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Abstract

A distinguishing set for a graph G = (V,E) is a dominating set D, each vertex v ∈ D being the

location of some form of a locating device, from which one can detect and precisely identify any

given ”intruder” vertex in V (G). As with many applications of dominating sets, the set D might

be required to have a certain property for 〈D〉, the subgraph induced by D (such as independence,

paired, or connected). Recently the study of independent locating-dominating sets and independent

identifying codes was initiated. Here we introduce the property of open-independence for open-

locating-dominating sets.
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1. Introduction

For a graph G = (V,E) that represents a facility, an “intruder” in the system might be a

thief, saboteur or fire. If G represents a multiprocessor network with each vertex representing one

processor, an “intruder” might be a malfunctioning processor. We assume that certain vertices will
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be the locations of detectors, each detector having some capability to identify the location of an

intruder vertex.

For u, v ∈ D, let d(u, v) denote the distance in G between u and v. Some detectors, like sonar

devices, can be assumed to determine the distance to the intruder vertex x anywhere in the system.

Much work has been done on locating sets as introduced in Slater [36] (and also called metric bases

as independently introduced in Harary and Melter [11]). An (ordered) set X = {x1, x2, ..., xk} ⊆
V (G) is a locating set if for every w ∈ V (G) the ordered k-tuple (d(x1, w), d(x2, w), ..., d(xk, w))
uniquely determines w. We say that a vertex x resolves vertices u and v if d(x, u) 6= d(x, v). Then

X is locating if for every two vertices u and v at least one xi ∈ X resolves u and v. For the recently

introduced centroidal bases described in Foucaud, Klasing and Slater [9] the set of detectors in X
provide just an ordering of the relative distances to an intruder vertex, not the exact distances.

Some detectors (heat sensors, motion detectors, etc.) have a limited range. The open neigh-

borhood of vertex v is N(v) = {w ∈ V (G) : uw ∈ E(G)} = {w ∈ V (G) : d(v, w) = 1},

and the closed neighborhood N [v] = N(v) ∪ {v} = {w ∈ V (G) : d(v, w) ∈ {0, 1}}. Vertex

set D ⊆ V (G) is dominating if ∪x∈DN [x] = V (G). For S ⊆ V (G) the distance d(w, S) =
min{d(x, w) : x ∈ S}, so D is dominating if for every w ∈ V (G) we have d(w,D) ∈ {0, 1}.

Vertex set D is an open dominating set (also called a total dominating set) if ∪x∈DN(x) = V (G),
that is for every vertex w (including w ∈ D) there is a vertex x ∈ D with d(w, x) = 1.

For the case in which a detector at v can determine if the intruder is at v or if the intruder is

in N(v) (but which element in N(v) can not be determined), as introduced in Slater [37, 38, 39],

a locating-dominating set L ⊆ V (G) is a dominating set for which, given any two vertices u and

v in V (G) − L, one has N(u) ∩ L 6= N(v) ∩ L, that is, for any two distinct vertices u and v
(including ones in L) there is a vertex x ∈ L with d(x, u) ∈ {0, 1} and d(x, u) 6= d(x, v) or

d(x, v) ∈ {0, 1} and d(x, u) 6= d(x, v). Every graph G has a locating-dominating set, namely

V (G), and the locating-dominating number LD(G) is the minimum cardinality of such a set. See,

for example, [3, 8, 17].

As introduced by Karpovsky, Charkrabarty and Levitin [22], an identifying code C ⊆ V (G) is

a dominating set for which given any two vertices u and v in V (G) one has N [u]∩C 6= N [v]∩C,

that is, there is a vertex x ∈ C with d(x, u) ≤ 1 and d(x, v) ≥ 2 or d(x, v) ≤ 1 and d(x, u) ≥ 2.

See, for example, [2, 4, 25]. Graph G has an identifying code when for every pair of vertices u
and v we have N [u] 6= N [v], and the identifying code number IC(G) is the minimum cardinality

of such a set.

