PERBANDINGAN KINERJA PILAR JEMBATAN MENGGUNAKAN METODE *DIRECT DISPLACEMENT BASED DESIGN* DAN *CAPACITY SPECTRUM METHOD*

Ockto Perry P Harahap¹, Zulfikar Djauhari², Alex Kurniawandy³) ¹ Mahasiswa Jurusan Teknik Sipil, Universitas Riau, Jl. Subrantas KM 12.5 Pekanbaru 28293 Email: ocktoperryph@gmail.com ² Dosen Jurusan Teknik Sipil, Universitas Riau, Jl. SubrantasKM 12.5 Pekanbaru 28293 Email: zulfikar.djauhari@lecturer.unri.ac.id, zulfkr_dj@yahoo.com ³ Dosen Jurusan Teknik Sipil, Universitas Riau, Jl. SubrantasKM 12.5 Pekanbaru 28293 Email: alexkurniawandy@gmail.com

Abstract

The structure usually design base on the elastic analysis that would be multiplied by load factor to simulate the ultimate condition. Actually the behavior of building subject to seismic load are in-elastic. Evaluation to assess inelastic condition of the building during the earthquake are required to obtain assurance that a satisfactory performance. Analysis and performance evaluation can be done with the concept of performance-based seismic design. In this study, there are two performance-based analytical methods used, the method of Direct Displacement-Based Design (DDBD) and Capacity Spectrum Method (CSM). Structures analyzed in this research are the bridge pier with seismic load plan by RSNI 2833:201X. Value of displacement, base shear force, effective time, and damping produced by the method DDBD will be compared with the CSM. Result of analysis by the method of DDBD is the greatest displacement target, that is 0.7304 m, while the displacement by the method of CSM is 0,027 m. Base shear forces (V), results of DDBD, have 265.98 kN smaller than the CSM. However, the effective damping (ξ_{eff}) and effective time (T_{eff}), the results of the analysis DDBD, have greater value when compared with the results of the analysis of CSM. Performance evaluation pier structures with DDBD method shows the structures are at the level of that exceed the limit structure stability which indicate that the structure stability has huge risk to collapse in an earthquake. In CSM Method, pillar structure is in Operational category which indicates that there was no structural and non-structure damage on piers when earthquake happened.

Keyword : Earthquake, pier structure, Direct Displacement-Based Design, Capacity Spectrum Method, performance

A. Pendahuluan

Indonesia merupakan daerah pertemuan 3 lempeng tektonik besar, yaitu lempeng Indo-Australia, Eurasia dan lempeng Pasifik. Disekitar lokasi pertemuan lempeng ini akumulasi energi tabrakan terkumpul sampai suatu titik yakni lapisan bumi tidak lagi sanggup menahan tumpukan energi sehingga lepas berupa gempa bumi. Pelepasan energi sesaat ini menimbulkan berbagai dampak terhadap bangunan karena percepatan gelombang seismik, seperti tsunami, longsor, dan liquefaction.

Selama ini, perancangan bangunan tahan gempa kebanyakan menggunakan konsep

force-based design (FBD). Dalam hal ini, perhitungan gaya gempa pada metode FBD dilakukan dengan analisis linear (elastis), sehingga tidak dapat menunjukkan secara langsung kinerja bangunan terhadap pengaruh gempa yang terjadi. Seiring perkembangan ilmu pengetahuan dan teknologi, mulai tahun 2000-an perancangan bangunan terhadap gempa mulai menggunakan konsep perancangan berbasis kinerja (Performance Based).

Konsep perencanaan berbasis kinerja memberikan gambaran perilaku nonlinier (inelastik) komponen – komponen struktur secara bertahap sehingga dapat diketahui elemen kali struktur yang pertama mengalami kegagalan. Peningkatan pembebanan secara bertahap mengakibatkan struktur mengalami leleh dan berdeformasi secara inelastik, yang akan menghasilkan kurva representasi dari kapasitas bangunan tersebut. Menurut Priestley ada tiga metode perencanaan berbasis kinerja (*performance based design*) yaitu metode Capacity Spectrum (ATC-40, 1996), metode N_2 (Fajfar, 2000) dan metode Direct Displacement-Based Design (Priestley, 2000).

Selanjutnya tulisan ini mengkaji kinerja jembatan dengan menggunakan metode *Direct Displacement-Based Method* (Priestley, 2000) dan dibandingkan dengan *Capacity Spectrum Method* (ATC-40, 1996).

Analisis dilakukan dengan asumsi sebagai berikut.

- 1. Analisis *pushover* menggunakan bantuan Finite Element Program.
- 2. Perhitungan hanya untuk menganalisis tingkat kinerja struktur tanpa melakukan perencanaan model struktur.
- 3. Beban lateral yang ditinjau hanya beban gempa horizontal pada arah longitudinal.
- 4. Jembatan berada di wilayah Pekanbaru dengan kondisi tanah lunak.
- 5. Data struktur yang diketahui yaitu:
 - a. Bagian jembatan yang ditinjau hanya pada bagian bentang pendekat, lebih tepatnya pada pilar 3 jembatan.
 - b. Dimensi pilar 3 jembatan : Panjang : 4m Lebar : 1m
 - c. Kuat tekan beton, $f'_c = 30$ MPa, ($f'_{ce} = 1,3$ $f'_c = 39$ MPa).
 - d. Mutu baja, fy = 420 MPa, (f'_{ye} = $1,1 f_y = 462 MPa$).
 - e. Tinggi bersih kolom pilar = 8,45m
 - f. Perbandingan kuat tarik putus dan kuat tarik leleh, $f_u/f_y = 1,35$
 - g. Diameter tulangan memanjang, $D_{bl} = 25 \text{ mm}$

