ANALISA HASIL SIMULASI ANTENA MIKROSTRIP YAGI PADA FREKUENSI KERJA 1,9-2,1 GHZ MENGGUNAKAN APLIKASI ANSOFT HSFF VERSI.13.0

Rendra Widianto*, Ery Safrianti**

*Teknik Elektro Universitas Riau **Jurusan Teknik Elektro Universitas Riau Kampus Binawidya Km 12,5 Simpang Baru Panam, Pekanbaru, 28293 Jurusan Teknik Elektro Universitas Riau Email: rendrawidianto75@gmail.com

ABSTRACT

Microstrip antenna as a communcation device has small dimension with good receiving signal ability, this microstrip antenna is a technology that can be used on a wireless network application with high rate data speeds. This microstrip antennas are small, designed in such a way that can be used daily without causing bad image effects for user apperance. antenna yagi microstrip device can be implemented in various fields such as industry, science and medical. The result of the antenna design is carried out by simulation process using applications. The target results from the antenna are: frequency 2.0 GHz, return loss \leq -10 dB, dan VSWR \leq 1.9.

Keyword: microstrip antenna, Gain, radiation pattern, return loss, VSWR

1. PENDAHULUAN

Internet pada saat ini sangat bermanfaat untuk kebutuhan bisnis, hobi ataupun usaha. Jika berada di kota besar, memang hampir tidak memiliki masalah dengan koneksi internet. Pada saat ini banyak pilihan untuk koneksi ke internet,baik dengan kabel atau pun tanpa kabel (mobile broadband). Akan tetapi untuk daerah yang tidak memungkinkan akses internet dengan kabel, tentu harus memiliki solusi lain agar dapat terus terhubung dengan internet.

Ada banyak solusi untuk koneksi internet tanpa kabel, salah satunya yaitu menggunakan teknologi seluler GSM (Global System for Mobile Communication) seperti Indosat dengan IM2 nya, Telkomsel dengan TelkomFlash nya, XL, Three dan lain sebagainya. Sedangkan untuk teknologi CDMA (Code Division Multiple Access) ada, Flexi dan lai-lain. GSM hadir dengan teknologi 3G sedangkan CDMA dengan teknologi EVDO.

Permasalahannya sekarang adalah tidak semua daerah mendapat cakupan sinyal 3G dari operator seluler diatas, karena lokasi di Indonesia yang begitu luas. Yang paling banyak tercover oleh sinyal ini biasanya hanya di kota-kota besar saja, itu pun masih bisa terhalang oleh gedung-gedung yang bertingkat. Untuk itu dapat digunakan antena mikrostrip Yagi sebagai penguat sinyal agar dapat menikmati layanan 3G di daerah-daerah yang tidak tercakup 3G.

Ada banyak model antena komersil yang dapat diaplikasikan untuk jaringan 3G, salah satunya adalah antena Yagi mikrostrip. Antena Yagi mikrostrip merupakan antena yang pada datasheetnya memiliki Gain antena, Pola radiasi antena, Impedansi antena : 50 Ω , VSWR : \leq 1,9, dan *return loss* \leq -10 dB.

1.1 Perumusan masalah

Adapun permasalahan yang dikaji adalah bagaimana merancang antena yagi mikrostrip untuk frekuensi 1,9-2,1 GHz yang memiliki performa yang baik dan memenuhi persyaratan berupa *return loss*, frekuensi, pola radiasi, gain dan VSWR.

1.2 Tujuan penelitian

Adapun yang menjadi tujuan dari penulisan penelitian ini adalah untuk mensimulasi model antena Yagi mikrostrip untuk aplikasi 3G dengan menggunakan simulator Ansoft HFSS versi 13.0, dan membandingkannya dengan data pabrikan.