When a detection device at vertex v can determine if an intruder is in N(v) but will not/can

not report if the intruder is at v itself, then we are interested in open-locating-dominating sets as

introduced for the k-cubes Qk by Honkala, Laihonen and Ranto [21] and for all graphs by Seo

and Slater [26, 27]. An open dominating set S ⊆ V (G) is an open-locating-dominating set if

for all u and v in V (G) one has N(u) ∩ S 6= N(v) ∩ S, that is, there is a vertex x ∈ S with

d(x, u) = 1 6= d(x, v) or d(x, v) = 1 6= d(x, u). A graph G has an open-locating-dominating set

when no two vertices have the same open neighborhood, and OLD(G) is the minimum cardinality

of such a set. See, for example, [5, 16, 21, 28, 29, 30, 31, 32, 33]. Lobstein [24] maintains a

bibliography, currently with more than 300 entries, for work on these topics.

Dominating sets D have many applications (see Haynes, Hedetniemi and Slater [12, 13]), and

in many cases the subgraph generated by D, denoted 〈D〉, is required to have an additional property
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such as independence, paired, or connected. Recently, independent locating-dominating sets and

independent identifying codes have been introduced in Slater [42]. Not all graphs have independent

locating-dominating sets (respectively, independent identifying codes), and there is no forbidden

subgraph characterization of such graphs. In fact, we have the following.

Theorem A (Slater [42]) Simply deciding, for a given input graph G, if G has an independent

locating-dominating set is NP-complete.

Theorem B (Slater [42]) Simply deciding, for a given input graph G, if G has an independent

identifying code is NP-complete.

Note that, by definition, an open dominating set S can not be independent, each v ∈ S must be

open dominated by some x ∈ N(v). In this paper we consider “open-independence” and introduce

open-independent, open-locating-dominating sets.

2. Open-independent sets; open-independent-dominating sets; open-independent, open dom-

inating sets

Assuming every vertex is the possible location of an intruder and that a detector at vertex v can

not detect an intruder at w ∈ V (G) if d(v, w) ≥ 2, in order for every intruder to be detectable we

require a dominating set for the detectors. Vertex set D ⊆ V (G) is dominating if every vertex w
not in D is adjacent to a vertex v ∈ D, equivalently, (a) ∪x∈DN [x] = V (G) or (b) V (G) − D is

enclaveless (Note that a set E ⊆ V (G) is defined to be enclaveless if every vertex in E is adjacent

to at least one vertex V (G) − E.). Also, S ⊆ V (G) is independent if no two vertices in S are

adjacent. Now, R ⊆ V (G) is dominating when condition (1) below holds, and R is independent

when (2) below holds.

(1) for every v ∈ V (G), |N [v] ∩R| ≥ 1.

(2) for every v ∈ R, |N [v] ∩R| ≤ 1.

Obviously every v ∈ R satisfies |N [v] ∩ R| ≥ 1, so condition (2) could be replaced with v ∈ R
implies |N [v] ∩R| = 1. We use ≤ for what follows in (4).

For open domination, one assumes that a vertex v does not dominate itself. An intruder (thief,

saboteur, fire) at v might prevent its own detection; a malfunctioning processor might not detect

its own miscalculations. Vertex set R ⊆ V (G) is open-dominating if ∪v∈RN(v) = V (G) or,

equivalently, if condition (3) holds.

(3) for every v ∈ V (G), |N(v) ∩R| ≥ 1.

Now we define R ⊆ V (G) to be open-independent if (4) holds. That is, R is independent if each

vertex v ∈ R is dominated by R at most (equivalently, exactly) once, and R is open-independent

if each vertex v ∈ R is open-dominated by R at most once.

The open-independence number for a graph G denoted by OIND(G) is the maximum cardi-

nality of an open-independent set for G. Note that OIND(G) ≥ β(G), where β(G) denotes the

maximum cardinality of an independent set for G.

