 μ : koefisien debit. Untuk bukaan di bawah permukaan air dengan kehilangan energi, μ = 0,8

b : lebar bukaan pintu air (m)


h : tinggi bukaan pintu air (m)

g : percepatan gravitasi (9,81 m/dt²)

z : perbedaan tinggi air di hulu dengan tinggi air di hilir bendungan (m).

METODOLOGI PENELITIAN

Penelitian dilakukan di kelurahan Limbukan, Kecamatan Payakumbuh Selatan. Lokasi pembangunan embung bulakan ditampilkan pada Gambar 4 berikut

Gambar 4. Peta kelurahan Limbukan dan lokasi embung bulakan

Sumber: Kelurahan Limbukan, Kecamatan Payakumbuh Selatan, 2013

Adapun tahapan dalam penelitian ini adalah sebagai berikut:

a. Identifikasi masalah

Untuk dapat mengatasi permasalahan secara tepat maka pokok permasalahan harus diketahui terlebih dahulu. Solusi masalah yang akan dibuat harus mengacu pada permasalahan yang terjadi.

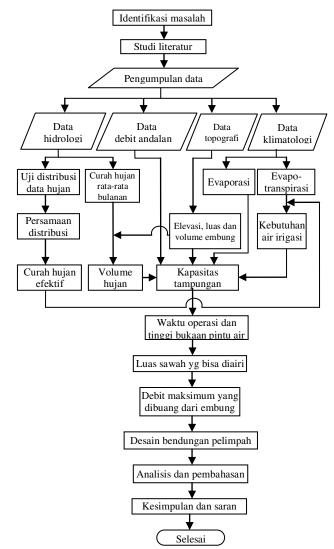
b. Studi pustaka

Yaitu pengumpulan literatur yang berkaitan dengan penelitian ini.

c. Pengumpulan data

Data-data pendukung dalam penelitian ini berupa data primer dan data sekunder.

Metode pengumpulan data primer yaitu dengan metode observasi. Metode ini dengan survey langsung ke lapangan, agar dapat diketahui kondisi *real* di lapangan. Dari hasil survey ke lapangan didapat data debit aliran yang merupakan debit andalan pada saluran dari sumber mata air bulakan.


sekunder diperoleh Data instansi-instansi terkait. Data ini terdiri dari data hidrologi yaitu data curah hujan, data klimatologi yang terdiri dari data temperature, kelembaban. penvinaran matahari rata-rata. kecepatan angin, data topografi rencana bulakan dan peta embung pembangunan embung bulakan.

d. Analisis data

Dari data-data yang diperoleh selanjutnya dianalisis sesuai dengan ketentuannya.

e. Bagan alir penelitian

Bagan alir dalam penelitian ini bisa dilihat pada Gambar 5 berikut.

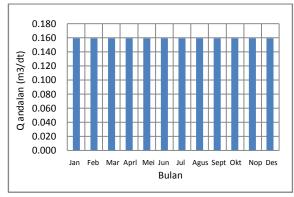
Gambar 5. Bagan alir penelitian

HASIL DAN PEMBAHASAN Hasil Analisis Frekuensi

Hasil perhitungan parameter statistik diperoleh nilai standar deviasi (s) sebesar 27,536, koefisien variansi (C_v) sebesar 0,309, koefisien skewness (C_s) sebesar 0,496, dan koefisien ketajaman (C_k) sebesar 2,509, dengan demikian jenis distribusi yang sesuai dengan nilai-nilai parameter tersebut adalah distribusi log Pearson III.

Hasil uji Chi-kuadrat diperoleh nilai Chi-kuadrat terhitung (χ_h^2) sebesar 0,667. Nilai ini lebih kecil dari batas nilai Chi- $({\chi_h}^2)_{Cr}$ sebesar kuadrat kritik 5.991. Sedangkan dari hasil uji **Smirnov** Kolmogorov diperoleh nilai iarak penyimpangan terbesar ($\Delta_{\text{maks.}}$) peluang teoritis sebesar 0,163. Nilai ini lebih kecil dari nilai penyimpangan kritik (Δ_{kritik}) sebesar 0,34. Sehingga melalui pengujian kecocokan distribusi tersebut diketahui distribusi log Pearson III bisa diterima atau mewakili distribusi frekuensi data yang tersedia.

