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Abstract. Gravity imagery is commonly used in the preliminary study of 

sedimentary basins. Gravity data have an excellent lateral resolution but poor 

vertical resolution. The gravity response represents the superposition of all 

elements of differing density contrasts and depths for a given region below the 

surface. The ability to perform depth-based gravity data decomposition is 

important for the interpretation of the data. This can be achieved by combining 

spectral analysis with the Halo wavelet transform. The decomposition method 
was tested using synthetic data as well as field data collected at Bird’s Head 

Peninsula, West Papua. Examination of the proposed method using the synthetic 

data produced satisfactory results that corresponded well to the models. The test 

using the field data clearly imaged anticline structures that formed due to the 

ongoing collision of the Australia Continental Plate and the Pacific Oceanic 

Plate. In part of the Lengguru Fold and Thrust Belt, the folding structures are not 

imaged at depths greater than ~6 km. We propose that folding structures are not 

found at deeper levels. The gravity imagery also indicates that the Sorong Fault 

Zone breaks apart into several segments, which causes other perpendicular 

lineaments (strike-slip faulting). These strike-slip faults are clearly visible in the 

Bird’s Head Region. 
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1 Introduction 

Gravity data are commonly used to image the subsurface density contrast 

distribution for a given area [1]. Gravity data have an excellent lateral resolution 
but a poor vertical resolution. This is because the gravity response represents 

the superposition of all elements (from top to bottom) and these elements may 

have different densities. Therefore, gravity data separation is a must before 
proceeding to data interpretation. Typically, the decomposition process is used 

to determine the gravity response from shallow source anomalies or deep source 

anomalies. 
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There are various decomposition processes that can be applied to gravity data. 

These include the graphical method, upward continuation, polynomial surface 

fitting and trend surface analysis (TSA), windowed moving average, spectral 

analysis, linear and non-linear filtering. The decomposition process using the 
graphical method is also known as hand smoothing. This is done manually, so it 

is not recommended for large or high-resolution data sets. The upward 

continuation method is also commonly used [1]. However, this method has two 
disadvantages. Short-wavelength and long-wavelength data are both attenuated 

because of the implication of continuation. The upward continuation method 

also requires elevation information to be known before processing [2]. Trend 

surface analysis and polynomial surface fitting are surface regression based 
methods. These methods are generally performed using bilinear equations or 

second-order polynomial equations. The difference between the TSA result and 

the Bouguer anomaly is called the residual anomaly. 

In the last decade, the use of wavelet transforms in the decomposition process of 

gravity data has become increasingly popular. The multi-scale analysis 

capabilities inherent in the wavelet transform method increase its flexibility 
during implementation. Digital wavelet transforms (DWT) can be used for 

regional-residual data separation in gravity data [3]. The application of wavelet 

transforms also gives satisfactory results when applied to magnetic data [4]. The 

decomposition process of gravity data in China using DWT gave feasible results 
according to observed geology and field data [5]. In addition, the wavelet 

transform can also be used for various other purposes, such as removing noise 

from gravity data [6], finding the boundaries of anomaly sources [7], and for 
gravity data inversion [8]. 

The decomposition method proposed in this paper was developed based on an 

integration between Halo wavelet transform and spectral analysis. The proposed 

method was tested using a synthetic data set as well as a field data set. The 
spectral analysis technique is involved in the proposed method because it 

provides an average depth estimation of the particular features identified from 

the gravity imagery. Using this average depth, the correct wavenumber 
associated with the targeted depth can be defined and this wavenumber is then 

used by the Halo wavelet transform during the decomposition process. The 

common regional-residual decomposition process only provides the output of 
the residual anomaly contour and the regional anomaly contour. In this paper, 

synthetic data were designed such that there are middle anomaly sources. The 

proposed decomposition method is expected to be able to separate each 

anomaly source according to the depth-based decomposition of the gravity data. 

The field data were collected at Bird’s Head Peninsula, West Papua. This area 

was selected because of its recorded complex pattern of geological structures. 
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The applied decomposition method was expected to be able to delineate the 

presence of subsurface geological structures and to estimate its depth. 