(4) for every v ∈ R, |N(v) ∩R| ≤ 1.
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Figure 1. Graphs G11, G7, and G12.

The domination number γ(G) is the minimum cardinality of a dominating set, a dominating set

of cardinality γ(G) being called a γ(G)-set whereas any dominating set is called a γ-set. Similar

terminology is used for other parameters. The independent domination number (which could be

denoted γIND(G)) is traditionally denoted by i(G) and is the minimum cardinality of a dominating

set D for which every component of 〈D〉 is a singleton. We let γOIND(G) denote the minimum car-

dinality of an open-independent dominating set D, a dominating set D for which each component

of 〈D〉 has cardinality at most two, 〈D〉 = jK1∪ kK2. Clearly γ(G) ≤ γOIND(G) ≤ i(G).
The open (or total) domination number, the minimum cardinality of an open dominating set

is denoted γt or γOP . We let γOP
OIND denote the open-independent, open domination number, the

minimum cardinality of an open dominating set D for which every component of 〈D〉 is a K2,

when such a set exists. If so, then γOP (G) ≤ γOP
OIND(G). Note, for example, that the 5-cycle C5

does not have an open-independent, open dominating set.

For the graph G11 in Figure 1(a) the set {u, v, w} is the minimum dominating set which is

open-independent and γ(G11) = γOIND(G11) = 3; i(G) = 4 = |{u, w, x, y}|; and γOP (G11) =
4 = |{u, v, w, z}| = γOP

OIND(G11). In Figure 1(b) the graph G12 has the minimum dominating set

{f, g, h} and a minimum open independent dominating set {g, h, i, j, k}, so γ(G12) = 3 < 5 =
γOIND(G12), and the graph G7 has the minimum open dominating set {a, b, c} and the minimum

open independent, open dominating set {a, b, d, e}, with γop(G7) = 3 < 4 = γOP
OIND(G7).

Open-independent, open dominating sets have been considered in another context by Studer,

Haynes, and Lawson [43]. As introduced in Haynes and Slater [14, 15], a paired dominating set

D is a dominating set for which 〈D〉 has a perfect matching. Studer, et al. [43] define an open-

independent, open dominating set as an induced-paired dominating set.

As noted, in this paper we are interested in distinguishing sets and will consider open-independent,

open-locating-dominating sets.

3. Open-independent, open-locating-dominating sets

For an open-locating-dominating set S each v ∈ V (G) has a distinct set of detectors, N(v)∩S.

A graph G has an open-locating-dominating set (OLD-set) if and only if no two vertices u and v
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have the same open neighborhood, that is N(u) 6= N(v). Clearly, OLD(G) ≤ OLDOIND(G) in

this case. For an open-independent, OLD-set S, the subgraph < S > must have each component of

order two. We let OLDOIND(G) be the minimum cardinality of an open-independent OLD(G)-set

when such a set exists. For the tree T8 in Figure 2, OLD(T8) = 5 and OLDOIND(T8) = 6.

T8 

T8 

Figure 2. γOP (T8) = OLD(T8) = 5 and OLDOIND(T8) = 6.

For the tree T9 in Figure 3, there is an open-independent, open-dominating set of size four, but

there does not exist an OLD-set (and, hence, no OLDOIND-set). Note that the 5-cycle does not

have an open-independent, open-dominating set (and, hence, no OLDOIND-set).

T9 

Figure 3. γOP

OIND
(T9) = 4 and OLD(T9) is not defined.

Proposition 3.1. If S is any OLDOIND-set for a graph G and v is an endpoint, degGv = 1, with

N(v) = {w}, then {v, w} ⊆ S. In particular, {v, w} is contained in any OLDOIND(G)-set.

Proof. Because N(v) = w, any open dominating set S must contain w. Because S is open-

independent, N(w) contains exactly one element of S, and because S is open-locating if N(w) ∩
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S = {x} with x 6= v we have the contradiction that N(v) ∩ S = {w} = N(x) ∩ S. Hence,

v ∈ S.