- h. Tebal selimut beton adalah 50 mm
- i. Diameter tulangan melintang, D_{bt} = 19 mm dengan jarak, s = 100mm
- j. Regangan tarik putus tulangan memanjang, $\varepsilon_{sul} = 0,10$
- k. Regangan tarik putus tulangan melintang, $\varepsilon_{sut} = 0,12$
- 1. Pilar didukung dengan Pile Cap pada bagian bawah
- m. Untuk lebih lengkap nya dimensi pilar dapat dilihat pada gambar berikut ini :

Gambar 1. Tampak depan pilar jembatan

Gambar 2. Potongan A-A kepala pilar jembatan

Gambar 3. Potongan B-B Pilar jembatan

B. TINJAUAN PUSTAKA

Pengertian jembatan secara umum adalah suatu konstruksi yang berfungsi untuk menghubungkan dua bagian jalan yang terputus oleh adanya rintanganrintangan seperti lembah yang dalam, alur sungai, danau, saluran irigasi, kali, jalan kereta api, jalan raya yang melintang tidak sebidang dan lain-lain. Jenis jembatan berdasarkan fungsi, lokasi. bahan konstruksi dan tipe struktur sekarang ini telah mengalami perkembangan pesat sesuai dengan kemajuan jaman dan teknologi, mulai dari yang sederhana sampai pada konstruksi yang mutakhir.

Beban Mati dan Beban Mati Tambahan pada Jembatan

Beban mati dari bagian bangunan adalah berat dari bagian tersebut dan elemen - elemen struktural lain yang dipikulnya. Termasuk dalam hal ini adalah berat bahan dan bagian jembatan yang merupakan elemen struktural, ditambah dengan elemen nonstruktural yang dianggap tetap. Sedangkan beban mati tambahan adalah berat seluruh bahan yang membentuk suatu beban pada jembatan yang merupakan elemen non struktural, dan besarnya dapat berubah selama umur jembatan.

Beban Gempa Rencana Berdasarkan RSNI 2833 : 201X

Beban gempa diambil sebagai gaya horizontal yang ditentukan berdasarkan perkalian antara koefisien respons elastik (Csm) dengan berat struktur ekuivalen yang kemudian dimodifikasi dengan faktor modifikasi respons (R) dengan formulasi sebagai berikut :

$$V_{EQ} = \frac{C_{sm}}{R} W_t$$

dengan :

 V_{EO} = gaya gempa horizontal statis (kN)

- C_{sm} = koefisien geser dasar untuk wilayah gempa, waktu getar, dan kondi tanah
- R = faktor modifikasi respon (tabel 1)
- W_t = berat total jembatan yang berupa berat sendiri dan beban mati

tambahan.

Untuk mendapatkan nilai koefisien geser dasar, maka perlu diketahui nilai periode/waktu getar dari jembatan. Rumus untuk mencari waktu getar adalah sebagai berikut :

$$\Gamma = 2\pi \sqrt{\frac{W_t}{g K_P}}$$

dengan :

T = waktu getar

g = percepatan gravitasi

Kp = kekakuan gabungan dari pilar

Nilai Kp diperoleh dari persamaan berikut:

$$Kp = 12 \frac{EI}{I3}$$

dengan :

Kp = kekakuan gabungan dari pilar

E = modulus elastisitas pilar

I = momen inersia pilar

L = tinggi pilar efektif

Tabel 1. Faktor modifikasi respon

Bangunan bawah		Kategori kepentingan				
		Sangat penting	Penting	Lainnya		
Pilar tipe dinding		1.5	1.5	2.0		
_	Tiang vertikal	1.5	2.0	3.0		
а	Tiang miring	1.5	1.5	2.0		
Kolom tunggal		1.5	2.0	3.0		
b	Tiang vertikal	1.5	3.5	5.0		
	Tiang miring	1.5	2.0	3.0		
Kolom majemuk		1.5	3.5	5.0		

Sumber : RSNI 2833:201X

Metode Direct Displacement-Based Design

DDBD Metode desain diilustrasikan pada Gambar 2.1, dengan sistem Multi Degree of Freedom (MDOF) disederhanakan menjadi Single Degree of Freedom (SDOF). Selanjutnya hubungan besarnya gaya lateral-perpindahan sebagai representasi dari SDOF ditunjukkan pada Gambar. 5(b). K_i merupakan kekakuan berdasarkan analisa retak pada penampang saat tulangan lentur mengalami leleh pertama. rKi adalah kekakuan saat terbentuknya sendi-sendi plastis pada struktur, dan Ke merupakan kekakuan resultan untuk menghasilkan perpindahan maksimum. Tingkat redaman

ket : a = tiang/kolom beton bertulang b = tiang baja dan komposit

liat ekivalen merupakan kombinasi dari representasi redaman elastis dan energi hysteretis yang diserap selama respon inelastis. Gambar 5(c) menunjukkan nilai tuntutan daktilitas yang diberikan, Struktur bangunan baja memiliki redaman liat ekivalen yang lebih besar dibandingkan struktur dinding beton bertulang yang didesain dalam tingkat tuntutan daktilitas yang sama. Nilai respon perpindahan maksimum dan hasil perhitungan redaman berdasarkan tuntutan daktilitas vang diperoleh, digunakan untuk mendapatkan periode efektif, Te, seperti terlihat pada Gambar 5(d). :

Prosedur Perhitungan Metode Direct Displacement-Based Design

Tahapan prosedur perhitungan dalam mendapatkan parameter-parameter metode DDBD terhadap struktur yang akan dianalisis adalah sebagai berikut:

1. Perbandingan antara lebar sengkang dengan spasi nya, diperoleh dari persamaan :

$$\rho_V = \rho_X + \rho_Y$$

Dengan ρ_X dan ρ_Y adalah ratio volume dari tulangan sengkang dengan lebar beton terkekang pada arah X dan Y dapat dilihat pada Gambar 6, untuk mendapatkan nilai ρ_X dan ρ_Y dapat digunakan rumusan berikut :

$$\rho_X = \frac{N_X A_b}{sh''y}$$

$$\rho_X = \frac{N_Y A_b}{sh'' x}$$
dengan :

- ρ_V : perbandingan antara lebar dan spasi sengkang
- ρ_X : perbandingan antara lebar dan spasi sengkang arah X
- ρ_Y : perbandingan antara lebar dan spasi sengkang arah Y
- s : spasi sengkang (m)
- h"x: lebar efektif sengkang arah X (m)
- h"y: lebar efektif sengkang arah Y (m)
- Ab : luas Tulangan sengkang (m²)
- D': lebar efektif sengkang (m)

Gambar 6. Penampang persegi pilar jembatan

 Kuat tekan dari beton yang terkekang Kuat tekan dari beton yang terkekang (f'_{cc}) diperoleh dari tabel dibawah ini :

Tabel 2 nilai kuat tekan beton terkekang, f'_{cc}/f'_{c}

terkekung, i	CC/ 1	С						
flx'/f'c fly'/f'c	0.00	0.02	0.04	0.06	0.08	0.10	0.12	0.14
0.00	1.00							
0.02	1.04	1.13						
0.04	1.10	1.17	1.26					
0.06	1.13	1.22	1.30	1.38				
0.08	1.15	1.25	1.34	1.43	1.48			
0.10	1.19	1.28	1.37	1.45	1.52	1.57		
0.12	1.21	1.31	1.40	1.49	1.55	1.62	1.66	
0.14	1.23	1.33	1.43	1.52	1.58	1.66	1.70	1.76
0.16	1.24	1.35	1.45	1.53	1.62	1.68	1.74	1.79

Sumber : Jeffrey G and Franklin Y. Cheng (2012)

$$f'_{1X} = K_e \rho_X f_{yh}$$

$$f'_{1Y} = K_e \rho_Y f_{yh}$$

dengan :

$$f'cc : \text{kuat tekan beton terkekang}$$

$$f'_{lX} : \text{kuat tekan efekteif lateral beton}$$

terkekang arah X

- f'_{IV} : kuat tekan efekteif lateral beton terkekang arah Y
- f'c : kuat tekan beton
- K_e : koefisien untuk mencari nilai tekanan lateral beton terkekang
- f_{vh} : kuat tarik leleh baja

nilai Ke pada bentuk pilar persegi biasanya digunakan nilai 0,75.

3. Regangan maksimum beton, diperoleh dari rumus :

$$\varepsilon_{dc,c} = 0,004 + 1,4 \frac{\rho_v f_{yh} \varepsilon_{su}}{f'_{cc}}$$

dengan:

 $\varepsilon_{dc,c}$: regangan maksimum beton

 ρ_V : perbandingan antara diameter dan spasi sengkang

 f_{vh} : mutu baja tulangan (MPa)

 ε_{su} : regangan ultimit tulangan memanjang

$$f'_{cc}$$
: kuat tekan inti beton (MPa)

4. Jarak sumbu netral.

Jarak sumbu netral adalah jarak dari sisi terluar penampang yang di tinjau sampai pada sumbu netral dari penampang tersebut, seperti terlihat pada Gambar 7. Parameter ini diperoleh menggunakan rumus dibawah ini :

$$C/D = 0.2 + 0.65 P(f'_{ce}A_g)$$

dengan :

: jarak sumbu netral С

- D : Lebar penampang pilar yang ditinjau
- Ρ : beban yang mempengaruhi percepatan gempa

 f'_{ce} : kuat tekan beton

 A_q :Luas penampang pilar

- 5. Kemiringan kurva regangan bahan.
 - Kemiringan kurva regangan yang akan digunakan untuk mencari perpindahan maksimum struktur adalah yang terkecil dari salah satu bahan, yang didapatkan dari persamaan :

Untuk beton :
$$\phi_{ls,c} = \frac{\varepsilon_{c,ls}}{c}$$

Untuk baja : $\phi_{ls,s} = \frac{\varepsilon_{s,ls}}{d-c}$

Untuk baja

dengan :

 $Ø_{ls,c}$: kemiringan kurva regangan beton (/m)

- $Ø_{ISC}$: kemiringan kurva regangan baja (/m)
- : regangan maksimum beton $\mathcal{E}_{c,ls}$

$$\varepsilon_{s,ls}$$
 : 0,6 × ε_{su}

- : regangan ultimit tulangan \mathcal{E}_{su} memanjang
- : jarak dari bagian maksimum d tekan ke maksimum tarik dari penampang (m)
- : jarak dari bagian maksimum с tekan ke sumbu netral dari penampang (m)

Gambar 7. Regangan dan tegangan pada struktur non-simetris

6. Panjang sendi plastis

Panjang sendi plastis bergantung pada nilai panjang penetrasi regangan (L_{sp}) yang diperoleh dari persamaan berikut : $L_{sp} = 0.022 f_{ve} d_{bl}$

Parameter lainnya yang harus diketahui untuk menghitung panjang sendi plastis adalah nilai k yang diberikan pada persamaan berikut :

$$k = 0.2 \left(\frac{f_u}{f_{ye}} - 1 \right)$$

Setelah kedua parameter diatas diketahui, maka panjang sendi plastis dapat dihitung menggunakan persamaan berikut :

 $L_P = kL_c + L_{SP} \ge 2L_{SP}$ dengan

- L_p : panjang sendi plastis (m)
- : koefisien pengali untuk nilai Lc k
- : panjang dari bagian kritis terhadap Lc titik leleh penampang (m)
- : panjang penetrasi regangan (m) L_{sp}
- d_{hl} : diameter tulangan memanjang (m)

Gambar 8. Idealisasi distribusi kelengkungan

7. Perpindahan maksimum

Untuk mendapatkan nilai perpindahan efektf terlebih dahulu harus diperoleh nilai pepindahan lelehnya (Δ_y)

 $\Delta_y = \phi_y C_1 (H + L_{SP})^2$

dengan nilai $Ø_y$ sebagai kurvatur leleh, dan nilai C_1 adalah koefisien yang tergantung pada hubungan bagian atas dan bawah pilar.

