Perancangan dan Pembuatan *Starting*Motor DC Shunt 4 *Step* Menggunakan Variasi Tahanan Berbasis Mikrokontroller ATMega8535

Sultoni Amni*, Noveri Lisbetty Marpaung**, Edy Ervianto**

*Alumni Teknik Elektro Universitas Riau **Jurusan Teknik Elektro Universitas Riau Kampus Binawidya Km 12,5 Simpang Baru Panam, Pekanbaru 28293

Jurusan Teknik Elektro Universitas Riau

Email: sultoniamni90@gmail.com

ABSTRACT

The need for knowledge will never become the student, students, and the society. Along with diminishing labor electrical engineering lab work equipment in universities and riau diciptakanlah the new lab work to create a starting motor direct current detention before using in order to support the process of learning and to provide knowledge to stick together. The test is done to three blocks chain, namely, the relay prisoners starting and current starting. Starting on tampa load the prisoners semangkin small will produce a current of starting a large while the one-time prisoners generator inversely against the current starting at 10 percentage of the average data error 3,863 % and percentages 96,1936 %.

Keywords: Starting Motor DC Shunt, Mikrokontroller ATMega8535.

1. PENDAHULUAN

Kebutuhan akan pengetahuan tidak akan pernah punah di kalangan pelajar, mahasiswa, maupun masyarakat. Seiring dengan berkurangnya peralatan praktikum di labor elektro Universitas Riau diciptakanlah alat-alat praktikum yang baru dengan membuat alat starting motor arus searah menggunakan tahanan depan agar dapat menunjang proses pembelajaran memberikan pengetahuan yang lebih untuk bersama.

Untuk motor arus searah yang kapasitasnya cukup besar, pada waktu menjalankan motornya tidak dapat di hubungkan langsung dengan sumber tegangan arus searah. Hal ini di sebabkan tahanan

jangkar relatif rendah, sehingga apabila dihubungkan langsung dengan sumber arus searah akan menimbulkan arus mula besar yang dapat mengakibatkan kerusakan pada motor serta mengganggu kestabilan operasi peralatan lain. Untuk meminimumkan tegangan yg masuk ke motor arus searah maka diberikanlah tahanan depan untuk memperkecil tegangan tersebut.

Motor arus searah itu sendiri terbagi atas beberapa jenis, yaitu : Motor arus searah penguatan terpisah, Motor arus searah shunt, Motor arus searah seri, dan Motor arus searah kompon. Di tugas akhir ini akan di bahas tentang *starting* motor arus searah menggunakan tahanan depan.

2. LANDASAN TEORI

2.1 Umum

Bab ini berisi tentang teori dasar peralatan-peralatan yang digunakan, peralatan-peralatan tersebut adalah teori motor arus searah, motor arus searah shunt, kontaktor, mikrokontroller, catu daya, resistor, transformator, *relai*, dan pengasutan (*starting*) motor arus searah shunt.

2.1.1 Motor DC (Direct Current)

Motor DC (arus searah) adalah suatu mesin yang berfungsi mengubah tenaga listrik arus searah (Listrik DC) menjadi tenaga gerak atau mekanik, dimana tenaga gerak tersebut berupa putaran dari motor.

Dalam kehidupan sehari – hari, motor arus searah dapat dilihat pada pada mainan anak-anak dan pada pabrik-pabrik digunakan untuk traksi, elevator, conveyor, dan sebagainya.

Bahan penting yang digunakan pada mesin-mesin arus searah adalah bahan ferogmagnetik. Garis-garis gaya magnet cenderung untuk melewati bahan-bahan yang termasuk jenis bahan yang permeabilitasnya jauh lebih besar dari 1.

Kutub-kutub magnet yang digunakan untuk mesin arus searah biasanya menggunakan magnet buatan yang dibuat dengan prinsip elektromagnetisme, pembuatannya dengan melilitkan kawat email pada bahan feromagnetik yang kemudian di aliri arus searah.

Prinsip dasar dari pembuatan kutub magnet buatan tersebut ialah hasil percobaan oersted, yang menyatakan jarum kompas akan menyimpang apabila berada di dekat kawat berarus. Jarum kompas akan menyimpang bila di sekitarnya terdapat medan magnet. Dari percobaan oersted dapat disimpulkan bahwa disekitar kawat berarus listrik terdapat medan magnet.