2. TINJAUAN PUSTAKA

Antena adalah suatu alat yang mengubah gelombang terbimbing dari saluran transmisi menjadi gelombang bebas di udara, dan sebaliknya. Saluran teransmisi adalah alat yang berfungsi sebagai penghantar atau penyalur energi gelombang elektromagnetik. Suatu sumber yang dihubungkan dengan saluran transmisi yang tak terhingga panjangnya menimbulkan gelombang berjalan yang *uniform* sepanjang saluran itu. Jika saluran ini dihubung singkat maka akan muncul gelombang yang dipantulkan. Jika gelombang datang sama besar dengan dipantulkan akan dihasilkan gelombang berdiri murni. Konsentrasikonsentrasi energi pada gelombang berdiri ini berosilasi dari energi listrik seluruhnya ke energi magnet total dua kali setiap periode gelombang itu (Makmur, 2013).

2.1 Parameter Antena

a. impendasi masukan

Impedansi masukan didefinisikan sebagai impedansi sebuah antenna pada terminal masukan, sebagai perbandingan antara besarnya tegangan terhadap arusnya.

b. Voltage Standing Wave Rasio(VSWR)

Voltage Standing Wave Rasio (VSWR) adalah perbandingan antara amplitude gelombang berdiri (standing wave) maksimum ($|V|_{max}$) dengan minimum ($|V|_{min}$). Pada saluran transmisi ada dua komponen gelombang tegangan, yaitu tegangan yang dikirimkan (V_0^+) dan tegangan yang di refleksikan (V_0^-). Perbandingan antara tegangan yang direfleksikan dengan tegangan yang dikirimkan disebut sebagai koefisien refleksi tengangan (Γ)(Pramono, 2011).

Kondisi paling baik adalah ketika VSWR bernilai 1 (S=1) yang berarti tidak ada refleksi ketika saluran dalam keadaan matching sempurna. Namun kondisi ini pada praktiknya sulit untuk didapatkan. Oleh karena itu, nilai standar VSWR yang diijinkan untuk pabrikasi antenna adalah VSWR ≤ 2 .

c. Return Loss

Parameter dari antena yang menunjukan koefisien pantul dalam bentuk logaritmis, menunjukan daya yang hilang karena antenna dan saluran transmisi tidak *matching*.

Dengan menghubungkan kedua presamaan diatas dapat kita lihat bahwa nilai *return loss* sangat bergantung dengan nilai VSWR. Dimana bila diinginkan VSWR < 2,0 maka nilai *return loss* akan sebesar -9,54 dB, sehingga antenna itu akan dikatakan baik bila memiliki nilai *return loss* kurang dari -9,54 dB.

d. Bandwidth

Bandwidth suatu antenna didefinisikan sebagai rentang frekuensi dimana kerja antena yang berhubungan dengan beberapa karakteristik (seperti impedansi masukan, polarisasi, *beamwidth*, polaradiasi, *gain*, efisiensi, VSWR, *return loss*) memenuhi spesifikasi standar (Makmur, 2013). Pola radiasi antenna didefinisikan sebagai matematis atau sebuah reprentasi grafik dari radiasi antenna sebagai sebuah fungsi dari koordinat ruang. Pada umumnya, pola radiasi ditentukan pada daerah *far field* dan dipresentasikan sebagai suatu fungsi koordinat arah (Daryanto, 2011).

f. Penguatan (Gain)

Ada dua jenis penguatan (*gain*) pada antena, yaitu penguatan *absolute* (*absolute gain* dan penguatan *relative* (*relative gain*).

2.2 Direktor, driven elemen, dan reflektor pada antena mikrostrip

Sebuah elemen dalam sebuah antena susun mempunyai sebuah radiator yang memiliki panjang $\frac{1}{2}\lambda$. Elemen array tersebut tidak selalu memiliki panjang $\frac{1}{2}\lambda$ karena beberapa tipe dari array memiliki panjang yang disesuaikan / diinginkan yang menunjukkan elemen tersebut memiliki reaktansi kapasitif atau reaktansi induktif. (purba,2009)

Driven Element adalah suatu elemen yang menyediakan daya dari pemancar, biasanya melalui saluran transmisi. Sebuah elemen parasit adalah elemen yang memperoleh daya secara sendirinya melalui penggandengan dengan elemen lain pada array dikarenaan karena jarak antar elemen yang berdekatan antara elemen. (Purba,2009)