2 Methods 

2.1 Spectral Analysis 

Spectral analysis is performed to decompose anomaly signals based on the 

wavelength so the average depth of the anomaly sources can be estimated. The 
average depth of the anomaly sources can be calculated based on the slope of 

the spectral diagram (wavelength versus power spectral magnitude). The depth 

in anomaly source estimation for the gravity data can be expressed as follows 
[2]: 

 ����ℎ =  �	
��
�	
��
��	
�

��  (1) 

Eq. (1) is essentially a straight line gradient calculation of the power spectral �	�� value in the logarithmic form of the FFT magnitude result, while � is the 

corresponding wavelength. The result of the calculation using Eq. (1) generates 

a relation in which power spectral density is a function of depth and can be 

defined as an exponential equation according to depth ℎ [9,10,11] in Eq. (2) as 

follows: 

� = ��
���  (2) 

where � is a constant proportional to the equivalent layer and � is the angular 

vector.  

2.2 Halo Wavelet 

The wavelet transform was first introduced in 1980 by Morlet, a French 

research scientist working on seismic data analysis [12]. A Morlet wavelet has 

both magnitude and direction [13]. The vector � = 	��, ��� is defined on the 

two-dimensional plane with a magnitude equation expressed in Eq. (3) as 

follows: 

|�| = ���� + ��� (3) 

The two-dimensional Morlet wavelet, both in the spatial domain and in the 

frequency domain, is then given in Eq. (4) and Eq. (5) as follows: 

 ��	�� = �
√� �
 !"#�|#|� �$

 for Ω& ≥ 5 (4) 
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 �)�	Ω� = �
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 (5) 

where Ω = 	�� , ��� is an arbitrary point on a two-dimensional frequency plane 

and Ω& = 	��&, ��&� is a constant. The superscript , indicates the direction of the 

wavelet and can be expressed in Eq. (6) as follows: 

, = �-.
� /0�"
0�"1 (6) 

  
(a) (b) 

Figure 1 Halo wavelet visualization in the spatial domain (a) and in the 

frequency domain (b). 

The Halo wavelet is a modification of the Morlet wavelet that ignores the 

Morlet wavelet directional factor. The result of this Morlet wavelet modification 
is called a Halo wavelet because of its shape in the frequency domain [14]. In 

the frequency domain, the Halo wavelet is defined using Eq. (7): 

2	Ω� = .�34|5|3*5"*6�
�  (7) 

where . is a normalization factor. Visualizations of the Halo wavelet in both the 
spatial and the frequency domain are shown in Figures 1a and 1b respectively. 

2.3 Algorithm 

The algorithm of the proposed decomposition method may be implemented in 
two alternative ways. The first is to use the method in the spatial domain, which 

is a convolution process, and the second is to use it in the frequency domain, 

which is a more simple multiplication process. In this paper, the calculation was 

performed in the frequency domain. The Fourier domain representation of the 
proposed method can be expressed as follows: 
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ℱ489:6 = ℱ	89� ∙ ℱ42:6 (8) 

89: = ℱ
� <ℱ	89� ∙ .�34|5|3*5"*6�
� =   (9) 

where ℱ489:6 is the Fourier transform of the bandpass-filtered gravity 

measurement result 89  on the surface, ℱ	89� is the two-dimensional Fourier 

transform of 89 , and ℱ42:6 is the Halo wavelet transform in the frequency 

domain, which is equal to Eq. (7). Substituting Eq. (7) into Eq. (8) gives Eq. (9), 

where 89: are the bandpass-filtered gravity data in the spatial domain, i.e. the 

output data of the proposed method. Calculation of Eq. (9) requires a constant 

value of Ω&, which behaves as a center frequency (fc) of the Halo wavelet, in 

this case it is a certain constant wavenumber associated with the targeted depth. 

Parameter Ω& can be acquired through piecewise linearization of the 

wavenumber-power spectral function from Eq. (1) and a curve fitting algorithm 
was utilized to reverse it back to get the depth-wavenumber function such that 

every depth value will be associated with a certain wavenumber. 

3 Result and Analysis 

3.1 Synthetics Data 

The proposed gravity data decomposition method was tested using synthetic 
data and field data. In the case of the synthetic data, the subsurface model 

consisted of ten cubes grouped into three colors, i.e. red, green, and blue cubes 

(Figure 2). The red cubes represent the deepest areas and these act as regional 
anomaly sources. The green and blue cubes are located at shallower depths and 

represent residual anomaly sources. The gravity response model is a 

superposition of all cubes below the surface.  