Arah medan magnet yang terbentuk di sekitar kawat yang berarus listrik diperoleh berdasarkan percobaan Maxwell. Bila arus listrik yang mengalir didalam kawat arahnya menjauhi pengamat (maju), maka medan yang terbentuk di sekitar kawat berarus arahnya searah dengan putaran arah jarum jam. Sebaliknya bila arus listrik yang mengalir di dalam kawat arahnya mendekati kita (mundur), maka medan magnet yang terbentuk

di sekitar kawat arahnya berlawanan dengan arah jarum jam.

2.2 Motor Arus Searah Shunt

Mesin listrik adalah suatu perangkat yang mengubah energi mekanik menjadi energi listrik, atau mengubah energi listrik menjadi energi mekanik. Alat yang digunakan untuk mengubah energi mekanik menjadi energi listrik disebut generator, dan alat yang digunakan untuk mengubah energi listrik menjadi energi mekanik disebut motor.

Karena sistem kelistrikan yang pertama kali digunakan adalah listrik arus searah, maka pada saat itu motor arus searah lebih banyak digunakan. Akan tetapi seiring dengan meningkatnya penggunaan sistem listrik arus bolak – balik, penggunaan motor arus searah banyak digantikan dengan motor induksi yang membutuhkan perawatan yang lebih sederhana. Meskipun demikian, motor arus searah sampai saat ini masih memiliki beberapa keunggulan seperti memiliki wilayah pengaturan kecepatan yang luas.

Salah satu jenis dari motor arus searah penguatan sendiri adalah motor arus searah penguat *shunt*. Kata *shunt* berarti paralel, maksudnya adalah kumparan jangkar pada rotor dipasang paralel dengan kumparan medan pada stator.

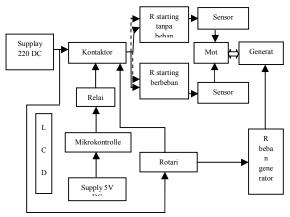
Motor arus searah *shunt* berbeda dengan motor arus searah seri, karena dalam motor *shunt* gulungan medan terhubung secara paralel dengan angker, bukan secara seri. Dalam teori listrik dasar, rangkaian paralel sering disebut sebagai *shunt*, karena gulungan medan ditempatkan secara paralel dengan angker. Gulungan medan disebut lilitan *shunt* dan angker disebut motor *shunt*.

2.2.1 Operasi Motor DC Shunt

Cara kerja sebuah motor arus searah *shunt* sedikit berbeda dari motor seri, karena kumparan medan *shunt* terbuat dari kawat halus, tidak dapat menghasilkan arus yang besar untuk memulai seperti motor arus searah seri. Berarti motor arus searah *shunt* memiliki torsi awal yang sangat rendah, yang mengharuskan beban poros agak kecil.

Ketika tegangan diterapkan ke motor, resistansi tinggi dari kumparan *shunt* menjaga aliran keseluruhan rendah pada saat bersamaan. Angker untuk motor arus searah

shunt mirip dengan motor arus searah seri, yang menarik arus untuk menghasilkan medan magnet vang cukup kuat sehingga menyebabkan poros angker dan beban mulai berputar. Seperti motor arus searah seri, ketika angker mulai berubah. maka menghasilkan EMF. EMF akan menyebabkan arus dalam angker berkurang sampai tingkat yang sangat kecil. Jumlah arus armature menarik arus secara langsung, berkaitan dengan ukuran beban ketika motor mencapai kecepatan penuh. Beban pada jangkar motor arus searah shunt umumnya kecil. sehingga arus armature akan menjadi kecil. Ketika motor mencapai kecepatan penuh, maka kecepatan motor menjadi konstan.


3. METODE PENELITIAN

3.1 Umum

Perancangan merupakan tahapan terpenting dari pembuatan tugas akhir ini. Pada tahap perancangan harus memahami sifat-sifat, karakteristik, spesifikasi dari komponen yang digunakan serta langkahlangkah yang harus diperhatikan.

Tujuan dari perancangan adalah untuk bisa memberikan kemudahan dan perancangan sistematika yang baik dalam pembuatan alat. Oleh Karena itu, diperlukan faktor penunjang, yaitu buku-buku referensi, fasilitas bengkel dan laboratorium. Semua faktor tersebut sangat mendukung keberhasilan dalam proses perancangan dan pembuatan alat ini. Adapun perancangan pada alat ini terbagi 2, yaitu perancangan hardware dan perancangan software.

