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Abstract

A distinguishing set for a graph G = (V, E) is a dominating set D, each vertex v € D being the
location of some form of a locating device, from which one can detect and precisely identify any
given “intruder” vertex in V' (G). As with many applications of dominating sets, the set D might
be required to have a certain property for (D), the subgraph induced by D (such as independence,
paired, or connected). Recently the study of independent locating-dominating sets and independent
identifying codes was initiated. Here we introduce the property of open-independence for open-
locating-dominating sets.
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1. Introduction

For a graph G = (V, E) that represents a facility, an “intruder” in the system might be a
thief, saboteur or fire. If GG represents a multiprocessor network with each vertex representing one
processor, an “intruder” might be a malfunctioning processor. We assume that certain vertices will
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be the locations of detectors, each detector having some capability to identify the location of an
intruder vertex.

For u,v € D, let d(u, v) denote the distance in G between u and v. Some detectors, like sonar
devices, can be assumed to determine the distance to the intruder vertex x anywhere in the system.
Much work has been done on locating sets as introduced in Slater [36] (and also called metric bases
as independently introduced in Harary and Melter [11]). An (ordered) set X = {x, z9, ..., 21} C
V(G) is a locating set if for every w € V(G) the ordered k-tuple (d(x, w), d(z2, w), ..., d(xy, w))
uniquely determines w. We say that a vertex « resolves vertices u and v if d(z,u) # d(x,v). Then
X is locating if for every two vertices u and v at least one z; € X resolves v and v. For the recently
introduced centroidal bases described in Foucaud, Klasing and Slater [9] the set of detectors in X
provide just an ordering of the relative distances to an intruder vertex, not the exact distances.

Some detectors (heat sensors, motion detectors, etc.) have a limited range. The open neigh-
borhood of vertex v is N(v) = {w € V(G) : wvw € E(G)} = {w € V(G) : d(v,w) = 1},
and the closed neighborhood N[v] = N(v) U{v} = {w € V(G) : d(v,w) € {0,1}}. Vertex
set D C V(G) is dominating if U,epN[z] = V(G). For S C V(G) the distance d(w, S) =
min{d(x,w) : x € S}, so D is dominating if for every w € V(G) we have d(w, D) € {0,1}.
Vertex set D is an open dominating set (also called a total dominating set) if U,cpN(z) = V(G),
that is for every vertex w (including w € D) there is a vertex x € D with d(w, x) = 1.

For the case in which a detector at v can determine if the intruder is at v or if the intruder is
in N(v) (but which element in N (v) can not be determined), as introduced in Slater [37, 38, 39],
a locating-dominating set L C V(@) is a dominating set for which, given any two vertices u and
vin V(G) — L, one has N(u) N L # N(v) N L, that is, for any two distinct vertices u and v
(including ones in L) there is a vertex x € L with d(x,u) € {0,1} and d(x,u) # d(x,v) or
d(xz,v) € {0,1} and d(x,u) # d(z,v). Every graph G has a locating-dominating set, namely
V(G), and the locating-dominating number L D(G) is the minimum cardinality of such a set. See,
for example, [3, 8, 17].

As introduced by Karpovsky, Charkrabarty and Levitin [22], an identifying code C C V(G) is
a dominating set for which given any two vertices v and v in V(G) one has N[u] N C # Nv|NC,
that is, there is a vertex = € C with d(x,u) < 1 and d(z,v) > 2 ord(z,v) < 1 and d(x,u) > 2.
See, for example, [2, 4, 25]. Graph G has an identifying code when for every pair of vertices u
and v we have N[u] # N|v], and the identifying code number I1C(G) is the minimum cardinality
of such a set.

When a detection device at vertex v can determine if an intruder is in N (v) but will not/can
not report if the intruder is at v itself, then we are interested in open-locating-dominating sets as
introduced for the k-cubes (), by Honkala, Laihonen and Ranto [21] and for all graphs by Seo
and Slater [26, 27]. An open dominating set S C V(G) is an open-locating-dominating set if
for all ¥ and v in V(G) one has N(u) NS # N(v) N S, that is, there is a vertex z € S with
d(z,u) =1 # d(z,v) or d(z,v) = 1 # d(x,u). A graph G has an open-locating-dominating set
when no two vertices have the same open neighborhood, and O L D(G) is the minimum cardinality
of such a set. See, for example, [5, 16, 21, 28, 29, 30, 31, 32, 33]. Lobstein [24] maintains a
bibliography, currently with more than 300 entries, for work on these topics.