The forward modeling calculation uses a formula of the gravity response from 
rectangular bodies [15]. The model area was 50 x 50 km

2
. The forward 

modeling scheme calculates the gravity response on the surface from each 

colored group of cubes. Forward modeling thus obtains three kinds of anomaly 
contours, i.e. an upper residual anomaly contour, a lower residual anomaly 

contour, and a regional anomaly contour (Figure 3). The synthetic Bouguer 

anomaly data are a superposition of these three anomaly contours. The 3D 

subsurface model parameters used in this paper are summarized in Table 1. 
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(a) (b) 

Figure 2 Subsurface of the 3D cuboid model: perspective view (a), and top 

view (b). The model consists of 10 cubes, categorized based on color.  

  

(a) (b) 

  

(c) (d) 

Figure 3 Gravity contour from forward modeling result at mGal scale, 

consistsing of: complete Bouguer anomaly (a), upper residual anomaly (b), lower 

residual anomaly (c), and regional anomaly (d). 

Spectral analysis of the synthetic data showed that the energy is concentrated in 
the lower wavenumber, especially in the 0~0.4 rad/km band. This band is a 
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regional anomaly. A residual anomaly is located in the 0.4~1.8 rad/km band. 

Spectrum energy above 1.8 rad/km is classified as noise in the data. On the 

residual band, i.e. at 0.4~1.8 rad/km, there are two residual anomalies mixed in 

the spectrum. 

Table 1 Summary of physical parameters of 3D Cuboid subsurface model. 

Parameters A1 A2 A3 B1 B2 C1 C2 C3 C4 C5 

Dimension L 32.5 22.5 10 25 12.5 2.5 2.5 2.5 2.5 2.5 

(km) W 22.5 20 17.5 10 12.5 2.5 2.5 2.5 2.5 2.5 

 T 3 3 3 1.5 1.5 0.5 0.5 0.5 0.5 0.5 

            

Mass  X 26.25 36.25 10 27.5 36.25 21.25 31.25 33.75 38.75 8.75 

Centre Y 16.25 37.5 36.25 15 36.25 16.25 13.75 33.75 38.75 36.25 

(km) Z 7.5 7.5 7.5 3.75 3.75 1.25 1.25 1.25 1.25 1.25 

            

Rho (kg/m3) 300 300 300 300 300 300 300 300 300 300 

 

The decomposition result of the filtering technique consists of three patterns of 

anomalies, i.e. an upper residual anomaly contour, a lower residual anomaly 

contour, and a regional anomaly contour, as shown in Figure 4. The filtering 

parameters used during decomposition were ZDEPTH = 7.5 km for the regional 
anomaly target, ZDEPTH = 3.5 km for the lower residual anomaly target, and 

ZDEPTH = 0.5 km for the upper residual anomaly target. The ZDEPTH 

parameter will be used to calculate the corresponding wavenumber according to 
an exponential scaling factor. 

The deeper anomaly pattern can still be observed in the filtered decomposition 

result from the synthetic data. This is because the gravity response on the 
surface is a superposition of all the elements below the surface and its overlap 

between the deeper anomaly sources and the shallower anomaly sources. Hence, 

the decomposition result in the gravity data anomalies cannot be done perfectly 

[16]. This is a natural characteristic of the gravity method. The wavenumber 
spectrum of most features are broadband, so the spectrum of features at 

different depths will always overlap and, consequently, the features cannot be 

separated completely using a wavelet filtering technique (or by using other 
methods). However, it is possible to predict the value of a given gravity 

anomaly at a certain depth. Using this predicted value, the anomaly sources 

under the surface at a certain depth can be estimated. In this way, the vertical 
resolution problems of the gravity method can be reduced. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4 Decomposition result using synthetics data based on the Halo wavelet 

transform. It provides an upper residual anomaly (a) with the same lateral pattern 

as the upper cuboid model (b), a lower residual anomaly (c) with the same lateral 

position as the middle cuboid model (d), and a regional anomaly (e) with the 

same position as the lower cuboid model (f). 

The decomposition result based on the Halo wavelet transform and spectral 
analysis shows its capability to separate the anomaly sources according to the 

depth of the target sources. The results show that the anomaly sources can be 
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located laterally at certain depths and close to the designed subsurface model, so 

the proposed method can be used to handle the field data for further processing. 