3.2 Blok Diagram Alat

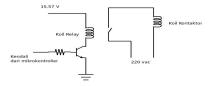
Gambar3.1 Blok Diagram Starting

Dari blok diagram pada gambar 3.1, prinsip kerja alat ini adalah supply DC 220 *Volt* memberikan tegangan pada kontaktor, kemudian kontaktor mengatur jalannya *step by step* pada tahanan R starting, tahanan R starting akan menahan laju putaran motor sampai putaran motor maksimal. Mikrokontroller berfungsi sebagai pengontrol starting motor arus searah *shunt*, berdasarkan perpindahan *step by step* tahanan resistor batu yang digunakan hingga motor mencapai arus normalnya.

3.3 Perancangan Alat

Dalam merealisasikan alat yang akan dibuat, dilakukan perancangan alat yang meliputi rangkaian dari keseluruhan sistem dan perakitan hasil rancangan spesifikasi kerja dari alat yang akan dirancang yaitu starting motor DC *shunt* 4 *step* menggunakan resistor batu berbasis mikrokontroller, berikut adalah langkah-langkah dalam perancangan alat:

- 1. Powersupply DC
- 2. Rangkaian Sistem Minimum Atmega8535
- 3. Perancangan LCD
- 4. Tombol pilih waktu tunda dan indikator LED
- 5. Tombol starting dan berhenti
- 6. Relay dan koil kontaktor
- 7. Rangkaian pensaklaran tahanan starting
- 8. Rangkaian umpan balik
- 9. Rangkaian sensor arus


4 PENGUJIAN DAN ANALISA

4.1 Pengujian Peralatan dan Analisa Data

Pengujian disini dimaksudkan untuk mengetahui hasil kerja rangkaian untuk mencapai tujuan dari rangkaian tersebut. Dalam pengujian ini dilakukan terhadap tiga blok rangkain, yaitu rangkaian relay, tahanan *starting* dan arus *starting*.

4.2 Pengujian Rangkaian Relay

Relay adalah saklar tegangan bagi kumparan kontaktor, dengan pengaturan kumparan kontaktor tidak terhubung dengan tegangan 200 vac jika relay "terbuka" dan kumparan kontaktor terhubung dengan 220 vac jika relay "tertutup". Terbuka atau tertutupnya relay di tentukan oleh logika yang di berikan oleh mikrokontroller melalui sebuah transistor saklar. Sehingga logika "rendah" dan tinggi pada masukkan transitor akan memberikan reaksi pada relay. Pengujian rangkaian relay ditunjukkan pada gambar 4.1.

Gambar 4.1 Pengukuran Rangkaian Relay.

Tabel 4.1 Hasil Pengukuran Rangkaian Relay

Keluaran Mikrokontr oller	Masukkan Transistor Saklar	Tegangan Koil Relay	Status Relay	Kontakt or	
Rendah	0 Vdc	0 Vdc	Terbuka	Mati	
Tinggi	4,69 Vdc	14.68 Vdc	Tertutup	Hidup	

Dari hasil pengujian diatas di dapat bahwa jika kendali mikrokontroller berlogika rendah maka relay terbuka dan saklar kontaktor mati sebaliknya jika kendali mikrokontrollr berlogika tinggi maka relay tertutup dan saklar kontaktor aktif. Dengan demikian tujuan dari rangkaian sebagai pengendali kontaktor dapat tercapai.

4.3 Pengujian Sensor Arus

Pengujian sensor arus dilakukan dengan menggunakan sumber tegangan De variable dan tahanan tetap sebagai beban. Hasil pengujian sensor arus dapat dilihat pada tabel 4.2.

Table 4.2 Pengujian Sensor Arus

	Tahanan		rus dan Tegangan Sumber Tegangan	Tegagan Keluaran	Rumus Arus Sensor	Persentase Kesalahan	Persentase Ketelitian
No		Arus	Tegangan	Sensor	Sensor	Resdiditali	Retelluali
		I Meter	V Meter	VoutSensor	Irumus		
	Ohm	Amper	Volt	Volt	Vout/0.185	%	%
1	10	1	10	0.179	0.9675675676	3.2432432432	96.7567568
2	10	0.9	9	0.16	0.8648648649	3.9039039039	96.0960961
3	10	0.8	8	0.142	0.7675675676	4.0540540541	95.9459459
4	10	0.7	7	0.1243	0.6718918919	4.0154440154	95.984556
5	10	0.6	6	0.105	0.5675675676	5.4054054054	94.5945946
6	10	0.5	5	0.0872	0.4713513514	5.7297297297	94.2702703
7	10	0.4	4	0.078	0.4216216216	5.4054054054	94.5945946
8	10	0.3	3	0.055	0.2972972973	0.9009009009	99.0990991
9	10	0.2	2	0.036	0.1945945946	2.7027027027	97.2972973
10	10	0.1	1	0.018	0.0972972973	2.7027027027	97.2972973

Pada pengujian ini tegangan keluaran sensor arus di konversi menjadi nilai arus kemudian bandingkan dengan nilai arus pada meter arus pada sumber tegangan DC.