Perhitungan Ketersediaan Air


Hasil survey ke lokasi penelitian diperoleh luas tampang basah saluran (A) sebesar 0,1764 m², dan kecepatan aliran rata-rata di saluran (V) sebesar 0,9043635 m/detik. Sehingga debit air di saluran (Q) yang tersedia adalah sebesar:

 $O = A \times V$

 $= 0.1764 \text{ m}^2 \times 0.9043635 \text{ m/detik}$

 $= 0.15953 \text{ m}^3/\text{detik}$

Diperkirakan debit andalan konstan pada setiap bulan sesuai dengan debit air yang tersedia sebesar 0,15953 m³/detik. Gambar 6. berikut adalah grafik debit andalan untuk irigasi dari bulan Januari sampai dengan Desember

Gambar 6. Grafik debit andalan untuk irigasi bulan Januari s/d Desember Sumber: Perhitungan, 2013

Perhitungan Kebutuhan Air

Sebelum menghitung kebutuhan air terlebih dahulu perlu dihitung nilai evapotranspirasi dan curah hujan efektif pada setiap bulan.

Perhitungan evapotranspirasi metode Penman modifikasi

Dalam perhitungan evapotranspirasi metode Penman modifikasi didukung dengan menggunakan data klimatologi. Data klimatologi yang dibutuhkan dalam metode ini yaitu data temperatur, penyinaran matahari, kelembaban udara, dan kecepatan angin.

Hasil perhitungan evapotranspirasi metode Penman modoifikasi disajikan pada Tabel 3. berikut.

Tabel 3. Hasil perhitungan evapotranspirasi metode Penman modifikasi

No.	Bulan	Evapotranspirasi, ET ₀ (mm/hari)
1	Januari	3,536
2	Februari	3,877
3	Maret	4,007
4	April	4,183
5	Mei	3,868
6	Juni	3,910
7	Juli	4,128
8	Agustus	4,041
9	September	3,869
10	Oktober	3,545
11	November	3,611
12	Desember	3,280

Sumber: Perhitungan, 2013

Berdasarkan hasil perhitungan yang diasajikan pada Tabel 3, diperoleh evapotranspirasi terbesar terjadi pada bulan April sebesar 4,183 mm/hari dan evapotranspirasi terkecil terjadi pada bulan Desember yaitu sebesar 3,280 mm/hari.

Perhitungan curah hujan efektif

Curah hujan efektif (R_e) dihitung menggunakan curah hujan persetengah bulanan dengan periode ulang 5 tahun. Metode distribusi yang digunakan dalam menghitung curah hujan kala ulang 5 tahun persetengah bulan dari bulan Januari sampai dengan bulan Desember adalah dengan metode distribusi log Pearson III

Hasil perhitungan curah hujan efektif disajikan pada Tabel 4. berikut.

Tabel 4. Curah hujan efektif tanaman padi

No.	Bulan	15	Re
110.	Dulan	harian	(mm/hari)
1	Januari	I	9,636
1	Januari	II	8,282
2	Februari	I	7,804
2	rebluari	II	8,477
2	Morat	I	7,487
3	3 Maret	II	10,498
4	A mmi 1	I	11,113
4	April	II	11,43
5	Mai	I	7,166
3	Mei	II	4,161
-	Juni	I	4,676
6	Juiii	II	4,627

Berdasarkan Tabel 4, curah hujan efektif
yang paling tinggi yaitu pada bulan April
sekitar 11,113 mm/hari pada lima belas hari
pertama dan sekitar 11,43 mm/hari pada
lima belas hari kedua. Sehingga penyiapan
lahan untuk penanaman padi pertama
dilakukan pada bulan April, sebab dalam
penyiapan lahan diperlukan air yang lebih
banyak.

No.	Bulan	15 harian	Re (mm/hari)
7	Juli	I II	4,336 5,314
8	Agustus	I	5,204
		II I	6,895 4,409
9	September	II	5,749
10	Oktober	I II	10,181 6,906
11	November	I	11,145
	11010111001	<u>II</u>	11,072
12	Desember	I II	7,037 10,266

Sumber: Perhitungan, 2013

Perhitungan kebutuhan air irigasi

Padi yang ditanam merupakan varietas unggul dengan lahan mempunyai tekstur berat tanpa retak. Waktu penyiapan lahan selama 30 hari, sehingga dalam satu tahun bisa tiga kali tanam masing-masing dengan tiga bulan tanam dan satu bulan penyiapan lahan. Pola tanam yang digunakan adalah padi-padi-padi. Hasil perhitungan kebutuhan air irigasi disajikan pada Tabel 5. Berikut.