Kurvatur leleh diperoleh dari persamaan berikut :

 $\emptyset_{\nu} = 2, 1\varepsilon_{\nu}/D$

Setelah parameter untuk menentukan perpindahan efektif diketahui, maka dengan persamaan berikut dapat dihtung perpindahan efektif dari pilar jembatan :

$$\Delta_D = \Delta_y + (\emptyset_{ls} - \emptyset_y) L_P H$$

dengan :

 Δ_y : perpindahan leleh (m)

- L_p : Panjang sendi plastis (m)
- \dot{H} : Tinggi pilar (m)
- 8. Daktilitas perpindahan
 - Daktilitas perpindahan adalah perbandingan perpindahan maksimum dengan perpindahan lelehnya, persamaan berikut digunakan untuk mencari nilai dari daktilitas perpindahan :

$$\mu_{\Delta} = \frac{\Delta_D}{\Delta_v}$$

dengan :

 μ_{Δ} : daktilitas perpindahan

 Δ_D : perpindahan maksimum (m)

 Δ_y : perpindahan leleh (m)

9. Redaman pilar

Redama pilar ini nantinya akan digunakan untuk menentukan redaman sistem struktur jembatan, digunakan persamaan berikut untuk menentukan redaman pilar :

$$\xi = 0.05 + 0.444 \left(\frac{\mu - 1}{\mu}\right)$$

dengan :

 ξ : redaman pilar

 μ : daktilitas perpindahan

10. Periode efektif

Besarnya periode efektif (T_e) dipengaruhi oleh perpindahan maksimum pilar dan redaman pilar, hubungan antara ketiganya di berikan pada grafik spektrum perpindahan berikut :

Gambar 9. Desain Spektra Percepatan

11. Berat efektif

Berat efektif (m_e) adalah berat dari struktur atas ditambahkan dengan 1/2 dari berat kolom.

12. Kekakuan efektif

$$K_e = \frac{4\pi^2 m_e}{T_e^2}$$

dengan :

- K_e : kekakuan efektif (kN/m)
- m_e : berat efektif (kN)
- T_e : Periode efektif (detik)
- 13. Gaya geser dasar Gaya geser dasar (V_{Base}) ditentukan

dengan persamaan berikut :

$$V_{Base} = K_e \Delta_D$$

dengan :

 V_{Base} : gaya geser dasar (kN)

- K_e : kekakuan efektif (kN/m)
- Δ_D : perpindahan maksimum (m)

Capacity Spectrum Method

Capacity spectrum method merupakan salah satu metode untuk mendapatkan target perpindahan struktur. Metode ini menyajikan secara grafis dua menyajikan secara grafis dua buah grafik yang disebut spektrum, yaitu spektrum spectrum) kapasitas (*capacity* vang menggambarkan kapasitas struktur berupa hubungan gaya dorong total (base shear) dan perpindahan lateral struktur (biasanva ditetapkan di puncak bangunan), dan spektrum *demand* yang menggambarkan besarnya demand (tuntutan kinerja) akibat gempa dengan periode ulang tertentu (Gambar 10).

Spektrum kapasitas didapatkan dari kurva kapasitas (*capacity curve*) yang diperoleh dari analisis pushover. Oleh karena kurva kapasitas merupakan hubungan antara gaya dorong total yang diberikan ke suatu struktur berderajat kebebasan banyak (multi-degree-of-freedom-system, MDOF) terhadap perpindahan yang dipilih sebagai referensi (umumnya puncak bangunan) sedangkan spektrum *demand* dibuat untuk struktur dengan kebebasan satu (singledegree-of-freedom-system, SDOF), maka kurva kapasitas dengan cara tertentu harus diubah menjadi spektrum kapasitas dengan satuan yang sama dengan spektrum demand. Spektrum *demand* didapatkan dengan mengubah spektrum respons yang biasanya dinyatakan dalam spektral kecepatan, S_a, dan T menjadi Periode. format spektral percepatan, S_a, dan spektral perpindahan, S_{d.} Format yang baru ini disebut Acceleration-Displacemet Response Spectra (ADRS). Kurva kapasitas yang merupakan produk dari *pushover* dinyatakan dalam satuan gaya (kN) dan perpindahan (m), sedangkan *demand spectrum* memiliki satuan percepatan (m/detik²) dan perpindahan (m). Satuan dari kedua kurva tersebut perlu diubah dalam format yang sama, yaitu spektral percepatan, S_{a} , dan spektral perpindahan, S_{d} , agar dapat ditampilkan dalam satu tampilan.

Penyajian secara grafis dapat memberikan ielas gambaran yang bagaimana sebuah bangunan merespon beban gempa. Perencana dapat membuat berbagai skenario kekuatan struktur (dengan cara mengganti kekakuan dari beberapa komponen struktur) dan melihat kinerjanya beberapa level demand akibat vang dikehendaki secara cepat dalam satu grafik (Gambar 11). Titik kinerja merupakan perpotongan antara spektrum kapasitas dan spektrum demand. Dengan demikian titik kinerja merupakan representasi dari dua kondisi, yaitu: 1) karena terletak pada spektrum kapasitas, merupakan representasi kekuatan struktur pada suatu nilai perpindahan tertentu, dan 2) karena terletak pada kurva demand, menunjukkan bahwa kekuatan struktur dapat memenuhi demand beban yang diberikan.