Driven Element mempunyai panjang $\frac{1}{2} \lambda$. Sehingga rumus untuk menghitung total panjang Driven Element Yagi ditunjukkan pada Persamaan sebagai berikut :

$$\mathbf{L} = 0.5 \mathbf{x} \mathbf{K} \mathbf{x} \lambda \tag{2.8}$$

Keterangan:

L : Panjang Driven Element

K : Velocity Factor (pada logam 0.95)

 λ : Panjang gelombang (m)

Operasi reflektor, reflektor bekerja pada frekuensi yang lebih rendah dari pada frekuensi feed point/driven element (dengan cara memanjangkan sedikit lebih panjang dari pada panjang driven element) dan agar memperoleh gain maksimum, jarak antara elemen dijaga agar tidak melebihi 0.25λ . Syarat jarak antara reflektor dengan driven element yang diizinkan adalah 0.15λ sampai 0.25λ . (Purba,2009)

Direktor/pengarah dikonfigurasi pada frekuensi tinggi (dengan memendekkan elemen sedikit lebih pendek dari pada driven element) dan untuk memperoleh gain maksimum, jarak antara driven element dengan direktor diusahakan melebihi 0.1 λ dan tidak melebihi 0.15 λ . Jadi syarat jarak antara driven element dan direktor yang diizinkan adalah 0.1 λ sampai 0.15 λ . (Purba,2009)

.3. METODOLOGI PENELITIAN

Pada umumnya perancangan antena menggunakan perangkat keras (hardware) atau perangkat lunak (software). Perangkat keras digunakan untuk fabrikasi dan pengukuran antena, sedangkan perangkat lunak digunakan untuk melakukan simulasi dan untuk karakteristik atau kinerja antena yang dirancang. Pada penelitian ini perancangan antena dilakukan dengan menggunakan perangkat lunak. Perangkat lunak yang digunakan dalam perancangan antena mikrostrip antara lain.

a. Ansoft HFSS 13.0.

Perangkat lunak ini digunakan untuk merancang dan mensimulasikan antena yang akan dibuat. Setelah disimulasi akan diperoleh beberapa karakteristik antena seperti frekuensi kerja, *bandwidth, return loss*, VSWR, dan pola radiasi.

b. Microsoft excel

Perangkat lunak ini digunakan untuk mengolah data dengan persamaan matematis.

3.1 Diagram Alir Perancangan Antena

Dalam merancang antena diperlukan diagram alir yang berisi tahapan-tahapan untuk membantu dalam proses perancangan. Gambar 3.1 merupakan gambar diagram alir dari perancangan antena secara umum pada skripsi ini.

Gambar 3.1 Diagram Alir Perancangan Antena Secara Umum

3.2 Spesifikasi Substrat

Tabel 3.1 Spesifikasi Substrat Yang Digunakan

Jenis substrat	Z-paper
Konstanta dielektrik relatif (ɛr)	3.4
Dieletric loss tangent (tan δ)	0.06
Ketebalan substrat (h)	1.6 mm

(G.H Brown, 2009)

3.3 Parameter pemodelan

Parameter Model antena Yagi mikrostrip yang akan disimulasikan mempunyai panjang dan jarak antar elemen ditunjukkan oleh tabel 3.2.

Tabel	3.2	parameter	antena	yang	dimod	lel	kan
-------	-----	-----------	--------	------	-------	-----	-----

Nama Elemen	Panjang (mm)	Jarak (mm)	Lebar Elemen (mm)
Reflektor	74	20.4	6
Drive elemen	71	22	5
Direktor_1	66	15	2
Direktor_2	65.25	15	2
Direktor_3	64.5	15	2
Direktor_4	63.75	17	2

3.4 Pembuatan Model Antena Yagi Mikrostrip

Antena yang dimodelkan terdiri atas 6 (enam) bagian yaitu *patch* (*reflector*, *driven element*, *director*), *ground* dan *substrat*. Dimana direktor terdiri dari 4 (empat) bagian yaitu *director* 1, *director* 2 sampai *director* 4.