Tabel 5. Kebutuhan air pada tanaman padi

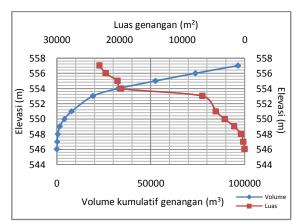
Pola	D1		ET_0	P	Re	WLR	_			ETc	NF	R
Tanam	Bulan		mm/hari	mm/hari	mm/hari	mm/hari	c ₁	\mathbf{c}_2	\mathbf{c}_{rt}	mm/hari	mm/hari	l/dt/ha
Penyiapan	A	1	4 102	2	11,11		LP	LP	LP	12,066	0,952	0,170
Lahan	April	2	4,183	2	11,43		1,10	LP	LP	12,066	0,636	0,113
	Mei	1	3,868	2	7,17	1,7	1,10	1,10	1,10	4,255	0,789	0,140
	Mei	2	3,000	2	4,16	1,7	1,05	1,10	1,08	4,178	3,717	0,662
Padi	Juni	1	3,91	2	4,68	1,7	1,05	1,05	1,05	4,106	3,130	0,557
Ра	Juiii	2	3,91	2	4,63	1,7	0,95	1,05	1,00	3,910	2,984	0,531
	Juli	1	4 120	2	4,34		0,00	0,95	0,48	1,981	-0,354	0,000
	Juli	2	4,128	2	5,31		0,00	0,00	0,00	0,000	0,000	0,000
Penyiapan	Acuatus	1	4.041	2	5,2		LP	LP	LP	11,967	6,763	1,204
Lahan	Agustus	2	4,041	2	6,9		1,10	LP	LP	11,967	5,072	0,903
	Cantanahan	1	3,869	2	4,41	1,7	1,10	1,10	1,10	4,256	3,547	0,632
	September	2		2	5,75	1,7	1,05	1,10	1,08	4,179	2,130	0,379
Padi	.	1	3,545	2	10,18	1,7	1,05	1,05	1,05	3,722	-2,759	0,000
Ьа	Oktober	2		2	6,91	1,7	0,95	1,05	1,00	3,545	0,339	0,06
	Navamban	1	2 (11	2	11,15		0,00	0,95	0,48	1,733	-7,412	0,000
	November	2	3,611	2	11,07		0.00	0,00	0,00	0,000	0,000	0,000
Penyiapan	Desember	1	3,28	2	7,04		LP	LP	LP	11,45	4,413	0,786
Lahan	Desember	2	3,28	2	10,27		1,1	LP	LP	11,45	1,184	0,211
	T	1	2.526	2	9,64	1,7	1,10	1,10	1,10	3,890	-2,046	0,000
	Januari	2	3,536	2	8,28	1,7	1,05	1,10	1,08	3,819	-0,763	0,000
Padi	E-b	1	2 977	2	7,8	1,7	1,05	1,05	1,05	4,070	-0,033	0,000
Ъа	Februari	2	3,877	2	8,48	1,7	0,95	1,05	1,00	3,877	-0,900	0,000
	Maret	1	4.007	2	7,49		0,00	0,95	0,48	1,923	-3,564	0,000
	Maret	2	4,007	2	10,5		0.00	0,00	0,00	0,000	0,000	0,000

Sumber: Perhitungan, 2013

Berdasarkan hasil perhitungan kebutuhan air pada tanaman padi seperti yang disajikan pada Tabel 5. di atas maka didapat kebutuhan air maksimum berada pada bulan Agustus pada lima belas hari pertama yaitu sebesar 1,204 l/dt/ha.

Perhitungan Luas dan Volume Embung

Luas genangan embung dihitung per-elevasi dengan menggunakan bantuan *software AutoCad* berdasarkan peta topografi.


Hasil perhitungan luas dan volume embung disajikaan pada Tabel 6. berikut.

Tebel 6. Perhitungan luas dan volume

Elevasi	Luas	Δh	Volume	Volume kumulatif
(m)	(m^2)	(m)	(m^3)	(\mathbf{m}^3)
(1)	(2)	(3)	(4)	(5)
546	0,000		0,000	0,000
		1		
547	186,935		62,312	62,312
		1		
548	548,264		351,779	414,091
		1		
549	1691,858		1067,744	1481,835
	2120 702	1	2250 225	20/0.0/2
550	3138,502		2378,227	3860,062
£ £ 1	4570 275	1	2022.022	7602.006
551	4572,375	2	3833,023	7693,086
553	6661,432	2	11168,490	18861,576
333	0001,432	1	11108,490	18801,370
554	19633,791	1	12577,177	31438,753
334	17033,771	1	12377,177	31430,733
555	20108,914		19870,879	51309,632
233	20100,711	1	1,0,0,0	21207,002
556	22000,457	-	21047,601	72357,233
	,	1	,	,
557	23486,958		22507,163	94864,396

Sumber: Perhitungan, 2013

Berdasarkan hasil perhitungan dari Tabel 6, dapat dibuat suatu kurva lengkung kapasitas embung yang merupakan hubungan antara elevasi, luas genangan dan volume kumulatif genangan pada embung yang ditampilkan pada Gambar 7. berikut.