H 

G1[H] G2[H] 

Figure 4. H , G1[H] and G2[H].

For any connected graph H of order n ≥ 2, let G1[H] be obtained by adding for each v ∈ V (H)
two vertices v′ and v′′ and edges vv′ and v′v′′, and let G2[H] be obtained from H by further adding

vertices v′′′ and v′′′′ and edges vv′′′ and v′′′v′′′′. Then every G1[H] and G2[H] have OLD-sets, and

G2[H] has an OLDOIND-set while G1[H] does not.

Hence, we have the following.

Theorem 3.1. For every graph H there are graphs G1 and G2 with Has an induced subgraph

where G1 does not have an OLDOIND-set but G2 does have an OLDOIND-set.

There is no forbidden subgraph characterization of the set of graphs which have OLDOIND-

sets, nor of the set of graphs which do not have OLDOIND-sets. In fact, simply deciding for a

given graph G if G has an OLDOIND-set is an NP-complete problem. As noted in Garey and

Johnson [10], Problem 3-SAT is NP-complete.

3-SAT

INSTANCE. Sets U = {u1, u2, ..., un} and U = {u1, u2, ..., un} and collection C = {c1, c2, ..., cm}
of 3-element subsets of U ∪ U .

QUESTION. Does there exist a satisfying truth assignments for C, that is, a subset S of U ∪U
of order n with |S ∩ {ui, ui}| = 1 for 1 ≤ i ≤ n with S ∩ cj 6= ∅ for 1 ≤ j ≤ m?

XOIOLD (existence of an open-independent, open-locating-dominating set)

INSTANCE. A graph G.

QUESTION. Does G have an OLDOIND-set?
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Figure 5. c1 = {u1, u2, u3}, c2 = {u1, u2, u3}, etc.

Theorem 3.2. Simply deciding, for a given graph G, if G has an open-independent, OLD-set is

an NP-complete decision problem. That is, XOIOLD is NP-complete.

Proof. One can easily verify in polynomial time if a given set S ⊆ V (G) is an OLDOIND-set, so

XOIOLD ∈ NP .

We can reduce the known NP-complete 3-SAT problem to XOIOLD in polynomial time as

follows. For each ui ∈ U let Gi be the 6-vertex graph illustrated in Figure 5 with V (Gi) =
{ui, ui, vi, wi, xi, yi} and E(Gi) = {uiui, uivi, uivi, viwi, wixi, xiyi}. For each clause cj ∈ C let

Hj be the 3-vertex graph with V (Hj) = {aj, bj, dj} and E(Hj) = {ajbj, bjdj}. Interconnect the

clause components and literal components by adding edges djcj,1, djcj,2 and djcj,3 for 1 ≤ j ≤ m
where cj = {cj,1, cj,2, cj,3} ∈ C, as illustrated in Figure 5. Let G be the resulting graph of order

6n+ 3m.

Assume there is a satisfying truth assignment S ⊆ U ∪ U . Form W ⊆ V (G) by letting

{yi, xi, vi, aj, bj} ⊆ W for 1 ≤ i ≤ n, 1 ≤ j ≤ m. For 1 ≤ i ≤ n, add ui to W if the literal

ui ∈ S, otherwise the literal ui ∈ S and one adds ui to S. Then <W> consists of 4n + 2m
vertices inducing 2n+m independent edges. Note that N(aj) = {bj} ⊆ W , bj ∈ N(dj) ∩W but

|N(dj) ∩W | ≥ 2 because S is satisfying. It is easily seen that G has W as an open-independent,

OLD-set.

Assume G has an OLDOIND-set W . By Proposition 3.1 we have {yi, xi} ⊆ W with wi /∈ W
for 1 ≤ i ≤ n, and {aj, bj} ⊆ W with dj /∈ W for 1 ≤ j ≤ m. Because N(yi) ∩W = {xi} and

N(wi) ∩W 6= N(yi) ∩W , each vi ∈ W . Now vi ∈ W implies the open-independent, dominating

set W has |N(vi) ∩ W | = 1, so W contains exactly one of ui and ui. Let S = W ∩ (U ∪ U).
Because W is an OLD-set N(aj)∩W = {bj} $ N(dj)∩W , and we have N(dj)∩ (U ∪U) 6= ∅.