Untuk mendapatkan nilai arus berdasarkan tegangan keluaran sensor arus di gunakan persamaan

$$Arus = \frac{TeganganKeluaranSensorArus}{Sensivitassensorarus}$$
Persamaan (1)

Sensevitas Sensor Arus = 0.185/A

$$Persentase kesalahan = \frac{|IRumus - IMeter|}{|IMeter|} *100$$

Persentase Ketelitian= 100 – Persentase Kesalahan Persamaan (3)

Dari hasil tabel 4.2 didapat rata-rata persentase kesalahan 3.8063 % dan persentase ketelitian 96.1936 %. Dari hasil tersebut di dapat rata-rata persentase kesalahan di bawah 5 %. Grafik ketelitian sensor arus ditunjukkan pada gambar 4.2.

Gambar 4.2 Grafik Ketelitian Sensor Arus.

Gambar 4.2 adalah grafik kartesian yang menggambarkan hubungan antara arus pada meter catu daya versus ketelitian sensor arus di mana sumbu X adalah jumlah arus pada meter sumber daya dan sumbu Y adalah persentase ketelitian.

4.4 Pengujian Tahanan Starting

Untuk memastikan nilai tahahan *starting* di lakukan pengukuran tahanan *starting* dan tahanan beban generator. Pengukuran di lakukan dengan mengaktifkan kontaktor dan pengaturan posisi rotary dengan urutan seperti tabel 4.3.

Table 4.3 Pengujian Tahanan *Starting*

				Posisi Rotary						
K	ont	akto	r	1	2, 3 dan 4					
				R Starting1	R Starting2					
1	2	3	4	Ohm	Ohm					
off	off	off	off	0	0					
on	off	off	off	763	450					
off	on	off	off	84	250					
off	off	on	off	60	132					
off	off	off	on	15	0					

Hasil pengukuran di dapat data-data nilai tahanan-tahanan starting dan tahanan beban generator yang di gunakan pada skripsi ini.

4.5 Pengujian Arus Starting Tanpa Membebani Genator

Pengujian ini di lakukan starting dengan tahanan beban dan generator tidak terhubung dengan tahanan beban. Pengujian dalam empat langkah dengan variasi tahanan beban dari kelompok tahanan beban1.

Table 4.4 Pengujian Arus *Starting* Tanpa

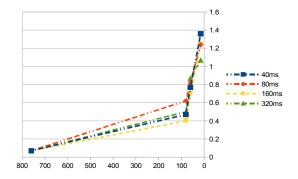
Beban

	Saklar	Tunda Tiap			Langka	ıh 2	Langka	ıh 3	Langkah 4			
No	Tunda	Langkah	Tahanan	Arus	Tahanan	Arus	Tahanan	Arus	Tahanan	Arus		
	Tullua	ms	Ohm	Α	Ohm	Α	Ohm	Α	Ohm	Α		
1	1	40			80		60					
2	2	80			80							
3	3	160	760	0.07	80	0.42	60	0.82	15	1.29		
4	4	320	760	0.07	80	0.5	60	0.87	15	1.12		
1.8 1.6 1.4 1.2 1 1 1.2 1 1 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1												

Gambar 4.3 Grafik Arus Starting Versus Tahanan Starting, Tanpa Tahanan Beban Genarator

Gambar 4.3 Grafik Arus Starting Versus Tahanan Starting, tanpa tahanan beban genarator pada empat waktu tunda dimana sumbu X adalah tahanan starting dan sumbu Y adalah arus starting. Pada grafik untuk semua waktu tunda pada tahanan starting, perubahan arus terbesar terjadi pada langkah kedua, perubahan arus terbesar kedua terjadi pada langkah keempat.

Hasil pengujian pada tabel, semakin kecil tahanan beban menghasilkan arus starting yang semakin besar hal ini dikarenakan pada nilai tahanan yang lebih kecil arus dari catu daya ke motor mendapat perlawanan yang lebih kecil di bandingkan tahanan pengereman yang lebih besar.