3.5 Pembuatan Substrat

Substrate adalah bahan dasar dalam perancangan antena yagi mikrostrip. Adapun langkah memodelkan *subtrate* adalah:

- a. Pilih menu Draw lalu box.
- b. Kemudian akan muncul Property Window. Pada tab Attribute, diberi nama substrat pada bagian Name. Lalu pada bagian Material ganti menjadi "Zpaper".
- c. Pada tab *Command* pada bagian *Center Position* diberi nilai 0mm, 0mm, 0mm. Pada bagian Xsize diberi nilai 75mm, pada Ysize 90mm dan pada Zsize diberi nilai -1,6mm seperti pada Gambar 3.2

Name	Value	Unit	Evaluated Value	Description
Command	CreateBox			
Coordinate Sys.	Gobal			
² ostion	0,0,0	nn	Omm , Omm , Omm	
Gze	75	nm	75mm	
(Sze	90	m	\$0mm	
ZSize.	-1.6	en.	-1.6mm	

Gambar 3.2 koordinat substrat

3.6 Pembuatan Patch

Patch elemen pada antena yagi mikrostrip terdiri dari beberapa elemen, yaitu *driven elemen*, *reflektor* dan *director*. Adapun langkah memodelkan *patch* adalah :

3.6.1 Pembuatan Reflektor

Reflektor adalah elemen terpanjang pada antena yagi mikrostrip adapun langkah langkah dalam pembuatan reflektor adalah :

- a. Ulangi langkah a dan b yang sama seperti pada pembuatan *subtrate*, kemudian pada bagian *Name* diberi nama reflektor. Pada bagian *Material* pilih *Zpaper*.
- b. Pada tab command bagian centre position masukkan nilai 35,6mm, 0mm, 0mm. Pada bagian Xsize diberi nilai 4,1mm, Ysize diiberi nilai 80mm, dan pada Zsize 0,035mm seperti gambar 3.3

Name	Value	Unit	Evaluated Value	Description
Command	CreateBox			
Coordinate Sys.	Gobal			
Postion	35.6,0,0	nn	35.6nm , Onn	
XSize	4.1	1993	4.1mm	
YSize	80	nn -	30mm	
ZSize	0.035	1993	0.035mm	

Gambar 3.3 koordinat reflektor

3.6.2. Pembuatan Driven Elemen

Driven elemen adalah bagian yang lebih pendek dari pada reflektor, dan terbagi dari 2 elemen. Adapun langkah dalam permbuatan driven elemen adalah :

- a. pilih menu draw kemudian pilih box.
- b. Pada Property Window terdapat 2(dua) buah tab yaitu tab Attribute dan tab Command.
 Pada tab Attribute, bagian Name isi dengan drivenelemen1, pada bagian Material ganti bahan vaccum menjadi Zpaper.
- c. Pada tab *command*, bagian *centre position* isi dengan nilai 0.3mm, 0mm, 0mm. Pada bagian Xsize diberi nilai 35, pada Ysize 35 dan pada Zsize 0,035 seperti pada gambar 3.4.

Name	Value	Unt	Evaluated Value	Description
Command	CreateBox			
Coordinate Sys.	Gobal			
Postion	03.0.0	50	0.3mm, 0mm,	
XSize	35	m	35mm	
YSae	35	nn.	35mm	
ZSze	0.035	inen.	0.035mm	

Gambar 3.4 koordinat driven elemen

d. Langkah dalam pembutan driven elemen kedua sama dengan pembuatan driven elemen 1 yang membedakan hanya pemberian nama dan pemberian koordinat seperti yang diperlihatkan pada gambar 3.5.

