SUB KS-SEMIGRUP FUZZY DAN ASPEK-ASPEK YANG TERKAIT

Tessa Danty Fajriyah', Suryotoz, Widowati®
23 Jurusan Matematika
Fakultas Sains dan Matematika, Universitas Diponegoro
J1. Prof. H. Soedarto,SH. Tembalang Semarang 50275, Indonesia

ABSTRAK

Suatu KS-semigrup merupakan struktur aljabar yang dilengkapi dengan dua operasi
biner dan memenuhi aksioma-aksioma yaitu BCK-aljabar, semigrup, dan bersifat
distributif kiri dan distributif kanan. Dengan menerapkan teori himpunan fuzzy dan
teori ideal pada proses fuzifikasi didapat KS-semigrup fuzzy. Teori himpunan fuzzy
dapat diimplementasikan menjadi sub KS-semigrup fuzzy jika dibentuk himpunan
bagian fuzzy p : X — [0,1] dan aspek-aspek pada teori ideal dibahas mengenai KS-
ideal fuzzy dan KS-p-ideal fuzzy.

Kata kunci : KS-semigrup, himpunan fuzzy, teori ideal.

1. PENDAHULUAN

Dalam mempelajari struktur aljabar yang diketahui selama ini mungkin hanya
grup dan ring saja, ternyata masih banyak stuktur aljabar yang lain diantaranya yaitu
BCK-aljabar.

Pada Tahun 1966, Y. Imai dan K. Iseki memperkenalkan BCK-aljabar [4].
Dari perkembangan umum BCK-aljabar terdapat teori ideal yang memiliki peranan
penting. Seiiring berjalannya waktu dan perkembangan ilmu pengetahuan yang
semakin pesat, pada Tahun 2006 Kyung Ho Kim memperkenalkan struktur aljabar
baru yaitu KS-semigrup yang merupakan kombinasi dari BCK-aljabar dan semigrup
[4]. Kemudian oleh D.R Prince Williams dan Shamshad Husain dibahas lanjut
mengenai sub KS-semigrup fuzzy, KS-ideal fuzzy, dan KS-p-ideal fuzzy[8].

KS-semigrup merupakan suatu struktur aljabar yang dilengkapi dengan dua

operasi biner dan memenuhi aksioma-aksioma tertentu. KS-semigrup telah dibahas
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dalam tugas akhir yang disusun oleh Rina Puji Anggraeny yang didalamnya mengkaji
tentang Homomorfisma KS-semigrup dan Teorema Fundamental Isomorfisma pada
KS-semigrup [6]. Dalam KS-semigrup, salah satu aksioma yang harus dipenuhi yaitu
BCK-aljabar. Fenomena yang menarik dari KS-semigrup adalah KS-semigrup
mempunyai konsep-konsep yang hampir sama dengan BCK-aljabar. Dalam BCK-
aljabar terdapat konsep BCK-aljabar fuzzy yang diperkenalkan oleh O.G Xi, begitu
pula dalam KS-semigrup juga terdapat konsep baru yang akan dikaji meliputi konsep
sub KS-semigrup fuzzy, KS-ideal fuzzy, dan KS-p-ideal fuzzy[S]. Dengan
menggunakan konsep - konsep tersebut maka dapat dilihat beberapa hasil KS-

semigrup fuzzy yang sangat erat terkait dengan hasil BCK-aljabar fuzzy.

2. SUB KS-SEMIGRUP FUZZY

Definisi 2.1

Misalkan X KS-semigrup dan y suatu himpunan fuzzy didalam X, u disebut sub KS-
semigrup dari X jika memenuhi aksioma — aksioma berikut :

(FSKS1) u(x +y) = min {u(x), u(y)}

(FSKS2) p(x -y) = min {u(x), u(y)}

untuk semua x,y € X

Contoh 2.1

Diberikan X = {0,1,2,3} suatu KS-semigrup dan didefinisikan suatu operasi biner

"*" dan" - " sebagaimana diberikan oleh tabel berikut :

Tabel 2.1 Pendefinisian operasi " * " pada X

* 0 1 2 3

0 0 0 0 0
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Tabel 2.2 Pendefinisian operasi " - " pada X

Teorema 2.2

Misalkan X KS-semigrup dan p suatu himpunan fuzzy di dalam X, u disebut sub
KS-semigrup fuzzy jika dan hanya jika untuk setiap 0 < t < 1 himpunan tingkat atas
U; merupakan himpunan kosong atau sub KS-semigrup dari X.