Dominating sets D have many applications (see Haynes, Hedetniemi and Slater [12, 13]), and
in many cases the subgraph generated by D, denoted (D), is required to have an additional property
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such as independence, paired, or connected. Recently, independent locating-dominating sets and
independent identifying codes have been introduced in Slater [42]. Not all graphs have independent
locating-dominating sets (respectively, independent identifying codes), and there is no forbidden
subgraph characterization of such graphs. In fact, we have the following.

Theorem A (Slater [42]) Simply deciding, for a given input graph G, if G has an independent
locating-dominating set is NP-complete.

Theorem B (Slater [42]) Simply deciding, for a given input graph G, if G has an independent
identifying code is NP-complete.

Note that, by definition, an open dominating set S can not be independent, each v € S must be
open dominated by some = € N (v). In this paper we consider “open-independence” and introduce
open-independent, open-locating-dominating sets.

2. Open-independent sets; open-independent-dominating sets; open-independent, open dom-
inating sets

Assuming every vertex is the possible location of an intruder and that a detector at vertex v can
not detect an intruder at w € V(G) if d(v,w) > 2, in order for every intruder to be detectable we
require a dominating set for the detectors. Vertex set D C V(G) is dominating if every vertex w
not in D is adjacent to a vertex v € D, equivalently, (a) U,epN[z] = V(G) or (b) V(G) — D is
enclaveless (Note that a set £ C V(G) is defined to be enclaveless if every vertex in E is adjacent
to at least one vertex V(G) — E.). Also, S C V(@) is independent if no two vertices in .S are
adjacent. Now, R C V(@) is dominating when condition (1) below holds, and R is independent
when (2) below holds.

(1) forevery v € V(G), IN[v]N R| > 1.

(2) foreveryv € R, [Njv] N R| < 1.

Obviously every v € R satisfies | NV[v] N R| > 1, so condition (2) could be replaced with v € R
implies |[N[v] N R| = 1. We use < for what follows in (4).

For open domination, one assumes that a vertex v does not dominate itself. An intruder (thief,
saboteur, fire) at v might prevent its own detection; a malfunctioning processor might not detect
its own miscalculations. Vertex set R C V/(G) is open-dominating if U,egN(v) = V(G) or,
equivalently, if condition (3) holds.

(3) forevery v € V(G), IN(v) N R| > 1.

Now we define R C V(G) to be open-independent if (4) holds. That is, R is independent if each
vertex v € R is dominated by R at most (equivalently, exactly) once, and R is open-independent
if each vertex v € R is open-dominated by R at most once.

The open-independence number for a graph GG denoted by OI N D(G) is the maximum cardi-
nality of an open-independent set for G. Note that OIND(G) > 5(G), where 5(G) denotes the
maximum cardinality of an independent set for G.

(4) foreveryv € R, [IN(v) N R| < 1.
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(a) (b)

Figure 1. Graphs G171, G7, and G15.

The domination number ~(G) is the minimum cardinality of a dominating set, a dominating set
of cardinality v(G) being called a v(G)-set whereas any dominating set is called a y-set. Similar
terminology is used for other parameters. The independent domination number (which could be
denoted v,y p(@)) is traditionally denoted by () and is the minimum cardinality of a dominating
set D for which every component of (D) is a singleton. We let yo;np(G) denote the minimum car-
dinality of an open-independent dominating set D, a dominating set DD for which each component
of (D) has cardinality at most two, (D) =jK,U kK>. Clearly 7(G) < vornp(G) < i(Q).

The open (or total) domination number, the minimum cardinality of an open dominating set
is denoted ; or v9¥. We let v9%, , denote the open-independent, open domination number, the
minimum cardinality of an open dominating set D for which every component of (D) is a K,
when such a set exists. If so, then 797 (G) < 755, (G). Note, for example, that the 5-cycle Cs
does not have an open-independent, open dominating set.