That is, S must be a satisfying truth assignment.
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Theorem 3.3. If the girth of G satisfies g(G) ≥ 5 and W ⊆ V (G), then W is an OLDOIND-set if

and only if (1) each v ∈ W is open-dominated exactly once, and (2) each v /∈ W is open-dominated

at least twice.

Proof. Assume W is an OLDOIND-set for G. Because W is open-independent and open-dominating,

each v ∈ W has |N(v) ∩W | = 1. If v /∈ W , then W open-dominates v implies there is a vertex

w ∈ N(v) ∩W . As noted |N(w) ∩W | = 1, say N(w) ∩W = {x}. Then N(x) ∩W = {w} 6=
N(v) ∩W implies that |N(v) ∩W | ≥ 2.

Assume conditions (1) and (2) hold for W ⊆ V (G). Then W is open-dominating. Assume

v ∈ W has |N(v) ∩ W | = 1. For N(v) ∩ W = {w}, we have N(w) ∩ W = {v} and x ∈
N(w) − {v} implies that x /∈ W , so x is open-dominated at least twice. Thus v is the only

vertex with N(v) ∩ W = {w}. Assume v /∈ W , let {x, y} ⊆ N(v) ∩ W . No other vertex u
has {x, y} ⊆ N(u) ∩ W or else u, x, v, y is a 4-cycle and g(G) ≤ 4. Thus N(v) ∩ W uniquely

distinguishes v.

Assume W is an OLDOIND-set for path Pn : v1, v2, ..., vn. By Proposition 3.1 we have

{v1, v2} ⊆ W, v3 /∈ W, {v4, v5} ⊆ W, v6 /∈ W, ...{vn−1, vn} ⊆ W .

Proposition 3.2. Path Pn has an OLDOIND-set W if and only if n ≡ 2(mod 3) and OLDOIND(P3k+2) =
2k + 2.

A
t 

w1 
v1 

w2 
v2 

wt vt 

x 

Figure 6. Some trees with OLDOIND-sets.

Theorem 3.4. (Seo and Slater [26]) A tree T has an OLD-set if and only if no two endpoints of T
have the same neighbor.
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Similar to the characterization given in Studer, et al. [43] for open-independent dominat-

ing sets in trees, we can recursively define the collection of pairs (T,W ) where T is a tree and

W is the unique OLDOIND(T )-set. First note that the tree At of order 2t + 1 in Figure 6 has

OLDOIND(At) = 2t and V (At)− x is the unique OLDOIND(At)-set for t ≥ 2.

Theorem 3.5. If Tn is a tree of order n with an OLDOIND-set, then the OLDOIND(T )-set W is

unique and Tn can be obtained recursively from P2 by a sequence of operations OP1 and OP2

defined as follows.

(OP1) Let T ∗ be a tree with OLDOIND(T )-set W and let z ∈ W . The tree T is obtained from

T ∗ by adding a P3 : x, w, v and adding the edge zx.

(OP2) Let T ∗ be a tree with OLDOIND(T )-set W and let z be any vertex in T ∗. The tree T is

obtained from T ∗ by adding an At with t ≥ 2 and adding the edge zx.

Proof. We first observe that if T is obtained from T ∗ by (OP1), then W ∪{w, v} is an OLDOIND-

set for T , and if T is obtained from T ∗ by (OP2), then W ∪{w1, v1, ..., wt, vt} is an OLDOIND-set

for T .