Bukti :

=)

Misalkan u sub KS-semigrup fuzzy dari X untuk setiap 0 <t < 1. Jika u(x) <t
untuk setiap x € X maka p, = @. Jika y, # @ akan ditunjukan y, sub KS-semigrup
maka x,y € y, = {x € X | u(x) = t}. Karena x,y € X dan u himpunan fuzzy dari X,
maka berlaku :

p(x +y) =2 min {uCo),u®d}y L 2.1)
p(x-y) =2 min {pCo),puy L (2.2)
Selanjutnya karena x, y € y;, maka berlaku pu(x) >t dan u(y) >t

akibatnya min {u(x),u()}z¢ L. (2.3)
Sehingga dari persamaan (3.1) , (3.2), dan (3.3) didapat :

1. pu(x *y) = min {u(x),u(y)} = t akibatnya x * y € y,

2. u(x - y) = min {u(x),u(y)} = t akibatnya xy € y,

Dari hasil di atas didapatkan bahwa p, adalah sub KS-semigrup dari X
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(=)

Misalkan y; sub KS-semigrup, maka u, = @. Karena y, = @ maka terdapat y, =
{x € X|u(x) =t} dengan 0 < t < 1, suatu sub KS-semigrup.

Akan dibuktikan u adalah sub KS-semigrup fuzzy.

Selanjutnya misalkan t = min {u(x),u(y)} ... (2.4)
Diambil sebarang x,y € X,

maka berlaku u(x) > tdanpu(y)=2¢ .. (2.5)
Sehingga dari persamaan (3.4) dan (3.5) didapat :

L. p(x *+y) =t =min {u(x), u(y)}

2. p(x-y) =t =min {u(x),u(y)}

Dari hasil di atas didapatkan bahwa p adalah sub KS-semigrup fuzzy.

Teorema 2.3 [8]
Setiap sub KS-semigrup dari X dapat diimplementasikan sebagai tingkat sub KS-
semigrup dari suatu sub KS-semigrup fuzzy.
Bukti :
Misalkan A adalah sub KS-semigrup fuzzy dari X dan p menjadi himpunan bagian
fuzzy dari X yang didefinisikan oleh
t JjikaxeA
u(x) =
0 jikax¢gA
dengan 0 < t < 1, yaitu akan dibuktikan : A € u, dany, € A
1) Akan diperlihatkan 4 € p,.
Diambil sebarang x € A, maka u(x) =t,
Dalam hal ini u(x) >t akibatnya x € p,.
Hal ini berlaku untuk setiap x € A, maka A € p,
1) Selanjutnya akan diperlihatkan y, € A.
Diambil sebarang y € u,, maka u(y) = t,
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Karena 0 <t < 1, maka t # 0 dan u(x) # 0.

Akibatnya p(y) = t, ini memberikan y € A

Hal ini berlaku untuk setiap y € A, maka didapat u, € A.
Dengan diperlihatkan bahwa A € pu, dan pu, € A maka A = y,

Selanjutnya ambil sebarang x,y € X, dalam hal ini terdapat tiga kemungkinan dari

tingkat sub KS-semigrup dari suatu sub KS-semigrup fuzzy, yaitu :

1)

2)

3)

Misalkan x,y € A

Karena x,y € A, maka u(x) = u(y) = t dan berlaku,
p(x *y) = min { u(x), u(y)} = t dan

pCx-y) = min{ulx),u()} =t

Oleh karena itu x * y € y, dan xy € u,

Misalkan x,y € A

Karena x,y € A, maka u(x) = u(y) = 0 dan berlaku,
u(x *y) = min { u(x),u(y)} = 0 dan

pCx - y) = min {u(x),u(y)} =0,

Oleh karena itu x *y € y, dan xy € y,

Misalkan x € A atauy € A

Karena x € A atauy € A, maka u(x) = 0 atau u(y) = 0 dan berlaku,
u(x *y) = min {u(x), u(y)} = 0 dan

p(x - y) =2 min {u(x), u(y)} = 0.

Oleh karena itu x * y € y, dan xy € u;

3. TEORIIDEAL

Definisi 3.1 [8]
Misalkan X KS-semigrup dan p suatu himpunan fuzzy dari X, u disebut KS-ideal kiri

fuzzy dari X jika memenuhi aksioma — aksioma berikut :

(KSI1)

n(0) = pu(x)
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(KSI2) p(x)  =min {ulx *y),u(y)},

(KSI3) p(x - a) = min {u(x),u(a)}

untuk semua x,y,a € X.

Suatu himpunan fuzzy p disebut KS-ideal kanan fuzzy jika memenuhi aksioma
(KS1), (KS2), dan aksioma berikut :

(KSI4) pa-x) =min {u(x),u(a)}

Selanjutnya jika yu merupakan KS-ideal fuzzy kiri dan sekaligus merupakan KS-ideal
kanan fuzzy dari X, maka u dikatakan KS-ideal fuzzy dari X.