Name	Value	Unit	Evaluated Value	Description
Command	CreateBox			
Coordinate Sys	Global			
Postion	39.7.0.035	ren i	39.7mm . 0mm	
X92e	35	nn	35mm	
YSize	35	nn	35nn	
29ze	0.035	100	0.035mm	

Gambar 3.5 koordinat driven elemen 2

3.6.3.Pembuatan Direktor

Antena yang akan dirancang terdiri dari 4 director, yaitu director 1, director 2, director 3 dan 4. Adapun langkah-langkah yang harus dilakukan adalah:

- a. Pilihalah menu *draw* dan kemudian pilih *box*.
- b. Pada Property Window terdapat 2(dua) buah tab yaitu tab Attribute dan tab Command.
 Pada tab Attribute, bagian Name isi dengan direktor1, pada bagian Material ganti bahan vaccum menjadi Zpaper.
- c. Pada tab *command*, bagian *centre position* isi dengan nilai 10mm, 39mm, 0mm. Pada bagian Xsize diberi nilai 60, pada Ysize 2,5 dan pada Zsize 0,035 seperti pada gambar 3.6.

Command Coordinate Sys Postion XSion	CreateBox Gobal 10.39.0			
Coordinate Sys Postion XSize	Global 10.39.0			
Postion	10,39,0			
XSize		mn	10mm , 39mm ,	
1.0.00	60	m	60mm	
YSze	2.5	mm	2.5mm	
ZSze	0.035	m	0.035mm	

Gambar 3.6 koordinat direktor

d. Untuk *director* lainya seperti *director* 2, *director* 3 sampai *director* 4, dilakukan cara yang sama tetapi dengan nama dan jarak yang berbeda. Jarak antar elemen dapat dilihat pada Tabel 3.2 sebelumnya.

3.6.4. Pembuatan Ground

Ground diletakkan dibawah *patch* dan *substrate*. Adapun langkah memodelkan *Ground* adalah :

- a. Pilih menu *draw* kemudian pilih *box*
- b. Pada *property window* ada 2 (dua) buah tab, yaitu *attribute tab* dan *command tab*. Pada tab *attribute*, bagian name isi ground dan ganti material dengan *copper*.
- c. Kemudian pada tab command bagian *Position* isi dengan nilai 0 mm, 0 mm, dan -1,6 mm. Pada bagian XSize isi dengan nilai 75 mm, pada Ysize isi dengan 90 mm, dan pada Zsize diberi nilai 0,035 mm. Seperti pada gambar 3.7.

Name	Value	Unt	Evaluated Value	Description
Command	CreateBox			
Coordinate Sys.	Global			
Postion	0.01.6	-	0nn , 0nn , -1	
(See	75	mm.	75mm	
(Size	90	m	90mm	
ZSze	-0 035	min	-0.035mm	

Gambar 3.7 Koordinat Ground

3.6.5. Pembuatan Boundaries

Ruang batasan ini dibuat untuk mendapatkan hasil pola radiasi yang maksimal. Ruang batasan yang dimaksud dapat berupa udara ataupun ruang hampa udara. Pada pemodelan ini menggunakan ruang udara. Langkah – langkah perancangan ruang batasan ini adalah :

- a. Pilih menu Draw lalu pilih box.
- b. Kemudian akan muncul kotak *Property Window*. Terdiri dari 2 buah tab. Pada tab *Attribute*, bagian *Name* diberi nama *radiation*. Bagian *Material* ganti dari vaccum menjadi *air*. Atur besarnya *Transparent* dengan nilai 0,8.
- c. Kemudian pada tab command bagian Position isi dengan nilai -10 mm, -10 mm, dan -40 mm. Pada bagian XSize isi dengan nilai 100 mm, pada Ysize isi dengan 110 mm, dan pada Zsize diberi nilai 80 mm. Seperti pada gambar 3.8

Gambar 3.8 koordinat Ground

d. Selanjutnya pada menu HFSS pilih *Boundaries*, lalu pilih *Assign* dan terakhir pilih *Radiation*. Seperti yang diperlihatkan pada gambar 3.9

Gambar 3.10. Radiasi Pada Antena

4. HASIL DAN PEMBAHASAN

Pada Bab ini akan menampilkan hasil simulasi dari model antenna Yagi mikrostrip yang dirancang pada Bab sebelumnya. Adapun hasil yang akan dibahas adalah VSWR, *return loss, gain* dan pola radiasi.