For the graph Gy; in Figure 1(a) the set {u,v,w} is the minimum dominating set which is
open-independent and v(G11) = Yornp(G11) = 3; i(G) = 4 = |[{u,w, x,y}|; and v°F(Gy;) =
4 = {u,v,w, 2z} =85 p(G11). In Figure 1(b) the graph G5 has the minimum dominating set
{f,g,h} and a minimum open independent dominating set {g, h,, j, k}, so 7(G12) = 3 < 5 =
~voinp(G12), and the graph G7 has the minimum open dominating set {a, b, ¢} and the minimum
open independent, open dominating set {a, b, d, e}, with yP(G;) = 3 < 4 = v95, 1, (G).

Open-independent, open dominating sets have been considered in another context by Studer,
Haynes, and Lawson [43]. As introduced in Haynes and Slater [14, 15], a paired dominating set
D is a dominating set for which (D) has a perfect matching. Studer, et al. [43] define an open-
independent, open dominating set as an induced-paired dominating set.

As noted, in this paper we are interested in distinguishing sets and will consider open-independent,
open-locating-dominating sets.

3. Open-independent, open-locating-dominating sets

For an open-locating-dominating set S each v € V() has a distinct set of detectors, N (v)NS.
A graph G has an open-locating-dominating set (OLD-set) if and only if no two vertices v and v
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have the same open neighborhood, that is N(u) # N(v). Clearly, OLD(G) < OLDonp(G) in
this case. For an open-independent, OLD-set S, the subgraph < S > must have each component of
order two. We let OL Doy p(G) be the minimum cardinality of an open-independent O LD (G)-set
when such a set exists. For the tree T in Figure 2, OLD(Tg) = 5 and OLDornp(T3) = 6.

Figure 2. ’YOP(Tg) = OLD(Tg) = 5and OLDO]ND(Tg) = 6.

For the tree Ty in Figure 3, there is an open-independent, open-dominating set of size four, but
there does not exist an OLD-set (and, hence, no OLDo;yp-set). Note that the 5-cycle does not
have an open-independent, open-dominating set (and, hence, no O L Doy p-set).

Figure 3. 795, (Ty) = 4 and OLD(Ty) is not defined.

Proposition 3.1. If S is any OLDonp-set for a graph G and v is an endpoint, deggv = 1, with
N(v) = {w}, then {v,w} C S. In particular, {v,w} is contained in any OLDonp(G)-set.

Proof. Because N(v) = w, any open dominating set .S must contain w. Because S is open-
independent, N (w) contains exactly one element of .S, and because S is open-locating if N (w) N
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S = {z} with x # v we have the contradiction that N(v) N S = {w} = N(xz) N S. Hence,
veds. O]

bu

G,[H] G,[H]

Figure 4. H, G1[H] and G2[H].

For any connected graph H of order n > 2, let G1[H] be obtained by adding for eachv € V(H)
two vertices v" and v” and edges vv’ and v'v”, and let G5 [H| be obtained from H by further adding
vertices v”’ and v"” and edges vv” and v"’v"”. Then every G1[H| and G2[H] have OLD-sets, and
Go[H] has an OL Doy p-set while G [H] does not.

Hence, we have the following.

Theorem 3.1. For every graph H there are graphs G1 and G5 with Has an induced subgraph
where G does not have an O L Doy p-set but Gy does have an O LDy p-set.

There is no forbidden subgraph characterization of the set of graphs which have OL Doy p-
sets, nor of the set of graphs which do not have OL Do yp-sets. In fact, simply deciding for a
given graph G if G has an OLDo;np-set is an NP-complete problem. As noted in Garey and
Johnson [10], Problem 3-SAT is NP-complete.

3-SAT

INSTANCE. Sets U = {uy, uy, ..., u, } and U = {@y, s, ..., U, } and collection C' = {cy, ¢y, ..., Cm }
of 3-element subsets of U U U.

QUESTION. Does there exist a satisfying truth assignments for C, that is, a subset S of U UU
of order n with |S N {u;,w;}| =1for1 <i<nwithSNe¢; #0forl <j<m?

XOIOLD (existence of an open-independent, open-locating-dominating set)
INSTANCE. A graph G.
QUESTION. Does G have an OL Doy p-set?
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Figure 5. ¢; = {ul,ﬂg,u;g}, Co = {ul,u2,ﬂg}, etc.

Theorem 3.2. Simply deciding, for a given graph G, if G has an open-independent, O L D-set is
an NP-complete decision problem. That is, XOIOLD is NP-complete.

Proof. One can easily verify in polynomial time if a given set S C V(G) is an OL Doy p-set, so
XOIOLD € NP.