Contoh 3.1

Diberikan X = {0,1,2,3} dengan operasi biner " * " yang didefinisikan pada Tabel 2.1

dan operasi biner yang didefinisikan pada Tabel 2.2, merupakan suatu KS-

semigrup.

Definisi 3.2 [8]
Misalkan X KS-semigrup dan u suatu himpunan fuzzy dari X, u disebut KS-p-ideal

kiri fuzzy jika memenuhi aksioma — aksioma berikut :

(KSP1) u©) = pux)
(KSP2) p(x x z) = min {u((x *y) * 2), u(y * 2)},
(KSP3) uCx-a) =min {u(x),u(a)}

Untuk semua x,y,z,a € X.

Suatu himpunan fuzzy p disebut KS-p-ideal kanan fuzzy jika memenuhi aksioma
(KSP1), (KSP2), dan aksioma berikut :

(KSP4) p(a-x) =min {u(x),ua)}

Selanjutnya jika 4 merupakan KS-p-ideal kiri fuzzy dan sekaligus merupakan KS-p-
ideal kanan fuzzy dari X, maka u dikatakan KS-p-ideal fuzzy dari X.

Teorema 3.3 [8]
Setiap KS-p-ideal kanan (kiri) fuzzy dari X adalah KS-ideal kanan (kiri) fuzzy dari X.
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Bukti :
Diberikan pu adalah KS-p-ideal kiri fuzzy dari X, akan dibuktikan bahwa pu juga

merupakan KS-ideal kiri fuzzy. Diambil sebarang x, y € X, maka

u(x) = ulx = 0) karenax = x *x 0
> min {u((x *y) = 0),u(y = 0)} Aksioma (KSP2)
=min {u(x *y), u(y)} Karena (xxy)*0=xxy
dan yx0=y

Dari hasil diatas didapatkan bahwa p KS-ideal kiri fuzzy dari X.

Teorema 3.4 [8]

Jika p adalah KS-ideal kanan (kiri) fuzzy dari X, maka himpunan tingkat tidak kosong

U; juga merupakan KS-ideal kanan (kiri) fuzzy dari X.

Bukti :

Misalkan u KS-ideal kiri fuzzy dari X. Jika x,y, a € u, maka u(x) = t, u(y) = t, dan

u(a) > t.

1) Diambil sebarang € y, , maka terdapat p(x) = t. Dari tingkat himpunan tidak
kosong , terdapat p,(x) = {x € X|u(x) = t} maka berlaku
u(0) = u(x) = t, oleh karena itu u, (0) = p, (x).

1) Diambil sebarang x € y; maka terdapat u(x) >t, Karena untuk setiap
t = min {u(x * y), u(y)} dan didapat u(x) > t, maka demikian sehingga
p(x) = t = min {u(x *y), u(y)}-

ii) Diambil sebarang x,a € y, maka terdapat u(x) =t dan p(a) > t, Karena
untuk setiap t = min {u(x),u(a)} dan didapat u(x - a) = t, maka demikian
sehingga p(x - @) >t = min {u(x),u(a)}

Oleh karena itu p, adalah KS-ideal kiri fuzzy dari X.
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Definisi 3.5 [8]

Misalkan X KS-semigrup, A dan g merupakan himpunan bagian fuzzy didalam
himpunan X. Hasil kali kartesius dari A X u : X X X — [0,1] didefinisikan bahwa
(A x w)(x,y) = min{A(x), u(y)} untuk semua x,y € X.

Berikut akan diberikan contoh mengenai hasil kali kartesius dari himpunan fuzzy.
Contoh 3.2

Diberikan X = {0,1,2} merupakan KS-semigrup. Untuk memperlihatkan hasil kali
kartesius dari A X u:X XX — [0,1] akan diperlihatkan untuk setiap x,y € X
didefinisikan bahwa (A X p)(x,y) = min {A(x),u(y)}. Diambil sebarang x,y € X

dan dibentuk himpunan bagian fuzzy :

( 2(0)=10.7
A:X > [0,1], dengan A(x) = < A1) =04 untuk x € X
L 1(2)=04
( u(0) =05
u:X-[01],dengan u(x) =4 w(1)=0.5 untuk xeX
-~ u(2) =05

Teorema 3.6 [8]
Misalkan X KS-semigrup, A dan pu merupakan KS-ideal kanan (kiri) fuzzy dari X.