4.1 Hasil VSWR

Untuk menampilkan grafik VSWR, langkahnya adalah dengan memilih menu HFSS kemudian dipilih *Result* lalu dipilih *Create Report* modal saolution data report. Pada Report Type atur menjadi Rectangular Plot, lalu dipilih OK. Maka akan muncul Window Trace, pada bagian category pilih VSWR, pada quantity pilih VSWR(1) dan pada function (none), kemudian klik new report.

Setelah itu akan muncul grafik VSWR, Gambar 4.1 menunjukkan grafik VSWR yang didapat dari model antena yang dibuat.

Gambar 4.1 grafik VSWR yang didapat

Dari grafik VSWR yang diperoleh dapat dilihat bahwa VSWR yang dihasilkan adalah sebesar 1,3588 untuk frekuensi 1,95 GHz, 1,7006 untuk frekuensi 2,04 GHz dan pada frekuensi 2,16 GHz didapat nilai 1,1076.

4.2 Hasil Returnloss

Untuk menampilkan grafik return loss, langkahnya adalah dengan memilih menu HFSS kemudian dipilih *Result* lalu dipilih *Create Report* modal saolution data report. Pada Report Type atur menjadi Rectangular Plot, lalu dipilih OK. Maka akan muncul Window Trace, pada bagian category pilih S parameter, pada quantity pilih S(1,1) dan pada function (db), kemudian klik new report.

Setelah itu akan muncul grafik *return loss*, Gambar 4.2 menunjukkan grafik *return lost* yang didapat dari model yang dibuat.

Gambar 4.2 Grafik returnloss antena

Dari grafik return loss yang diperoleh dapat dilihat bahwa pada frekuensi 1,95 GHz didapat return loss sebesar -16,3576 dB, dan pada frekuensi 2,04 GHz didapat nilai -11,72 dB, dan pada frekuensi 2.16 GHz didapat nilai -25,8413 dB.

4.3 Hasil Pola Radiasi

Untuk menampilkan Pola radiasi, langkahnya adalah dengan memilih menu HFSS kemudian dipilih *Result* lalu dipilih *Create Report Far Field* dan pada *Display Set* menjadi *3D Polar Plot*, lalu pilih *OK*. Maka akan muncul *Window Trace*. Atur *Window Trace*, pada bagian *Solution* atur menjadi Setup1:LastAdaptive, pada tab *Mag* atur *Category* menjadi *Directivity*, *Quantity* menjadi Dir *Total*, dan (none) pada *function*.

Setelah semua proses dilakukan pilih *new report* pada *windows trace*, maka akan muncul gambar Pola radiasi. Gambar 4.3 menunjukkan Pola radiasi 2 dan 3 Dimensi yang didapat dari model yang telah dibuat.

Gambar 4.3 Pola Radiasi antena

Pola radiasi yang dihasilkan oleh gambar 4.3 diatas memilki nilai 3.20 yang mengarah pada

sudut theta. Antena ini termasuk antena *directional* karena hanya fokus ke satu arah tujuan

4.4 Hasil Gain

Untuk menampilkan Gain, langkahnya adalah dengan memilih menu HFSS kemudian dipilih *Result* lalu dipilih *Create Report Far Field* dan pada *Display Set* menjadi *3D polar plot*, kemudian dipilih *OK*. Lalu muncul *Window Trace*, pada bagian *Solution* diatur menjadi *Setup1:LastAdaptive* kemudian pada *Geometry* dipilih *Infinite Sphere*1. Selanjutnya pada *Category* menjadi *Gain*, *Quantity* menjadi *Gain Total* dan *Function menjadi* dB.

Maka hasil gain akan ditampilkan dalam bentuk 3D yang akan diperlihatkan oleh gambar 4.4.

Gambar 4.4 Hasil gain yang diperoleh

Dari gambar 4.4 kita dapat melihat Gain yang didapat dari hasil simulasi adalah sebesar 5. 3668 db. Sama hal nya dengan pola radiasi, gain juga mengarah pada sudut theta.

4.5 Analisa Hasil Simulasi

Dari hasil simulasi yang telah dilakukan dapat terlihat bahwa perolehan nilai simulasi mendekati nilai spesifiksi pabrik. Tabel 4.1 memperlihatkan perbandingan data hasil simulasi dengan spesifikasi pabrikan.