We can reduce the known NP-complete 3-SAT problem to XOIOLD in polynomial time as
follows. For each u; € U let G; be the 6-vertex graph illustrated in Figure 5 with V(G;) =
{Ui, ﬂi, Vi, Wiy Ty, yz} and E(Gz) = {Uiﬂi, UZ'UZ',EZ'UI', VW5, Wi Ty, Izyz} For each clause Cj e C'let
H; be the 3-vertex graph with V(H;) = {a;,b;,d;} and E(H;) = {a;b;, b;d;}. Interconnect the
clause components and literal components by adding edges d;c; 1, d;cj2 and djc;3 for1 < j < m
where ¢; = {c;j1,¢;2,¢j3} € C, as illustrated in Figure 5. Let G be the resulting graph of order
6n + 3m.

Assume there is a satisfying truth assignment S C U U U. Form W C V(G) by letting
{yi,xi,vi,a;,b;3 S Worl <i<mn,1<j<m Forl <i < n,addu; to W if the literal
u; € S, otherwise the literal w; € S and one adds w; to S. Then <W > consists of 4n + 2m
vertices inducing 2n + m independent edges. Note that N (a;) = {b;} C W, b; € N(d;) N W but
|IN(d;) N W| > 2 because S is satisfying. It is easily seen that G has IV as an open-independent,
OLD-set.

Assume G has an OL Doy p-set W. By Proposition 3.1 we have {y;, x;} C W with w; ¢ W
for1 <i < n,and {a;,b;} C W withd; ¢ W for 1 < j < m. Because N(y;) " W = {z;} and
N(w;) "W # N(y;) N W, each v; € W. Now v; € W implies the open-independent, dominating
set W has |N(v;) N W| = 1, so W contains exactly one of u; and u;. Let S = W N (U U U).
Because I is an OLD-set N(a;) "W = {b;} S N(d;) "W, and we have N (d;) N (U UTU) # 0.
That is, S must be a satisfying truth assignment. [
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Theorem 3.3. If the girth of G satisfies g(G) > 5 and W C V(G), then W is an OLDornp-set if
and only if (1) eachv € W is open-dominated exactly once, and (2) each v ¢ W is open-dominated
at least twice.

Proof. Assume W is an O L Doy p-set for G. Because W is open-independent and open-dominating,
eachv € W has |[N(v) N W| = 1. If v ¢ W, then W open-dominates v implies there is a vertex
w € N(v)NW. Asnoted |[N(w) N W| = 1,say N(w) "W = {z}. Then N(z) "W = {w} #
N(v) N W implies that | N (v) N W| > 2.

Assume conditions (1) and (2) hold for W C V(G). Then W is open-dominating. Assume
v € Whas |[N(v) nW| = 1. For N(v) " W = {w}, we have N(w) N W = {v} and = €
N(w) — {v} implies that x ¢ W, so x is open-dominated at least twice. Thus v is the only
vertex with N(v) N W = {w}. Assume v ¢ W, let {x,y} C N(v) N W. No other vertex u
has {z,y} C N(u) N W or else u, x, v,y is a 4-cycle and g(G) < 4. Thus N(v) N W uniquely
distinguishes v. 0

Assume W is an OLDonp-set for path P, : vy, vs,...,v,. By Proposition 3.1 we have
{v1,v2} S W,v3 ¢ W, {vg,v5} CW,ug & W,..{v,_1,v,} T W.

Proposition 3.2. Path P, has an OLDoyp-set W ifand only if n = 2(mod 3) and OLDoinp(Psjio) =
2k + 2.

*—o—O0—0—90

<

Figure 6. Some trees with OL Doy p-sets.

Py —
t
W2 V2
X
Wt Vt

Theorem 3.4. (Seo and Slater [26]) A tree T has an OLD-set if and only if no two endpoints of T’
have the same neighbor.
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Similar to the characterization given in Studer, et al. [43] for open-independent dominat-
ing sets in trees, we can recursively define the collection of pairs (7, W) where T is a tree and
W is the unique OLDornp(T')-set. First note that the tree A; of order 2¢ + 1 in Figure 6 has
OLDornp(Ay) = 2t and V(A;) — x is the unique OLDoryp(A;)-set for t > 2.

Theorem 3.5. If T, is a tree of order n with an OLDgojyp-set, then the OLDornp(T)-set W is
unique and T, can be obtained recursively from P, by a sequence of operations OP1 and OP2
defined as follows.