Analisis Pushover

Analisis *pushover* adalah suatu analisis statik nonlinier dimana pengaruh gempa rencana terhadap struktur dianggap sebagai beban-beban statik yang menangkap pada pusat massa, yang nilainya ditingkatkan secara berangsurangsur sampai melampaui pembebanan yang menyebabkan terjadinya pelelehan (sendi plastis) pertama di dalam struktur, kemudian dengan peningkatan beban lebih lanjut mengalami perubahan bentuk pascaelastik yang besar sampai mencapai kondisi plastik.

Hasil dari analisis *pushover* masih berupa suatu pendekatan, karena perilaku gempa yang sebenarnya adalah bersifat bolak-balik melalui suatu siklus tertentu. Salah satu hasil dari analisis *pushover* adalah kurva kapasitas. Kurva kapasitas merupakan hubungan antara gaya geser terhadap simpangan atap. Hubungan antara gaya geser dasar dengan perpindahan atap dapat dilihat pada Gambar 12 berikut:

Gambar 12. Analisis pushover

Peta Gempa Indonesia RSNI 2833:201X

Peta gempa Indonesia RSNI 2833:201X merupakan peta percepatan respon spectra percepatan nol detik, 0,2 detik dan 1,0 detik di batuan dasar (S_B) dengan probabilitas terlampaui 7% dalam 75 tahun.

Definisi batuan dasar SB adalah lapisan batuan di bawah permukaan tanah yang memiliki memiliki kecepatan rambat gelombang geser (Vs) mencapai 750 m/detik dan tidak ada lapisan batuan lain di bawahnya yang memiliki nilai kecepatan rambat gelombang geser yang kurang dari itu. Dengan demikian untuk suatu lokasi tinjauan, PGA, S_S, dan S₁ di batuan dasar yang dibutuhkan untuk perencanaan dapat diperoleh.

Penentuan Respon Spektra di Permukaan Tanah

Respon spektra adalah nilai yang menggambarkan respon maksimum dari sistem berderajat-kebebasan-tunggal (SDOF) pada berbagai frekuensi alami (periode alami) teredam akibat suatu goyangan tanah. Untuk kebutuhan praktis, maka respon spektra percepatan dibuat dalam bentuk respon spektra yang sudah disederhanakan.

Untuk penentuan parameter respon spektra percepatan di permukaan tanah, diperlukan faktor amplifikasi terkait spektra percepatan untuk periode nol detik(F_{PGA}), periode pendek (F_a) dan periode 1.0 detik (F_v). Selanjutnya parameter respon spektra percepatan di permukaan tanah dapat diperoleh dengan cara mengalikan koefisien F_{PGA} , F_a dan F_v dengan spektra percepatan untuk periode nol detik(PGA), perioda pendek (S_s) dan perioda 1.0 detik (S_1) di batuan dasar yang diperoleh dari peta gempa Indonesia RSNI 2833:201X sesuai rumus berikut:

- $A_S = F_{PGA} \times PGA$
- $S_{DS} = Fa \times Ss$
- $S_{D1} = Fv \times S1$
- dengan :
- A_S = respon spektra percepatan desain untuk perioda nol detik.
- S_{DS} = respon spektra percepatan desain untuk perioda pendek 0,2 detik.
- S_{D1} = respon spektra percepatan desain untuk perioda 1,0 detik.
- PGA= nilai percepatan puncak di batuan dasar (SB) mengacu pada RSNI 2833:201X (Gambar 4).
- Ss = parameter respon spektra percepatan untuk periode pendek 0.2 detik di batuan dasar (SB) mengacu pada RSNI 2833:201X (Gambar 5).
- S1 = parameter respon spektra percepatan untuk periode 1.0 detik di batuan dasar (SB) mengacu pada RSNI 2833:201X (Gambar 6).
- F_{PGA}= faktor amplifikasi periode nol detik mengacu pada RSNI 2833:201X (Tabel 1).
- F_a = faktor amplifikasi perioda pendek mengacu pada RSNI 2833:201X (Tabel 1).
- F_v = faktor amplifikasi periode 1.0 detik mengacu pada RSNI 2833:201X (Tabel 2).

Selanjutnya respon spektra desain di permukaan tanah dapat ditetapkan sesuai dengan gambar dibawah ini:

Gambar 14. Bentuk tipikal respon spektra di permuakaan tanah (Sumber : RSNI 2833:201X)

dengan:

1. Untuk periode lebih kecil dari T0, respon spektra percepatan, Sa didapatkan dari persamaan berikut :

$$C_{\rm sm} = (S_{\rm DS} - As)\frac{T}{T_0} + As$$

- 2. Untuk periode lebih besar atau sama dengan T0, dan lebih kecil atau sama dengan TS, respon spektra percepatan, Csm adalah sama dengan SDS.
- 3. Untuk periode lebih besar dari TS, respon spektra percepatan, Sa didapatkan dari persamaan berikut :

$$C_{sm} = \frac{S_{D1}}{T}$$

Keterangan :
T₀ = 0.2 Ts
$$Ts = \frac{S_{D1}}{S_{DS}}$$

Kinerja Struktur Berdasarkan ATC-40

Dokumen ATC 40 (1996) menetapkan deformasi lateral pada struktur harus diperiksa terhadap nilai simpangan total maksimum dan simpangan inelastis maksimum untuk mendapatkan tingkat kinerja dari struktur yang disajikan Tabel 3 berikut:

Tabel 3. Batas deformasi l	lateral
----------------------------	---------

	Tingkat Kinerja Struktur					
Batas Simpangan Antar Tingkat	Immediate Occupancy	Damage Control	Life Safety	Structural Stablity		
Simpangan Total Makssimum	0,01	0,01 - 0,02	0,02	0,33 Vi/Pi		
Simpangan Inelastis Maksimum	0,005	0,005 – 0,015	Tidak ada batasan	Tidak ada batasan		

(Sumber ATC – 40,1996)

Simpangan maksimum total didefinisikan sebagai simpangan antar tingkat (*interstory drift*) pada perpindahan di titik kinerja. Sedangkan simpangan inelastis maksimum merupakan perbandingan antara simpangan total maksimum terhadap titik leleh efektif (Δy_{eff}) dari struktur. Besarnya simpangan total maksimum dan simpangan inelastis maksimum struktur dihitung dengan menggunakan Persamaan dan berikut:

Simpangan total maksimum

$$\frac{D_t}{d_{tot}}$$

Simpangan inelastis maksimum =

Dimana:

- Dt = Perpindahan maksimum struktur (m)
- D1 = Perpindahan pada kondisi leleh pertama (m)

Htot = Tinggi total struktur (m)

C. ANALISIS DAN PEMBAHASAN Perhitungan Beban Gempa Rencana

Untuk total beban yang mempengaruhi percepatan gempa dapat dilihat dari tabel dibawah ini :

Tabel 4. Beban rencana yang mempengaruhi percepatan gempa.

NAMA	Berat
Beban Mati	kN
Kepala Pilar	1595.28
Balok Girder	1910.375
Diafragma dan bracing	268.267
Plat dek	68.54
Perkerasan beton	11299.5
Perkerasan aspal	717.75
Setengah pilar	811.2
Beban mati tambahan	
Perkerasan aspal tambahan	1004.85
Pagar pembatas	31.09
Pipa buangan air	2.36
Total beban rencana	17709.21

Untuk menentukan beban gempa CSM (W_{tp}), maka nilai dari setengah pilar tidak di masukkan, sehingga nilai Wtp = 16898.01 kN

Perhitungan Respon Spektra RSNI 2833:201X

Prosedur analisis perhitungan beban gempa berdasarkan RSNI 2833:201X adalah sebagai berikut :

1. Level gempa.

Pada penelitian ini digunakan peta gempa RSNI 2833:201X dengan level gempa terlampaui 7% dalam 75 tahun atau level *hazard* (potensi bahaya) gempa 1000 tahun.

2. Jenis tanah

Jenis tanah pada jembatan dipenelitian ini merupakan tanah lunak.

- 3. Menentukan respon spektra untuk periode nol detik.
 - a. Menentukan nilai percepatan puncak batuan dasar (PGA).
 Menggunakan peta pada Gambar 4 RSNI 2833:201X didapatkan nilai koefisien gempa (S_{PGA}) = 0,10 – 0,20g di ambil nilai tengah nya didapatkan nilai 0,15 g
 - b. Menentukan nilai faktor amplifikasi untuk periode nol detik.

Nilai PGA diplotkan pada tabel 1 RSNI 2833:201X dengan proses interpolasi linear diperoleh nilai faktor amplifikasinya (F_{PGA}) = 2,1.

- c. Menentukan nilai respon spektra untuk periode nol detik (As). Dari nilai percepatan puncak batuan dasar dan faktor amplifikasi yang diperoleh sebelumnya maka nilai As dapat ditentukan, As = $F_{PGA} \times PGA =$ 2,1 x 0,15 = 0,315
- 4. Menentukan respon sprektra di permukaan tanah untuk periode pendek dan periode 1 detik, sama dengan prosedur menentukan nilai respon spektra periode nol detik, sehingga diperoleh nilai :
 - a. S_S yaitu 0,299g.
 - b. Nilai faktor amplifikasi periode pendek $(F_a) = 2,34$
 - c. S₁ yaitu 0,235g.
 - d. Nilai faktor amplifikasi periode pendek $(F_V) = 3,06$
 - e. Menentukan nilai respon spektra periode pendek (S_{DS})

 $S_{DS} = Fa \times Ss = 0,299 \times 2,34 = 0,701$

f. Menentukan nilai respon spektra periode 1 detik (S_{D1})

 $S_{D1} = Fv x S1 = 0,235 x 3,06 = 0,719$

5. Menghitung nilai T_0 dan T_s dari nilai S_{DS} dan S_{D1}

Untuk nilai T_s didapatkan nilai sebagai berikut :

$$T_{\rm S} = \frac{S_{\rm D1}}{S_{\rm DS}} = \frac{0,7191}{0,701} = 1,025$$
 detik
Sedangkan untuk nilai T₀ Sebagai
berikut :

 $T_0 = 0.2 \text{ x} T_s = 0.2 \text{ x} 1,025 = 0.205 \text{ detik}$ Sehingga diperoleh bentuk tipikal respon spektra di permukaan sebagai berikut :

Gambar 15 Respon spektra permukaan

Beban Gempa Rencana

Langkah – langkah perhitungan untuk mendapatkan beban gempa rencana yaitu :