Assume tree T has OLDOIND-set W . If T is a path, then Proposition 3.2 shows that T can

be obtained from P2 by a sequence of (OP1)-operations and there is a unique OLDOIND-set for

T . If T is not a path, select a vertex y with deg y ≥ 3 where all or all but one of the branches

at y are paths. Suppose y, u1, u2, ..., uj is a branch path with j ≥ 3. By Proposition 1 we must

have {uj−1, uj} ⊆ W and uj−2 /∈ W . Also uj−3 (possibly uj−3 = y) must be in W or else

N(uj)∩W = N(uj−2)∩W = {uj−1}. Let T ∗ = T −{uj, uj−1, uj−2}. Since W is an OLDOIND-

set of T and N(uj)∩ V (T ∗) = ∅ and N(uj−1)∩ V (T ∗) = ∅, W −{uj, uj−1} is an OLDOIND-set

of T ∗. So T is obtainable from T ∗ by (OP1) where z = uj−3. Because W is an OLD-set, y can not

be the support vertex of two or more endpoints. If y is adjacent to an endpoint x and y, u1, u2 is a

branch path, Proposition 1 would imply that {u1, u2} ⊆ W and {x, y} ⊆ W , so W would not be

open-independent. Now y can be assumed to have deg y − 1 = b branch paths of length two. We

have a subgraph Ab with vertices {y, w1, v1, ..., wb, vb} with b ≥ 2. Let N(y) = {w1, w2, ..., wb, z},

and T can be obtained from T ∗ = T − {y, w1, v1, ..., wb, vb} by (OP2).

4. OLDOIND% for infinite grids

Much work has been done on distinguishing sets (LD-sets, IC-sets and OLD-sets) in infinite

grids (hexagonal, square, triangular, tumbling block, etc). See, for example, [1, 6, 7, 18, 19, 20,

22, 23, 26, 28, 29, 30, 40, 41].

For a given vertex x in a dominating set D in a graph G, the share sh(x;D) is defined in Slater

[41] as a measure of how much domination the individual vertex x does. For example, in graph

H1 of Figure 7 we have N [3] = {2, 3, 4, 5, 6, 9} and sh(3; {3, 4, 7}) = 1/2 + 1/2 + 1/2 + 1/3 + 1/2 +

1/3 = 8/3. Also, sh(4; {3, 4, 7}) = 1 + 1/2 + 1/2 + 1/2 + 1/3 + 1/2 + 1/3 = 11/3, and sh(7; {3, 4, 7})
= 1/3 + 1/2 + 1 + 1/2 + 1/3 = 8/3. Note that Σv∈Dsh(v;D) = |V (G)| = n for any dominating set D
and that |D| ≥ |V (G)|/MAXv∈V sh(v;D).

Similarly, the open share shop(x;D) is defined in Seo and Slater [26] for open dominat-

ing set D. Specifically, if D is open dominating and x ∈ D then, for each y ∈ N(x), let
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Figure 7. Graphs H1 and H2.

shop(x;D(y)) = 1/|N(y) ∩ D| and let shop(x;D) = Σy∈N(x)sh
op(x;D(y)). For example, in

Figure 7 D = {3, 4} is an open dominating set for the graph H2. We have N(3) = {2, 4, 5} and

shop(3;D) = shop(3;D(2))+ shop(3;D(4))+ shop(3;D(5)) = 1/2+1+1/2 = 2. Also, N(4) =
{1, 2, 3, 5} and shop(4;D) = shop(4;D(1)) + shop(4;D(2)) + shop(4;D(3)) + shop(4;D(5)) =
1 + 1/2 + 1 + 1/2 = 3. Note that Σx∈Dsh

op(x;D) = |V (G)|, and if shop(w;D) ≥ shop(x;D) for

all x ∈ D, then |D| ≥ |V (G)|/shop(w;D).

In this paper, we will focus on open-locating-dominating sets along with open-shares of ver-

tices.

Percentage parameters for measuring density for locally-finite, countably infinite graphs were

defined in Slater [41]. For example, for the γ(G) parameter we have γ%(G) defined as follows as

the minimum possible percentage of vertices in a dominating set of G. The closed k-neighborhood

of vertex v is the set of vertices at distance at most k from v, Nk[v] = {w ∈ V (G) : d(v, w) ≤ k}.