(OP1) Let T* be a tree with OLDornp(T)-set W and let = € W. The tree T is obtained from
T by adding a P : v, w,v and adding the edge zz.

(OP2) Let T* be a tree with OLDoinp(T)-set W and let z be any vertex in T*. The tree T is
obtained from T* by adding an A; witht > 2 and adding the edge zx.

Proof. We first observe that if T" is obtained from 7™* by (OP1), then W U {w, v} is an OLDo;np-
set for 7', and if T is obtained from 7™ by (OP2), then W U {w1, vy, ..., wy, v, } is an O LDoyyp-set
for T'.

Assume tree 7" has OLDgornp-set W. If T' is a path, then Proposition 3.2 shows that 7' can
be obtained from P, by a sequence of (OP1)-operations and there is a unique OLDgjnp-set for
T. If T is not a path, select a vertex y with deg y > 3 where all or all but one of the branches
at y are paths. Suppose y, u1, us, ..., u; is a branch path with j > 3. By Proposition 1 we must
have {u;_1,u;} € W and u;_o ¢ W. Also u,_3 (possibly u;_3 = y) must be in W or else
N(u)NW = N(uj—2) "W = {uj_1}. Let T* = T —{u;, uj_1,uj—2}. Since Wis an OLDonp-
set of T and N (u;) NV (T*) = O and N(uj—) NV (T*) = 0, W — {uj, u;_1 } isan OLDo np-set
of 7. So T'is obtainable from 7™ by (OP1) where 2z = u;_3. Because W is an OLD-set, y can not
be the support vertex of two or more endpoints. If y is adjacent to an endpoint  and vy, uy, us is a
branch path, Proposition 1 would imply that {u1,us} € W and {x,y} C W, so W would not be
open-independent. Now y can be assumed to have deg y — 1 = b branch paths of length two. We
have a subgraph A, with vertices {y, w1, vy, ..., wp, vy} With b > 2. Let N(y) = {wy, wa, ..., wp, 2},
and T can be obtained from 7* = T' — {y, w1, vq, ..., wp, vy } by (OP2). ]

4. OLDornp% for infinite grids

Much work has been done on distinguishing sets (LD-sets, IC-sets and OLD-sets) in infinite
grids (hexagonal, square, triangular, tumbling block, etc). See, for example, [1, 6, 7, 18, 19, 20,
22,23, 26, 28, 29, 30, 40, 41].

For a given vertex z in a dominating set D in a graph G, the share sh(z; D) is defined in Slater
[41] as a measure of how much domination the individual vertex = does. For example, in graph
H1 of Figure 7 we have N [3] = {2,3,4,5,6,9} and sh(3;{3,4,7}) =12+ 12+ 12+ 1/3+ 12+
1/3 =8/3. Also, sh(4;{3,4,7}) =1+ 172+ 172+ 1/2+ 1/3+ 1/2+ 1/3=11/3, and sh(7;{3,4,7})
=1/3+1/2+ 1+ 1/2 + 1/3 = 8/3. Note that 3¢ psh(v; D) = |V (G)| = n for any dominating set D
and that |D| > |V(G)|/M AX ey sh(v; D).

Similarly, the open share sh(x; D) is defined in Seo and Slater [26] for open dominat-
ing set D. Specifically, if D is open dominating and x € D then, for each y € N(x), let
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H2

(a) (b)

Figure 7. Graphs H; and Hs.

sh?(z; D(y)) = 1/|N(y) N D| and let sh?(x; D) = Yyen(z)sh®(x; D(y)). For example, in
Figure 7 D = {3, 4} is an open dominating set for the graph H2. We have N (3) = {2,4,5} and
sh°P(3; D) = sh°(3; D(2)) + sh°?(3; D(4)) + sh??(3; D(5)) = 1/24+1+1/2 = 2. Also, N(4) =
{1,2,3,5} and sh??(4; D) = sh°?(4; D(1)) + sh°P(4; D(2)) + sh°?(4; D(3)) + sh°?(4; D(5)) =
14+1/24 14 1/2 = 3. Note that X,cpsh?(xz; D) = |V(G)], and if sh°?(w; D) > sh°(x; D) for
all z € D, then |D| > |V(G)|/sh? (w; D).

In this paper, we will focus on open-locating-dominating sets along with open-shares of ver-
tices.