- 1. Menghitung berat total struktur, langkah ini sudah dilakukan sebelumnya.
- 2. Menentukan nilai momen inersia, kekauan pilar, periode getar dan koefisien geser dasar, dengan rumus di bawah ini :
 - a. Menghitung momen inersia dari pilar, dari subbab sebelumnya diketahui dimensi pilar b = 4 dan h = 1, maka :

$$I = \frac{1}{12}bh^3 = \frac{1}{12}4 \times 1^3 = 0,333 \text{ m}^4$$

b. Menghitung kekakuan pilar, dari subbab sebelumnya diketahui nilai $f_c = 30$ Mpa dan tinggi efektif pilar(L) = 8,45 m, maka kekakuan pilar :

$$Kp = 2 \times \frac{12EI}{L^3}$$

$$= 2 \times \frac{12 \times 4700\sqrt{30} \times 1000 \times 0.333}{8.45^3}$$

 $= 341333,1 \, kN/m$

c. Menghitung periode alami pilar jembatan digunakan persamaan berikut:

$$T = 2\pi \sqrt{\frac{W_{TP}}{(g. K_P)}}$$

= $2\pi \sqrt{\frac{16898.01}{(9.81 \times 341333,1)}}$
= 0.446 detik

Dari nilai periode T diatas jika dibandingkan kedalam grafik respon spektrum maka T0 < T < Ts artinya nilai koefisien geser dasar (C_{sm})= S_{DS} =0.701 3. Menghitung beban gempa V_{FQ} .

$$V_{EQ} = \frac{Csm}{R} W_t = \frac{0.701}{1.5} \times 16898.01$$

= 7897,00 kN

Nilai beban gempa rencana ini di aplikasikan pada model pilar dengan analisis menggunakan program finite element

Metode Direct Displacement-Based Design

Hasil analisis dengan prosedur metode DDBD dapat dilihat pada tabel berikut.

Tabel	5.	Reka	pitulasi	perhitungan	DDBD
1 aber	5.	Rena	pitulasi	permungan	שששש

Hasil
0,00808
37,94
0,019
0,27
0,0695
0,0904
1,100
0,1297
0,7304
5,63
0,1663
6,0
17709,2
1981,24
1447,18

Evaluasi level kinerja

Dari hasil perpindahan yang terjadi dengan perhitungan metode DDBD selanjutnya digunakan untuk mengevaluasi kinerja dari pilar. Kinerja struktur pilar metode DDBD menurut ATC 40 yaitu :

- a. Simpangan total maksimum = $\frac{D_T}{H_{tot}} = \frac{0.7304}{8.45} = 0.0864$ Berdasarkan tabel deformasi lateral dari dokumen ATC 40 nilai di atas telah melewati batas *structur stability*
- b. Simpangan inelastis maksimum = $\frac{D_T}{H_{tot}} = \frac{0.7304 - 0.1297}{8.45} = 0.071$ Berdasarkan tabel deformasi lateral dari dokumen ATC 40 nilai di atas telah

Metode *Capacty Spectrum Method* Kurva kapasitas

melewati batas structur stability

Hubungan antara gaya geser dasar dan perpindahan yang terjadi hingga struktur tersebut mengalami keruntuhan dapat ditunjukkan dengan kurva kapasitas. Perpindahan yang dilihat disini adalah perpindahan pada puncak struktur. Pada gambar 16 dan tabel 9 berikut akan disajikan kurva kapasitas (*Capacity Curve*) dan distribusi sendi plastis :

Gambar 16. Kurva Kapasitas Tabel 6. Distribusi sendi plastis

Demand Spectrum

Program finite element menggambar demand spectrum, sebagaimana diketahui sebelumnya bahwa demand spectrum ini merupakan response spectrum yang di rubah otomatis ke format ADRS dengan redaman 5%, 10%, 15% dan 20%.

Gambar 17. Demand Spectrum

Performance Point

Program *Finite Element* memproses penggabungan antara *demand spectrum* dengan *capacity spectrum* sehingga diperoleh titik perpotongan kurva yang merupakan titik kinerja (*performance point*) struktur pilar. Titik kinerja (*performance point*) hasil analisis *pushover* dapat dilihat pada gambar 18 dibawah ini :

Gambar 18. Performance point

Evaluasi level kinerja

Dokumen ATC 40 (1996) menetapkan deformasi lateral pada struktur harus diperiksa terhadap nilai simpangan total maksimum dan simpangan inelastis maksimum untuk mendapatkan tingkat

JOM FTEKNIK Volume 2 No. 2 Oktober 2015

kinerja dari struktur. Kinerja struktur menurut ATC 40 yaitu :

- a. Simpangan total maksimum = $\frac{D_T}{H_{tot}} = \frac{0,027}{8,45} = 0,0032$ Berdasarkan tabel deformasi lateral dari dokumen ATC 40 nilai drift yang didapat kurang dari 0,01 maka level kinerja struktur tergolong B
- (*Operational level*). b. Simpangan inelastis maksimum = $\frac{D_T}{H_{tot}} = \frac{0,027-0,034}{8,45} = -0,00083$ Nilai minus menunjukkan

Nilai minus menunjukkan perpindahan maksimum struktur lebih kecil daripada perpindahan elastisnya, atau perpindahan yang terjadi pada saat dikenakan gempa rencana masih dalam kondisi perpindahan elastis, yang berarti level kinerja struktur tergolong kedalam B (*Operational level*).

Perbandingan Kinerja Struktur Pilar Jembatan Metode DDBD dengan CSM

Metode DDBD menghasilkan target perpindahan 0,73 m, gaya geser dasar 1447,18 kN, waktu getar 6,0 detik dan redaman sebesar 16,63 % sedangkan CSM menghasilkan target perpindahan 0,027 m, gaya geser dasar 1713,16 kN, waktu getar 0,402 detik dan redaman sebesar 5,0 %.