3.2 Field Data Applications 

The field data set in this paper were compiled from several resources. The basic 

data were taken from a publicly available  free-air gravity data set from TOPEX 

[17] as well as TOPEX’s topographic data set. The free-air gravity data set used 

in this paper was converted to its Bouguer gravity anomaly using the 
FA2BOUG software application [18]. After calculating the Bouguer anomaly 

data set from the free-air gravity data set, the public gravity data were leveled to 

the Indonesia Geological Research and Development Centre (GRDC) gravity 
database. This approximation was applied to improve the coarse resolution (~5-

10 km) of the GRDC gravity database. Our overall aim was to make the best fit 

(surface fitting) of the global publicly available gravity data set (TOPEX data 
set) to the GRDC gravity database, which consists of data points that were 

measured directly on the ground. This method resulted in almost the same 

values between the GRDC data set and the TOPEX data set, which represents a 

more comprehensive spatial coverage. This means that the leveled TOPEX 
Bouguer data should produce a more detailed representation of the subsurface 

geology and improve the data resolution of the original GRDC data set. 

The gravity and topographic data sets have a spatial resolution of 1 x 1 arc 
minutes grid (~1.67-2 km). This public gravity data set resolution is qualified 

for study purposes within regions. In addition, the data set was leveled to 

ground gravity data measured directly on the Earth’s surface. This is the 
simplest, cheapest and fastest method, as opposed to collecting measurements 

across the whole region as part of a field campaign (which would be impossible 

considering the terrain and dense vegetation) or via airplane (which would 

require huge funding). If there is an interesting area, then detailed 
measurements should be performed. The Bouguer anomaly map used in this 

paper is shown in Figure 5. The Bintuni Basin, Salawati Basin and other basins 

(e.g. Cendrawasih Bay, Nothern Seram Island) are clearly visible as low gravity 
anomalies (indicated by dark colors). 

The Halo wavelet transform and spectral analysis as the proposed gravity data 

decomposition method were implemented at several depth intervals in the field 

data set. The result of the application of the gravity data decomposition method 
to the field data is shown in Figures 6, 7 and 8. The decomposition method was 

first implemented for filtering out the Bouger anomalies (Figure 5) at each 

depth layer, then the second vertical derivative (SVD) grid was calculated 
directly for each depth layer. The decomposition result for ZDEPTH = 2 km is 
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shown in Figure 6, ZDEPTH = 4 km result is shown in Figure 7, and ZDEPTH 

= 6 km result is shown in Figure 8. 

 

Figure 5 Bouguer anomaly map of Bird’s Head Peninsula based on a global 

gravity dataset (TOPEX) after being leveled to the GRDC gravity data set. Low 

anomalies show up as dark areas while high anomalies are light. 

There are several huge fault structures around Bird’s Head Peninsula that are 

surrounded by lineaments. The Tarera-Aiduna Fault Zone (TAFZ) was not 
observed in this dataset. However, the Sorong Fault Zone (SFZ), Yapen Fault 

Zone (YFZ), Lengguru Fold and Thrust Belt and Onin-Kumawa Ridge can be 

identified in each grid (Figures 6-8). The lineaments imaged from the regional 

gravity data consist of faults and folds that are difficult to distinguish from one 
another. Comparing Figure 6 with the existing structural interpretations in 

Bird’s Head Peninsula can be used to infer more about the nature of these large 

structures (i.e. determining if they are a fault or a fold). The light-colored (red-
purple in Figure 7-8) lineaments are interpreted to represent highly folded 

structures or uplifted blocks (thrust on top of other crusts), while the grey 

(yellow-red in Figure 7-8) lineament areas represent regions that are covered by 
thick sediments (i.e. basins). 
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Figure 6 Second vertical derivative (SVD) from the decomposition result of the 

Bouguer anomaly (Figure 5) in Birds Head Peninsula of West Papua with 

ZDEPTH parameter at 2 km. Structural lineaments across the region at a depth 

of ~2 km are visible. 

In general, it can be seen that there are many folding structures in Bird’s Head 

Peninsula that formed due to the ongoing collision of Australia Continental 

Plate and Pacific Oceanic Plate. The folding structures at the Lengguru Fold and 
Thrust Belt tend to diminish at the deeper layers and completely disappear at 6 

km depth (Figure 8). This situation can be seen through evaluation of Figures 6, 

7 and 8 inside the square area. Hence, we propose that the folding structures in 
the Lengguru Fold and Thrust Belt are not continuous downward more than 6 

km. In other words, there are possibly sediment layers under the folding 

structures that may have hydrocarbon potential. This result is comparable with 
the geological section of the Lengguru Fold and Thrust Belt in the geological 

map of the Kaimana sheet [19]. According to the Geological map of the 

Kaimana sheet, part of the Bintuni Basin is spread out below the folding 

structures of the Lengguru Fold and Thrust Belt at depths of ~4-5 km. The 
Bintuni Basin separates the Onin-Kumawa Ridge from the Lengguru Fold and 

Thrust Belt structures in Bird’s Head Peninsula region. 
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Figure 7 SVD from the decomposition result with ZDEPTH parameter at 4 km. 