For S ⊆ V (G), the density of S is dens(S) = maxv∈V (G)lim supk→∞(|S ∩ Nk[v]|/|Nk[v]|).
Then, for example, the domination percentage of G is γ%(G) = min{dens(S) : S ⊆ V (G) is
dominating}. Let HEX, SQ, and TRI denote the infinite hexagonal, square and triangular grid

graphs, respectively.

Theorem 4.1. (Seo and Slater [26]) OLD%(HEX) = 1/2.

The darkened vertices of HEX in Figure 8 form an OLD%(HEX)-set D achieving the value

1/2, and D is an open-independent set. Hence we have the following.

Theorem 4.2. OLDOIND%(HEX) = OLD%(HEX) = 1/2.

Figure 9(a) illustrates that OLD%(SQ) = 2/5, but OLDOIND%(SQ) > OLD%(SQ).

Theorem 4.3. (Seo and Slater [26]) OLD%(SQ) = 2/5.
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Theorem 4.4. OLDOIND%(SQ) = 3/7.

Proof. The set of darkened vertices in Figure 9(b) shows that OLDOIND%(SQ) ≤ 3/7. To see that

OLDOIND%(SQ) ≥ 3/7 we use a straightforward share argument. Let D be an OLDOIND%(SQ)-
set. We have V (SQ) = Z × Z and N((i, j)) = {(i − 1, j), (i, j + 1), (i + 1, j), (i, j − 1)}. We

will show that shop(x;D) ≤ 7/3 for every x ∈ D, and hence OLDOIND%(SQ) ≥ 7/3. Without

loss of generality, assume x = (0, 0) ∈ D. Exactly one neighbor of x is also in D, and we can

assume that (1, 0) ∈ D. In particular, shop(x;D((1, 0)) = 1. Any other vertex y ∈ N(x) is open

dominated at least twice by D, so shop(x,D(y)) ≤ 1/2 for each y ∈ {(−1, 0), (0, 1), (0,−1)}.

Suppose all three of these vertices give (0,0) a share value of 1/2.

Case 1. N((−1, 0))∩D = {(0, 0), (−2, 0)}. Then (−1, 1) /∈ D with D∩{(−1, 0), (0, 1)} = ∅,

and so N((−1, 1))∩D = {(−2, 1), (−1, 2)}. Similarly, N((−1,−1))∩D = {(−2,−1), (−1,−2)}.

But then {(−2, 1), (−2, 0), (−2,−1)} ⊆ D, contradicting the open independence of D.

Case 2. N((−1, 0)) ∩ D 6= {(0, 0), (−2, 0)}. Then one of (−1, 1) and (-1,-1) is in D, say

(-1, 1). Because shop((0, 0);D((0, 1)) = 1/2 we have N((0, 1)) ∩ D = {(0, 0), (−1, 1)}. Also,

shop((0, 0);D((−1, 0)) = 1/2 implies N((−1, 0)) ∩ D = {(0, 0), (−1, 1)} = N(0, 1) ∩ D, con-

tradicting the fact that D must distinguish (0,1) and (-1,0).

Because shop(x;D) < 1+1/2+1/2+1/2, we have shop(x;D) ≤ 1+1/2+1/2+1/3 = 7/3
for every x ∈ D. As noted, this implies OLDOIND%(SQ) ≥ 7/3.

Theorem 4.5. (Kincaid, Oldham, and Yu [23]) OLD%(TRI) = 4/13.

Figure 10 shows that OLDOIND%(TRI) ≤ 8/25. To date, the best we have is that:

OLDOIND%(TRI) ∈ [4/13, 8/25].

5. Open independent sets

In this paper we focused on open-independence for OLD-sets. Of interest is the parameter

OIND itself, as well as the lower open independence parameter oind where oind(G) is the mini-

mum cardinality of a maximally open-independent set.
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