Parameter	Spesifikasi Standart Pabrikan	Hasil Simulasi
Frekuensi kerja	1.9-2.1GHz	1.9-2.29Ghz
Gain	>3dB	5.3668 dB
VSWR	≤ 2	≤2
Impedansi masukan	50 Ω	50 Ω
Pola Radiasi		Radiation Patien 2 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5

Tabel 4.1 parameter perbandingan antena

(sumber; IEEE.802.11)

Dari tabel 4.1 diatas semua hasil simulasi dapat diketahui bahwa antena yang dirancang sudah sesuai dengan standarisasi antena yang ada, itu artinya rancangan sudah sesuai dengan yang diharapkan, perangkat simulasi HFSS ansoft pun sudah bisa dijadikan pedoman atau acuan dalam perancangan antena.

5. KESIMPULAN

Dari hasil simulasi pada bab sebelumnnya dapat ditarik kesimpulan sebagai berikut:

- Nilai maksimum VSWR sebuah antena adalah ≤ 2, dengan kata lain harus lebih kecil dari 2, dan pada antena yang dibuat didapat nilai yang sesuai.
- 2. Sama hal nya dengan nilai VSWR, nilai returnloss nya pun sudah sesuai dengan standarisasi yang ada, nilai yang didapat yaitu minimum nilai nya \leq -9,954dB.
- 3.
- ain yang dihasilkan bernilai 5.3668dB, dan itu sudah sesuai dengan nilai gain minimal pada antena yaitu \geq 3dB.
- 4. Pola radiasi antena berbentuk directional, karna hanya terfokus pada satu titik tujuan.
- 5. Aplikasi ansoft HFSS v.13 sudah dapat dijadikan acuan sebagai perancangan dalam pembuatan suatu antena.

6. SARAN

Saran yang dapat penulis berikan dalam skripsi ini adalah:

1. Agar simulator antena ansoft HFSS v.13 lebih meyakinkan, coba lakukan pembuatan antena yang lain, seperti antena mimo, antena sectoral, parabola, dan antena lainnya.

- 2. Merealisasikan atau melakukan fabrikasi terhadap antena yang telah dirancang dan disimulasikan kemudian melakukan perbandingan hasil pengukuran dengan hasil simulasi antena.
- 3. Melakukan perancangan menggunakan bahan dan ukuran *patch* yang berbeda pada antena mikrostrip.

DAFTAR PUSTAKA

- Daryanto, (2011). Rancang Bangun Antena Mikrostrip MIMO 2x2 Elemen Peradiasi Segitiga Aplikasi Wimax. Fakultas Teknik, Universitas Indonesia, Indonesia.
- Kareba, Samir. (2006). Rancang Dan Bangun Antena Yagi Wilayah Frekuensi 2000mhz-2500MHZ. Universitas Telkom. Bandung.
- Makmur, Fadzli. (2013). Perancangan Dan Realisasi Antena Mikrostrip Dual Band Patch Persegi Untuk Aplikasi Long Term Evolution (LTE). Fakultas Sains Dan Teknologi, Universitas Islam Negeri Sunan Gunung Djati, Indonesia.
- Rahmadyanto, Heri. (2009). Rancang Bangun Antena Mikrostrip Slow Tringular Array 8 Elemen Dengan Pencatuan Microstrip Feed Line Secara Tidak Langsung Untuk Aplikasi CPE Wimax. Skripsi Sarjana, Fakultas Teknik, Universitas Indonesia, Indonesia.
- Putra Purba, Onal. (2012). Simulasi Antena Yagi Untuk Aplikasi 3G. Universitas Sumatera Utara. Medan.
- Sholeh, Muhammad. (2014) *Perancangan Antena Yagi-Uda Pada Frekuensi 600mhz*. Fakultas Teknik. Universitas Diponegoro. Semarang.
- Tuwono, St, m.sc, tito. (2008). Yagi antena design for wireless LAN 2,4 GHz. Universitas islam indonesia. Jogjakarta