Gambar 7. Kurva lengkung kapasitas embung

Sumber: Perhitungan, 2013

Berdasarkan kurva lengkung kapasitas embung, titik perpotongan antara volume genangan dan luas genangan embung berada pada elevasi +554 m, berdasarkan hasil perhitungan luas dan volume daerah genangan yang disajikan pada Tabel 6. volume kapasitas tampungan maksimum embung sampai pada elevasi +554 m adalah 31.438,753 m³ dengan luas genangan 19.633,791 m². Dasar embung berada pada elevasi +546 m, sehingga kedalaman embung pada volume kapasitas tampungan maksimum adalah 8 meter.

Perhitungan Evaporasi Evaporasi dengan metode transfer massa

Perhitungan evaporasi diperlukan untuk menentukan besar penguapan yang terjadi pada waduk/embung. Metode yang digunakan adalah metode transfer massa dengan menggunakan persamaan yang diusulkan oleh Herbeck (1962).

Hasil perhitungan evaporasi disajikan pada Tabel 7. berikut.

Tabel 7. Hasil perhitungan evaporasi

No.	Bulan	Evaporasi, E (mm/hari)
1	Januari	0,188
2	Februari	0,151
3	Maret	0,140
4	April	0,111
5	Mei	0,116
6	Juni	0,129

Tabel 7. Hasil perhitungan evaporasi (sambungan)

No.	Bulan	Evaporasi, E (mm/hari)
7	Juli	0,149
8	Agustus	0,156
9	September	0,113
10	Oktober	0,135
11	November	0,145
12	Desember	0,097

Sumber: Perhitungan, 2013

Berdasarkan hasil perhitungan yang diasajikan pada Tabel 7, diperoleh evaporasi terbesar terjadi pada bulan Januari sebesar 0,188 mm/hari dan evaporasi terkecil terjadi pada bulan Desember yaitu sebesar 0,097 mm/hari.

Perhitungan Volume Hujan Pada Waduk

Perhitungan volume hujan diperlukan untuk menentukan besarnya volume air masuk pada yang waduk/embung disebabkan oleh hujan yang turun. Dalam menentukan besarnya volume air yang masuk pada waduk/embung karena hujan, yaitu tinggi curah hujan dikalikan dengan luas waduk. Besar volume air yang masuk pada waduk karena hujan dihitung pada setiap bulan.

Hasil perhitungan volume hujan pada waduk disajikan pada Tabel 8 berikut.

Tabel 8. Perhitungan volume hujan pada

	waduk								
Bulan	Curah hujan rata-rata (mm/hari)	Luas Embung (m²)	Volume (m³/hari)						
Januari	8,01	19633,791	157,176						
Februari	7,33	19633,791	143,984						
Maret	7,74	19633,791	151,949						
April	9,27	19633,791	182,079						
Mei	6,24	19633,791	122,519						
Juni	4,55	19633,791	89,312						
Juli	5,44	19633,791	106,77						
Agustus	5,55	19633,791	109,058						
September	6,57	19633,791	128,911						
Oktober	7,4	19633,791	145,345						
November	9,53	19633,791	187,014						
Desember	8,93	19633,791	175,416						

Sumber: Perhitungan, 2013

Analisis Kapasitas Tampungan Embung

Direncanakan elevasi maksimum sawah yang bisa diairi adalah +553 meter, sehingga elevasi minimum dasar pintu air adalah pada +553 meter, maka volume kapasitas tampungan maksimum embung yang bisa digunakan untuk mengairi sawah adalah sebagai berikut:

V = Volume pada elevasi +554 m - Volume pada elevasi +553 m

 $V = 31.438,753 \text{ m}^3 - 18.861,576 \text{ m}^3$

 $V = 12.577,177 \text{m}^3$

Kebutuhan air irigasi maksimum diperoleh sebesar 1,204 l/dt/ha (Tabel.5). Nilai kebutuhan air untuk pemenuhan air irigasi dianggap tetap tersedia terusmenerus sepanjang tahun yaitu 1,204 l/dt/ha.