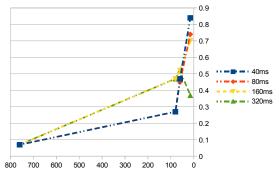

Pada saat starting langkah 1 dengan tahanan 760 Ohm, pada semua waktu tunda selalu menunjukkan hasil yang sama yaitu 0,07A. Sedangkan pada waktu tunda yang lebih besar arus dari langkah kedua sampai langkah keempat arus bebranding terbalik dengan waktu tunda.

4.6 Pengujian Arus Starting Dengan Membebani Genator

Pada pengujian ini beban generator di berikan tahanan beban pada jangkar dengan nilai yang bervariasi masing-masing 450 Ohm, 330 Ohm dan 260 Ohm.

Table 4.5 Pengujian Arus *Starting* Dengan Beban Generator 450 Ohm

		Tunda Tiap	ndo Tion Tahanan		Langkah 1		Langkah 2		Langkah 3		h 4
No	No Saklar Tunda	Langkah	Beban Generator	Tahanan	Arus	Tahanan	Arus	Tahanan	Arus	Tahanan	Arus
		ms	Ohm	Ohm	Α	Ohm	A	Ohm	Α	Ohm	A
1	1	40	450	760	0.07	80	0.27	60	0.47	15	0.84
2	2	80	450	760	0.07	80	0.27	60	0.45	15	0.74
3	3	160	450	760	0.07	80	0.47	60	0.52	15	0.7
4	4	320	450	760	0.07	80	0.47	60	0.52	15	0.37

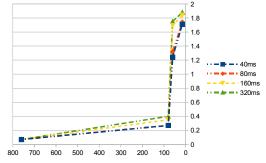


Gambar 4.4 Grafik Arus Starting Versus Tahanan Starting, Dengan Tahanan Beban Genarator 450 Ohm.

Gambar 4.4 Grafik Arus Starting Versus Tahanan Starting, dengan tahanan beban genarator 405 Ohm pada empat waktu tunda dimana sumbu X adalah tahanan starting dan sumbu Y adalah arus starting. Pada grafik untuk semua waktu tunda pada tahanan starting, perubahan arus terbesar terjadi pada langkah kedua, perubahan arus terbesar kedua terjadi pada langkah keempat.

Table 4.6 Pengujian Arus *Starting* Dengan Beban Generator 330 Ohm

	Saklar Tunda	Tunda Tiap	Tahanan	Langka	h1	Langka	h 2	Langl	rah 3	Langka	h 4
No		Langkah	Beban Generator	Tahanan	Arus	Tahanan	Arus	Tahanan	Arus	Tahanan	Arus
		ms	Ohm	Ohm	A	Ohm	A	Ohm	A	Ohm	A
1	1	40	330	760	0.07	80	0.47	60	0.77	15	1.36
2	2	80	330	760	0.07	80	0.62	60	0.82	15	1.24
3	3	160	330	760	0.07	80	0.4	60	0.7	15	1.24
4	4	320	330	760	0.07	80	0.5	60	0.87	15	1.07



Gambar 4.5 Grafik Arus Starting Versus Tahanan Starting, Dengan Tahanan Beban Genarator 330 Ohm.

Gambar 4.5 Grafik Arus Starting Versus Tahanan Starting, dengan tahanan beban genarator 330 Ohm pada empat waktu tunda dimana sumbu X adalah tahanan starting dan sumbu Y adalah arus starting. Pada grafik untuk semua waktu tunda pada tahanan starting, perubahan arus terbesar terjadi pada langkah kedua, perubahan arus terbesar kedua terjadi pada langkah keempat.

Table 4.7 Pengujian Arus *Starting* Dengan Beban Generator 260 Ohm

		l angkan	Tahanan		Langkah 1		Langkah 2		Langkah 3		Langkah 4	
No	Saklar Tunda		Beban Generator	Tahanan	Arus	Tahanan	Arus	Tahanan	Arus	Tahanan	Arus	
		ms	Ohm	Ohm	Α	Ohm	A	Ohm	A	Ohm	A	
1	1	40	260	760	0.07	80	0.27	60	1.24	15	1.71	
2	2	80	260	760	0.07	80	0.27	60	1.32	15	1.74	
3	3	160	260	760	0.07	80	0.35	60	1.69	15	1.84	
4	4	320	260	760	0.07	80	0.4	60	1.75	15	1.88	

Gambar 4.6 Grafik Arus Starting Versus Tahanan Starting, Dengan Tahanan Beban Genarator 260 Ohm.