Kemudian 4 X pu juga merupakan KS-ideal fuzzy dari X.
Bukti :
Diberikan X KS-semigrup dan A merupakan KS-ideal kanan (kiri) fuzzy dari X. Akan
ditunjukan bahwa A X p merupakan KS-ideal fuzzy dari X.
(1) Diambil sebarang (x,y)(0,0) € X X X maka berlaku,
(4% 1)(0,0) = min {2(0), x(0)} = min {A(x), u(»)}
=@Axwx,y)
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(i)  Diambil sebarang (x1,x3), (y1,¥2) € X X X maka berlaku,
(A X @) (x1,x2) = min {A(xq), u(xz)} = min {min{ A(x; * y1),1(y1)},
min {uCxz * y2), u(y2)}}
= min{min{A((x; * y1), u(xz * ¥2))}, min{A(y1), u(y2)}
= min{(A X ) ((x1, x2) * (1, ¥2)), (A X W) (1, ¥2)}
(ili)  Diambil sebarang (x,y), (a;,a;) € X X X maka berlaku,
A x w(x y)(a,az) = (A% p)(xay,yaz)
= min{A(xa,), (ya,)} = min{min{A(x), A(xa)},
min{ u(y), u(az)}}
= min{min{ A(x), 2(y)}, min{u(a,) , u(az)}
=min{ (1 x w), (1 x w)(ay,a,)}

Teorema 3.7 [8]

Misalkan A dan y merupakan himpunan fuzzy dari X sehingga A X u adalah KS-ideal
kanan (kiri) fuzzy dari X X X, maka :

(1) Salah satu A(0) = A(x) atau u(0) = u(x), untuk semua x € X

(i)  Jika A(0) = A(x), maka u(0) = A(x) atau u(0) = u(x), untuk semua x € X
Jika 1(0) = u(x), maka A(0) = A(x) atau A(0) = u(x), untuk semua x € X

Teorema 3.8 [8]

Misalkan X KS-semigrup, A dan g merupakan himpunan fuzzy dari X. Jika A X u
adalah KS-ideal kanan (kiri) fuzzy dari X X X, maka baik A atau y adalah KS-ideal
kanan (kir1) fuzzy dari X.

Definisi 3.9 [8]
Misalkan A suatu himpunan fuzzy didalam S yang merupakan relasi fuzzy terkuat

pada S maka relasi fuzzy pada A disebut u, diberikan relasi py(x,y) =
min{A(x),A(y)}
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Berikut ini akan diberikan contoh dari relasi terkuat pada himpunan fuzzy.
Contoh 3.3
Diberikan S = {0,1,2,3} merupakan KS-semigrup dan A suatu himpunan didalam S
yang merupakan relazy fuzzy terkuat pada S. Diambil sebarang x,y € S dan
dibentuk himpunan bagian fuzzy :

0.7 untuk s =0
A:S —[0,1], dengan A(s) = untuk s € S

0.4 untuk s #0

Teorema 3.10 [8]
Misalkan A adalah himpunan fuzzy didalam X dan pu, merupakan relasi fuzzy terkuat
pada X dan xx = x untuk semua x € X. Kemudian A adalah KS-ideal kanan (kiri)

fuzzy dari X jika dan hanya jika p, adalah KS-ideal kanan (kiri) fuzzy dari X X X.

Definisi 3.11 [8]
Diberikan f : X — Y pemetaan dari KS-semigrup dan y adalah himpunan fuzzy dari
Y. Pemetaan p/ adalah pra bayangan pada u dibawah f jika u/ = u((f(x)) untuk
semua x € X.
Berikut ini akan diberikan contoh pemetaan dari himpunan fuzzy.
Contoh 3.4
Diberikan A = {0,1,2,3} merupakan KS-semigrup. Dibentuk himpunan bagian fuzzy :
0.7 untuk u =20
u:X - [0,1], dengan X(u) = untuk x € X
0.4 untuk pu # 0
Didefinisikan pemetaan f:X — X dengan f(0) =0, f(1) =2, f(2) =1, dan
f(3) = 3. Akan diperlihatkan bahwa f:X — X merupakan homomorfisma KS-
semigrup sebagaimana didefinisikan u/ = ,u((f (x)) = (o f)(x) untuk semua

x € X dimana u/ pemetaan ke [0,1].
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Teorema 3.12

Diberikan f : X — Y adalah homomorfisma KS-semigrup. Jika y adalah KS-ideal

kanan (kiri) fuzzy dari Y maka u/ merupakan KS-ideal kanan (kiri) fuzzy dari X.

Teorema 3.13

Diberikan f : X — Y adalah epimorfisma. Jika u/ merupakan KS-ideal kanan (kiri)
fuzzy dari X maka p adalah KS-ideal kanan (kiri) fuzzy dari Y
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