It shows that the main structures around the Lengguru Fold and Thrust Belt and 

the Sorong Fault Zone are breaking up into several segments below the surface. 

All faults consist of small segments that are interlinked. There are more 

segments compared to nearer to the surface.  

 

Figure 8 SVD from the decomposition result with ZDEPTH parameter at 6 km. 

It shows that the Sorong Fault Zone breaks up into several segments under the 

surface while the Lengguru Fold and Thrust Belt disappear at ~6 km depth. 
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If we put more attention to the Sorong Fault Zone (SFZ), the SFZ is relatively 

continuous at 2 km depth, but these structures seem to be fragmented at deeper 

positions, such as 4 km and 6 km depth (e.g. Figures 6-8). There are many 

segments with random lineaments along the SFZ, as can be seen in Figures 7 
and 8. In contrast with the Onin-Kumawa Ridge these areas have continuous 

structures at 6 km depth, although it is segmented at shallower depth, as shown 

in Figures 6-8. 

The relative motion between the Pacific Oceanic Plate and the Australian 

Continental Plate will cause perpendicular strike-slip fault movement along the 

SFZ. In Bird’s Head Peninsula this has occurred due to compressional forces in 

the opposite direction, causing translation and rotation simultaneously [20]. The 
resistance of the Sorong Fault Zone (SFZ) surface and the Yapen Fault Zone 

(YFZ) surface is not uniform in every place, there are some areas that are 

weaker than others. The movement speed of the Pacific Plate relative to the 
Australia Plate, which is not the same along the SFZ and YFZ, causes the SFZ 

and the YFZ to break apart into several segments, as can be seen from Figures 7 

and 8. When the SFZ breaks into several segments, it will be followed by strike-
slip fault movement relatively perpendicular to the SFZ trend direction. These 

phenomena are also found along the YFZ [21]. The SFZ lineaments and its 

perpendicular strike-slip fault lineaments fulfill Anderson’s theory of faulting, 

which is indicated by the X-shaped conjugate fault pattern structures with an 
intersection angle of ~30 degrees between the maximum compressive stress and 

the fault. The SFZ breaks up into several segments below the surface. All faults 

consist of small segments that are interlinked.  

Implementation of the proposed decomposition method to the gravity data 

shows that the Lengguru Fold and Thrust Belt were not imaged at deeper levels 

(~6km) while the Sorong Fault Zone breaks apart into several segments at 

around ~4-6 km beneath the surface. The breakoff of the SFZ is followed by 
strike-slip fault relatively perpendicular to SFZ and these new structure patterns 

are clearly visible from the gravity imagery. Further research is needed to 

compare this result with other geophysical method results (e.g. seismic 
reflection), particularly in sedimentary basins. 

4 Conclusions 

The decomposition method proposed in this paper provided an accurate 
representation of the synthetic data. The anomaly sources could be localized 

correctly according to the corresponding depth. In addition to field data 

application, we found that the folding structures at the Lengguru Fold and 
Thrust Belt (LFTB) were not imaged at depths greater than ~6 km. This could 

be due to the sediment layer in the Bintuni Basin that is spread out under the 
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folding structures. In the Sorong Fault Zone (SFZ) area, it was found that the 

SFZ breaks apart into several segments beneath the surface. However, the 

subsurface structures underneath the Onin-Kumawa Ridge behave differently. 

The processed gravity imagery clearly shows the orientation of the structural 
lineaments. For instance, there are lineaments of the SFZ and its strike-slip fault 

as a conjugate pattern that trends almost perpendicular to the SFZ. We propose 

that the ‘cross-structures’ occurred because of the ongoing collision between the 
Australian (continental) plate and the Pacific (oceanic) plate. While these are 

hypothetical conclusions, we suggest it is reasonable to explain the gravity data 

contours obtained from the wavelet decomposition result. The ability of the 

proposed decomposition method to look below the Lengguru Fold and Thrust 
Belt provides a way for researchers to explore under cover and to deal with 

difficult geological environments such as basins with volcanic rocks or thick 

limestone sequences that cannot be easily imaged with other geophysical 
techniques (e.g. seismic). Furthermore, the proposed method may be utilized 

and developed further to delineate Cenozoic and Pre-Cenozoic basin 

separations. 
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