Luas sawah yang bisa diairi ditentukan dengan mevariasikan tinggi bukaan pintu air yang dihitung per-satu jam selama 10 jam dari bulan Januari sampai dengan bulan Desember. Tinggi bukaan pintu air dicoba dengan bukaan setinggi 0,1 m, 0,15 m, 0,20 m, 0,25 m dan 0,3 m dengan lebar pintu air direncanakan sebesar 0,7 m.

Hasil perhitungan luas sawah yang bisa diairi dengan masing-masing tinggi bukaan pintu air disajikan pada Tabel 9 sampai dengan Tabel 13 berikut.

Tabel 9. Luas sawah yang bisa diairi dengan waktu operasi pintu air, T = 10 jam dan tinggi bukaan, h = 0,10 m

			<u> </u>	Luas	sawah yan	g bisa diairi	(ha)			
Bulan	1 jam ke-									
	I	II	III	IV	V	VI	VII	VIII	IX	X
Januari	195,424	193,945	192,490	191,060	189,655	188,275	186,918	185,586	184,278	182,995
Februari	195,424	193,942	192,484	191,052	189,644	188,260	186,901	185,567	184,256	182,970
Maret	195,424	193,944	192,488	191,058	189,651	188,270	186,912	185,579	184,271	182,986
April	195,424	193,951	192,502	191,079	189,679	188,305	186,954	185,628	184,326	183,048
Mei	195,424	193,937	192,475	191,038	189,625	188,237	186,873	185,534	184,219	182,928
Juni	195,424	193,929	192,459	191,014	189,594	188,199	186,828	185,481	184,159	182,861
Juli	195,424	193,933	192,467	191,026	189,610	188,218	186,851	185,508	184,189	182,895
Agustus	195,424	193,934	192,468	191,028	189,612	188,220	186,854	185,511	184,193	182,900
September	195,424	193,938	192,478	191,042	189,631	188,244	186,882	185,544	184,230	182,941
Oktober	195,424	193,942	192,485	191,053	189,645	188,262	186,904	185,569	184,259	182,973
November	195,424	193,952	192,504	191,082	189,683	188,309	186,960	185,635	184,333	183,056
Desember	195,424	193,949	192,500	191,074	189,674	188,297	186,945	185,618	184,314	183,035
Rata-rata	195,424	193,941	192,484	191,050	189,642	188,258	186,898	185,563	184,252	182,966

Sumber: Perhitungan, 2013

Tabel 10. Luas sawah yang bisa diairi dengan waktu operasi pintu air,

T = 10 jam dan tinggi bukaan, h = 0.15 m

	Luas sawah yang bisa diairi, ha												
Bulan	1 jam ke-												
	I	II	III	IV	V	VI	VII	VIII	IX	X			
Januari	284,876	279,237	273,698	268,263	262,933	257,711	252,599	247,599	242,713	237,944			
Februari	284,876	279,232	273,689	268,249	262,915	257,688	252,572	247,567	242,677	237,903			
Maret	284,876	279,235	273,695	268,258	262,927	257,703	252,590	247,588	242,701	237,930			
April	284,876	279,246	273,717	268,292	262,971	257,759	252,657	247,666	242,790	238,029			
Mei	284,876	279,225	273,674	268,227	262,885	257,651	252,527	247,515	242,617	237,835			
Juni	284,876	279,213	273,650	268,190	262,836	257,590	252,454	247,430	242,520	237,726			
Juli	284,876	279,219	273,662	268,209	262,861	257,621	252,491	247,473	242,569	237,782			
Agustus	284,876	279,220	273,664	268,211	262,864	257,625	252,495	247,478	242,576	237,789			
September	284,876	279,227	273,679	268,234	262,894	257,662	252,541	247,531	242,636	237,856			
Oktober	284,876	279,233	273,690	268,251	262,917	257,691	252,575	247,572	242,682	237,908			
November	284,876	279,248	273,720	268,296	262,978	257,767	252,666	247,677	242,802	238,043			
Desember	284,876	279,244	273,713	268,285	262,962	257,747	252,643	247,650	242,771	238,009			
Rata-rata	284,876	279,231	273,688	268,247	262,912	257,685	252,567	247,562	242,671	237,896			

Sumber: Perhitungan, 2013

Tabel 11. Luas sawah yang bisa diairi dengan waktu operasi pintu air, T = 10 jam dan tinggi bukaan, h = 0.20 m