Tabel 7. Perbandingan kinerja pilar jembatan hasil analisis DDBD dan CSM

Metode	Perpindahan	Gaya geser dasar	Waktu getar	Redaman		
	(m)	(kN)	(detik)	(%)		
DDBD	0,73	1447,18	6,0	16,63		
CSM	0,027	1713,16	0,402	5,0		

Gaya geser dasar hasil DDBD yaitu 1447,18 kN, nilai ini setara dengan 0,84 kali lebih kecil daripada hasil CSM. Waktu getar efektif yang dihasilkan metode DDBD sebesar 6,0 detik, lebih besar 5,598 detik daripada waktu getar hasil analisis CSM, nilai ini menunjukkan struktur yang dianalisis dengan DDBD bergetar lebih lambat bila dibandingkan dengan CSM saat dibebani beban gempa. Secara matematis, hubungan berbanding terbalik antara periode dengan kekakuan mengakibatkan periode menghasilkan vang besar fleksibilitas juga struktur yang besar, sehingga mengurangi kekauan struktur. Redaman yang dihasilkan dari analisis DDBD juga 3,33 kali lebih besar daripada redaman hasil Redaman merupakan CSM. peristiwa pelepasan energi (energy dissipation) oleh struktur. Maka hal ini menunjukkan energi yang dilepaskan dari hasil DDBD lebih besar daripada hasil CSM, yang berarti akan mengurangi respon struktur.

Kinerja struktur yang dicapai dengan metode DDBD telah melewati batas kinerja structure stability, sedangkan struktur yang dicapai dengan metode CSM termasuk pada level operational. Sehingga kinerja pilar dengan metode DDBD pada penelitian ini memiliki resiko yang besar terhadap keruntuhan akibat beban gempa. Sedangkan dengan metode CSM kinerja struktur vang dihasilkan menunjukkan struktur masih dapat berfungsi dengan baik saat memikul beban gempa.

C. KESIMPULAN

Kesimpulan dari hasil penelitian ini adalah:

- 1. Perencanaan dengan metode *Direct Displacement-Based Design*, menghasilkan target perpindahan yang paling besar yaitu 0,7304 m sedangkan perpindahan dengan metode *Capacity Spectrum Method* (CSM) sebesar 0,027 m.
- 2. Gaya geser dasar (V) hasil Direct **Displacement-Based** Design memiliki selisih 265,98 kN lebih kecil daripada hasil *Capacity* Spectrum Method. Namun, redaman efektif (ξ_{eff}), dan waktu getar efektif (T_{eff}) hasil analisis Direct Displacement-Based Design memiliki nilai yang lebih besar bila dibandingkan dengan hasil analisis Capacity Spectrum Method.
- 3. Sendi plastis hasil analisis *pushover* hanya terbentuk pada hubungan pilar dan *pile cap*.

- 4. Evaluasi kinerja struktur pilar dengan metode *Direct Displacement-Based Design* menunjukkan struktur melewati batas *structure stability*, yang artinya struktur sangat rentan terhadap keruntuhan yang di akibatkan oleh beban gempa.
- 5. Evaluasi kinerja struktur pilar dengan *capacity spectrum method* berada pada level *operational* yakni tidak ada kerusakan yang terjadi pada struktur maupun non struktur.

D. SARAN

Saran yang dapat penulis berikan dari hasil penelitian ini yaitu:

- 1. Analisis struktur dalam penelitian ini dilakukan secara 2 dimensi, oleh sebab itu penelitian ini dapat dilanjutkan dengan analisis 3 dimensi dengan meninjau keseluruhan bentang pendekat.
- 2. Analisis *pushover* hanyalah berupa pendekatan, karena pada kenyataannya sifat gempa adalah bolak balik sedangkan analisa pushover statik monolitik, oleh sebab itu perlu dilakukan penelitian dengan metode yang lebih mendekati sifat gempa seperti *Time History* analisis.

E. DAFTAR PUSTAKA

- ATC 40. 1996. Seismic Evaluation and retrofit of Concrete Buildings, Volume 1, California Seismic Safety Commision.
- **RSNI 2833:201X.** Tata cara perencanaan ketahanan gempa untuk struktur banguan gedung dan non gedung
- AASHTO 2012 LRFD Bridge design specifications
- **RSNI T-02-2005:** Standar pembebaan untuk jembatan
- Priestley, M.J.N. 2000, Performance Based Seismic Design, 12WCEE 2000.
- Priestley, M.J.N.; G.M. Calvi dan M.J. Kowalsky. 2007. Direct Displacement-Based Seismic Design of Structures. IUSS Press.
- Jumari. Djauhari, Z., Kurniawandy, A. 2012. Studi perbandingan kinerja

struktur dinding geser menggunakan metode direct displacement-based design dan capacity spectrum method. Jurusan Teknik Sipil, Universitas Riau.

- **Dewobroto, W**. 2005. Evaluasi kinerja Struktur Baja Tahan Gempa dengan Analisa Pushover. Civil Engineering National Conference : Sustainability Construction & Structural Engineering Based on Professionalism – Unika Soegijapranata. Semarang,17-18 Juni 2005.
- Pranata, Y.A. 2007. Studi perencanaan berbasis perpindahan: metode direct displacement based design Studi kasus pada rangka beton bertulang 68 bertingkat rendah. Jurusan Teknik Sipil, Universitas Kristen Maranatha. Volume 7 No.2: 99 – 118

- Habibullah, A., Pyle, S., 1998. Practical Three Dimensional Nonlinier Static Pushover Analysis. Magazine Structure Publisher.
- Jeffrey, G dan Cheng, F.Y. 2012. Seismic design aids for nonlinear pushover analisys of reinforcement concrete and steel bridges. CRC Press.
- Setiati, N.R., Aprianto, I.K. 2011. Perbandingan model analisis beban gempa antara peraturan gempa tahun 2005 dengan peta gempa tahun 2010 terhadap jembatan eksisting. Prosiding SNaPP 2011 Sains, Teknologi, dan Kesehatan.
- **Uniform Building Code (UBC)**. 1997. Structural Engineering Design Provisions, Volume 2. USA : ICBO.