Gambar 4.6 Grafik Arus Starting Versus Tahanan Starting, dengan tahanan beban

genarator 360 Ohm pada empat waktu tunda dimana sumbu X adalah tahanan starting dan sumbu Y adalah arus starting. Pada grafik untuk semua waktu tunda pada tahanan starting, perubahan arus terbesar terjadi pada langkah kedua, perubahan arus terbesar kedua terjadi pada langkah ketiga.

Dari hasil pengujian pada tabel 4.5, tabel 4.6 dan tabel 4.7 terlihat bahwa dengan tahanan beban generator yang semakin kecil menyebabkan arus starting semakin besar. Hal ini di karenakan arus pada jangkar generator semakin besar sehingga medan magnet pada generator semakin tinggi sehingga torsi generator semakin tinggi. Dengan demikian tenaga yang di perlukan untuk memutar rotor motor starting semakin besar.

4.6 Spesifikasi Alat

Spesifikasi alat yang di buat sebagai berikut

- 1.Motor yang di gunakan
 - 1.1 Jenis Motor DC Shunt
 - 1.2 Tegangan kerja motor 200 Vdc
 - 1.3 Arus kerja motor 1.4A
- 2. Pilihan waktu tunda starting 40ms, 80ms, 160ms dan 320ms
- 3. Tahanan Starting 760 Ohm,80 Ohm, 60 Ohm dan 15 Ohm
- 4 Tahanan Beban Generator 405 Ohm, 330 Ohm dan 260 Ohm
- 5. Menggunakan sensor arus dengan kemampuan mengkonversi arus sampai dengan 5 A dengan resolusi 0.185V/A.
- 6. Pengolah utama menggunakan mikrokontroller ATMega8535 dan LCD dan tombol *push button* sebagai interface.

5 KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil perancangan Tugas Akhir ini dapat diambil kesimpulan sebagai berikut:

- 1. Arus starting motor dapat di perkeil dengan menggunakan nilai tahanan bertingkat...
- 2. Arus starting berbanding terbalik dengan nilai tahanan starting..
- 3. Dengan menambahkan beban ke generator akan menaikkan arus starting.

5.2 Saran

Pada Tugas Akhir ini, saran untuk penelitian berikutnya untuk dapat memperbaiki sistem pembacaan arus starting untuk mendapatkan hasil yang lebih akurat. Mengganti saklar mekanik dengan saklr elektronik untuk menaikkan kecepatan pensaklaran. Penyajian grafik arus ke komputer/laptop atau device lainnya. Serta penulis juga portabel menyarankan untuk memperkecil alat baik dari segi dimensi maupun bobot, sehingga lebih mudah dilakukan perpindahan alat.

DAFTAR PUSTAKA

- Supranto, J(2010). *Metode Peramalan Kuantitatif*, Jakarta: Rineka Cipta
- Kadir, Abdul(2000). *Distribusi dan Utilitas Tenaga Listrik*. Jakarta: UI-press,2000
- Susuwanto, Daman(2009). Sistem Distribusi Tenaga Listrik. Padang: Unuvesitas Negeri Padang.
- Supardi (2013). Aplikasih statistik Dalam Penelitian. Jakarta Selatan: Prima Ufuk Semesta.
- Sundayana, Rostina(2014). *Statistik Penelitian Pendidikan*. Bandung: Alfabeta.
- Adri Senen, Studi Prakiraan Beban Listrik Secara Mikro Spasial Berdasarkan Simulasi Tata Guna Lahan. Jurnal Media Elektro, Teknik Elektro Politeknik Swadharma Indonesia, 2013
- Zulfikar Rizki, Evaluasi Kebutuhan Daya Listrik dan Kemungkinan Untuk Penghematan Energi Listrik Di

- *Hotel Santika Bogor*. Jurnal Skripsi Teknik Elektro, Universitas Pakuan.
- Nugroho Firman, (2005). Statistik Nonparametrik dan Aplikasih Spss. Pekanbaru: Faperika Press.
- Suryo Adi Wisnu, Studi perakiraan Beban Pada Gardu Induk Manisrejo Tahun 2014-2025. Jurnal Skripsi Teknik Elektro, universitas Brawijaya.
- Susyanto Danang(2012). *Dasar-Dasar statistik Untuk Ekonomi*. Jakarta: Buku Seru.