			1 – 10 je		inggi oui								
Bulan	Luas sawah yang bisa diairi, ha												
	1 jam ke-												
	I	II	III	IV	V	VI	VII	VIII	IX	X			
Januari	368,494	356,369	344,476	332,828	321,436	310,315	299,477	288,935	278,703	268,796			
Februari	368,494	356,362	344,463	332,808	321,411	310,283	299,438	288,889	278,651	268,737			
Maret	368,494	356,366	344,471	332,821	321,428	310,304	299,463	288,919	278,685	268,775			
April	368,494	356,382	344,503	332,868	321,491	310,384	299,559	289,032	278,814	268,921			
Mei	368,494	356,352	344,442	332,776	321,368	310,229	299,373	288,813	278,564	268,639			
Juni	368,494	356,335	344,408	332,725	321,299	310,142	299,268	288,691	278,423	268,480			
Juli	368,494	356,343	344,425	332,751	321,334	310,186	299,322	288,753	278,495	268,561			
Agustus	368,494	356,345	344,427	332,755	321,339	310,192	299,328	288,761	278,504	268,571			
September	368,494	356,355	344,448	332,786	321,381	310,246	299,393	288,837	278,591	268,669			
Oktober	368,494	356,363	344,465	332,811	321,414	310,287	299,443	288,896	278,658	268,745			
November	368,494	356,384	344,507	332,875	321,500	310,395	299,573	289,047	278,832	268,941			
Desember	368,494	356,379	344,496	332,858	321,478	310,367	299,539	289,008	278,787	268,890			
Rata-rata	368,494	356,361	344,461	332,805	321,407	310,278	299,431	288,882	278,642	268,727			

Sumber: Perhitungan, 2013

Tabel 12. Luas sawah yang bisa diairi dengan waktu operasi pintu air,

T = 10 jam dan tinggi bukaan, h = 0.25 m

	Luas sawah yang bisa diairi, ha												
Bulan	1 jam ke-												
	I	II	III	IV	V	VI	VII	VIII	IX	X			
Januari	445,991	425,014	404,467	384,388	364,815	345,791	327,365	309,584	292,504	276,179			
Februari	445,991	425,006	404,450	384,362	364,78	345,748	327,312	309,522	292,432	276,098			
Maret	445,991	425,011	404,461	384,379	364,803	345,776	327,346	309,563	292,479	276,151			
April	445,991	425,031	404,503	384,442	364,887	345,884	327,476	309,716	292,656	276,350			
Mei	445,991	424,992	404,423	384,320	364,723	345,675	327,224	309,418	292,313	275,963			
Juni	445,991	424,970	404,378	384,251	364,630	345,558	327,082	309,251	292,121	275,745			
Juli	445,991	424,981	404,401	384,286	364,678	345,618	327,154	309,337	292,219	275,856			
Agustus	445,991	424,982	404,403	384,291	364,683	345,625	327,163	309,347	292,231	275,870			
September	445,991	424,996	404,431	384,333	364,741	345,698	327,251	309,451	292,350	276,005			
Oktober	445,991	425,007	404,453	384,366	364,785	345,754	327,319	309,531	292,442	276,109			
November	445,991	425,034	404,508	384,450	364,899	345,898	327,494	309,737	292,680	276,378			
Desember	445,991	425,027	404,494	384,428	364,87	345,861	327,449	309,684	292,619	276,309			
Rata-rata	445,991	425,004	404,448	384,358	364,774	345,741	327,303	309,512	292,42	276,084			

Sumber: Perhitungan, 2013

Tabel 13. Luas sawah yang bisa diairi dengan waktu operasi pintu air,

T = 10 jam dan tinggi bukaan, h = 0.30 m

			1 – 10 je	am dan t	mggi ou	Kaan, n	- 0,50 1	11					
Bulan	Luas sawah yang bisa diairi (ha) 1 jam ke-												
Januari	517,042	484,800	453,263	422,520	392,673	363,836	336,145	309,750	284,819	261,536			
Februari	517,042	484,789	453,242	422,488	392,628	363,779	336,076	309,668	284,724	261,429			
Maret	517,042	484,796	453,256	422,509	392,657	363,817	336,121	309,721	284,787	261,500			
April	517,042	484,822	453,308	422,590	392,767	363,957	336,292	309,924	285,020	261,764			
Mei	517,042	484,772	453,206	422,433	392,554	363,685	335,96	309,531	284,566	261,250			
Juni	517,042	484,744	453,149	422,345	392,434	363,532	335,773	309,310	284,311	260,961			
Juli	517,042	484,758	453,178	422,390	392,495	363,610	335,869	309,422	284,441	261,109			
Agustus	517,042	484,760	453,182	422,396	392,503	363,620	335,881	309,437	284,458	261,127			
September	517,042	484,777	453,217	422,450	392,577	363,714	335,996	309,573	284,615	261,306			
Oktober	517,042	484,791	453,245	422,492	392,634	363,787	336,085	309,679	284,737	261,444			
November	517,042	484,825	453,316	422,601	392,782	363,976	336,316	309,952	285,053	261,801			
Desember	517,042	484,816	453,297	422,573	392,744	363,928	336,256	309,882	284,972	261,709			
Rata-rata	517,042	484,788	453,238	422,482	392,621	363,770	336,064	309,654	284,709	261,411			