Percentage parameters for measuring density for locally-finite, countably infinite graphs were
defined in Slater [41]. For example, for the (G) parameter we have 7%(G) defined as follows as
the minimum possible percentage of vertices in a dominating set of GG. The closed k-neighborhood
of vertex v is the set of vertices at distance at most k from v, N*[v] = {w € V(G) : d(v,w) < k}.
For S C V(G), the density of S is dens(S) = maz,cv(c)lim supi—oo(|S N N*[v]|/|N*v]]).
Then, for example, the domination percentage of G is Y% (G) = min{dens(S) : S C V(G) is
dominating}. Let HEX, SQ, and TRI denote the infinite hexagonal, square and triangular grid
graphs, respectively.

Theorem 4.1. (Seo and Slater [26]) OLD%(HEX) = 1/2.

The darkened vertices of HEX in Figure 8 form an OLD%(HEX)-set D achieving the value
1/2, and D is an open-independent set. Hence we have the following.

Theorem 4.2. OLDonp%(HEX) = OLD%(HEX) = 1/2.

Figure 9(a) illustrates that OLD%(SQ) = 2/5, but OLDonp%(SQ) > OLD%(SQ).
Theorem 4.3. (Seo and Slater [26]) OLD%(SQ) = 2/5.
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.=.=.=.=.=.=.=‘=‘=‘=‘=’=‘=‘=’=’=‘=‘=‘
.=.=.=’=’=‘=‘=’=.=.=.=.=.=.=.=.=.=.=.
o—0O0—0—0C—0000 00000000000

(@) (b)

Figure 9. OLD%(SQ) = 2/5 and OLDornp%(SQ) = 3/7.

Figure 10. OLDornp%(TRI) < 8/25.
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Theorem 4.4. OLDonp%(SQ) = 3/7.

Proof. The set of darkened vertices in Figure 9(b) shows that O LDo;np%(SQ) < 3/7. To see that
OLDoinp%(SQ) > 3/7 we use a straightforward share argument. Let D be an OLDonp%(SQ)-
set. We have V(SQ) = Z x Z and N((4,75)) = {(i — 1,7),(i,5 +1),(i + 1,7), (4,5 — 1)}. We
will show that sh??(x; D) < 7/3 for every x € D, and hence OLDo;np%(SQ) > 7/3. Without
loss of generality, assume x = (0,0) € D. Exactly one neighbor of x is also in D, and we can
assume that (1,0) € D. In particular, sh°?(z; D((1,0)) = 1. Any other vertex y € N(z) is open
dominated at least twice by D, so sh®?(z, D(y)) < 1/2 for each y € {(—1,0),(0,1),(0,—1)}.
Suppose all three of these vertices give (0,0) a share value of 1/2.

Case 1. N((—1,0))nD = {(0,0), (=2,0)}. Then (—1,1) ¢ D with DN{(—1,0), (0,1)} = 0,
andso N((—1,1))ND = {(—2,1),(—1,2)}. Similarly, N((—1,—1))ND = {(-2,—1),(—1,—2)}.
But then {(—2,1), (—2,0), (—2,—1)} C D, contradicting the open independence of D.

Case 2. N((—1,0)) N D # {(0,0),(—2,0)}. Then one of (—1,1) and (-1,-1) is in D, say
(-1, 1). Because sh?((0,0); D((0,1)) = 1/2 we have N((0,1)) n D = {(0,0),(—1,1)}. Also,
sh°?((0,0); D((—1,0)) = 1/2 implies N((—1,0)) N D = {(0,0),(—1,1)} = N(0,1) N D, con-
tradicting the fact that D must distinguish (0,1) and (-1,0).

Because sh®?(z; D) < 1+1/241/2+1/2, we have sh®?(z; D) < 1+1/2+1/2+1/3=17/3
for every € D. As noted, this implies OLDo;np%(SQ) > 7/3. O

Theorem 4.5. (Kincaid, Oldham, and Yu [23]) OLD%(TRI) = 4/13.

Figure 10 shows that OLDonp%(T'RI) < 8/25. To date, the best we have is that:
OLDornp%(TRI) € [4/13,8/25).
5. Open independent sets

In this paper we focused on open-independence for O L D-sets. Of interest is the parameter
OIND itself, as well as the lower open independence parameter oind where oind(G) is the mini-
mum cardinality of a maximally open-independent set.
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