Sumber: Perhitungan, 2013

Luas sawah yang bisa diairi seperti yang disajikan pada Tabel 9 sampai dengan Tabel 13 adalah luas sawah yang bisa diairi setiap hari. Luas sawah yang bisa diairi sama di setiap hari pada masingmasing bulan. Tabel di atas menunjukkan bahwa semakin tinggi bukaan pintu air maka semakin luas sawah yang bisa dilayani, dan dalam setiap satu jam luas sawah yang bisa diairi semakin kecil.

Dalam setiap jam luas sawah yang diairi berangsur menjadi sedikit, ini disebabkan kemampuan debit air yang dikeluarkan dari pintu pengambilan untuk untuk memenuhi kebutuhan irigasi berkurang karena ketinggian muka air dihulu bendungan (h₀) setiap jam selalu berkurang pada saat pintu air dioperasikan

(diasumsikan h₀ berkurang setiap 1 jam). Setelah pintu air ditutup maka air pada embung akan naik kembali dan seperti itu seterusnya.

Analisis Tinggi Muka Air di Atas Mercu Pelimpah

Pelimpah digunakan untuk membuang kelebihan air yaitu pada saat volume embung melebihi kapasitas tampungan maksimumnya.

Sebagaimana yang telah dihitung sebelumnya, kedalaman air pada kapasitas maksimum embung adalah 8 meter. Lebar mercu pelimpah bendungan direncanakan 2 meter, sehingga untuk menentukan tinggi pelimpah perlu dihitung tinggi muka air di atas mercu.

Debit terbesar yang harus dibuang pada saat pintu air ditutup selama 14 jam (24 jam - 10 jam = 14 jam) adalah pada saat bukaan pintu air setinggi 0,10 meter yaitu sebesar 0,114 m³/detik

Nilai Q yang diperoleh di atas dimasukkan ke dalam persamaan (12) untuk menghitung tinggi energi total di atas mercu pelimpah. Pelimpah dianggap cukup tinggi maka pengaruh kecepatan masuk dapat diabaikan dan koefisien debit, C = 4.03

$$H_e = \left(\frac{0.114m^3 / \det}{4.03 \times 2m}\right)^{2/3} = 0.0585m \approx 0.06m$$

Karena kecepatan masuk diabaikan maka tinggi energi total (H_e) sama dengan tinggi muka air rencana di atas mercu pelimpah, $H_d=0.071$ m, sehingga dapat dihitung tinggi pelimpah (P) sebagai berikut.

 $P = H - H_e$

P = 8 m - 0.06 m

P = 7.94 m

Jadi tinggi pelimpah bendungan adalah 7.94 m.

Berdasarkan Tabel 1, untuk tinggi bendungan < 50 m jika bendungan terbuat dari beton maka tinggi ruang bebas untuk bendungan adalah 1,0 m sehingga tinggi bendungan adalah tinggi air pada kapasitas maksimum embung ditambah dengan tinggi ruang bebas bendungan maka didapat tinggi bendungan,

$$H_b = 8.0 \text{ m} + 1.0 \text{ m} = 9.0 \text{ m}$$

Perencanaan Permukaan Mercu Ogee

Untuk merencanakan permukaan mercu Ogee bagian hilir digunakan rumus dari persamaan (13). Direncanakan kemiringan permukaan hulu adalah vertikal. Untuk kemiringan permukaan hulu vertikal berdasarkan Tabel 2. nilai K = 2,0 dan nilai n = 1,85, sehingga persamaan permukaan Ogee bagian hilir menjadi:

$$\frac{Y}{H_d} = \frac{1}{K} \left(\frac{X}{H_d}\right)^n$$

$$\frac{Y}{H_d} = \frac{1}{2,0} \left(\frac{X}{H_d}\right)^{1,850}$$

$$Y = 0,5H_d \frac{X^{1,850}}{H_d^{1,850}}$$

$$Y = 0,5H_d X^{1,850}H_d^{-1,850}$$

$$Y = 0,5X^{1,85}H_d^{-0,85}$$

$$X^{1,85} = \frac{Y}{0,5 \times H_d^{-0,85}}$$

$$X^{1,85} = 2H_d^{0,85}Y$$

$$Y = 0,5X^{1,85}H_d^{-0,85}$$

Direncanakan kemiringan permukaan hilir adalah 1:1. Maka didapat garis singgung antara lengkung dan kemiringan 1:1, m = 1/1 = 1. Dari perhitungan tinggi air rencana di atas mercu bendungan, H_d adalah sebesar 0,06 m, sehingga persamaan permukaan Ogee bagian hilir menjadi:

$$Y = 0.5X^{1.85}H_d^{-0.85}$$

$$Y = 0.5X^{1.85}0.06^{-0.85}$$

$$Y = 5.4644X^{1.85}$$

Selanjutnya menentukan koordinat antara garis lengkung dan garis lurus dengan kemiringan 1:1.

$$X_{d} = \left(\frac{m}{\frac{0,925}{H_{d}^{0,85}}}\right)^{1/0,85} = \left(\frac{1}{\frac{0,925}{0,06^{0,85}}}\right)^{1/0,85} = 0,066m$$

diambil $X_d = 0.07 \text{ m}$

$$Y = 5,4644X^{1,85}$$

 $Y_d = 5,4644 \times 0,07^{1,85}$
 $Y_d = 0,0399m$
diambil $Y_d = 0,04 \text{ m}$

SIMPULAN DAN SARAN Simpulan

Dari hasil penelitian analisis embung bulakan kapasitas untuk memenuhi kekurangan kebutuhan air irigasi di kecamatan Payakumbuh Selatan diambil beberapa kesimpulan dapat sebagai berikut.

- 1. Dari hasil pengukuran langsung ke lapangan debit andalan yang tersedia sekitar 159,53 l/dt.
- 2. Kebutuhan air irigasi maksimum sekitar 1,204 l/dt/ha.
- 3. Kapasitas maksimum embung bulakan yang digunakan untuk irigasi adalah sekitar 12.577,177 m³ berada antara elevasi +553 dan +554 meter.
- 4. Semakin tinggi bukaan pintu air maka semakin luas sawah yang bisa dilayani, dan dalam setiap satu jam luas sawah yang bisa diairi semakin kecil disebabkan kemampuan debit air yang dikeluarkan dari pintu pengambilan untuk untuk memenuhi kebutuhan irigasi berkurang karena ketinggian muka air dihulu bendungan (h₀) setiap jam selalu berkurang pada saat pintu air dioperasikan.
- 5. Tinggi muka air rencana di atas mercu pelimpah, H_d adalah 0,06 m
- 6. Pelimpah menggunakan mercu tipe Ogee dengan tinggi mercu 7,94 m dan tinggi jagaan 1 m.

Saran

Agar embung bulakan ini nantinya bisa berfungsi sesuai dengan yang diharapkan maka perlu dilakukan pemeliharaan yang berkelanjutan dan perhatian dari masyarakat serta pemerintah setempat.

DAFTAR PUSTAKA

Alexander dan Harahab, Syarifuddin. 2009. Perencanaan Embung Tambakboyo Kabupaten Sleman D.I.Y (Design of Tambakboyo Small Dam Sleman D.I.Y Area). Teknik Sipil Universitas Diponegoro, Semarang.

- Anonim. *Irigasi dan Bangunan Air*. Penerbit Gunadarma, Jakarta.
- Dinas Pekerjaan Umum. 1986. KP-01 Perencanaan Jaringan Irigasi.
- Dinas Pekerjaan Umum. 1986. KP-02 Bangunan Utama.
- Dinas Pekerjaan Umum. 1986. KP-04 Bangunan Pelengkap.
- Payakumbuh Dalam Angka 2012, Kerjasama Badan Perencana Pembangunan Daerah Kota Payakumbuh dengan Badan Pusat Statistik Kota Payakumbuh.
- Soedibyo. 2003, *Teknik Bendungan*. PT Pradnya Paramita, Jakarta.
- Sudjarwadi. 1979. *Pengantar Teknik Irigasi*. Universitas Gadjah Mada, Yogyakarta.
- Suripin. 2004. Sistem Drainase Perkotaan yang Berkelanjutan. Andi Offset, Yogyakarta.
- Triatmodjo, Bambang. 2008. *Hidrologi Terapan*. Beta Offset, Yogyakarta.