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ABSTRAK 

Suatu KS-semigrup merupakan struktur aljabar yang dilengkapi dengan dua operasi 

biner dan memenuhi aksioma-aksioma yaitu BCK-aljabar, semigrup, dan bersifat 

distributif kiri dan distributif kanan. Dengan menerapkan teori himpunan fuzzy dan 

teori ideal pada proses fuzifikasi didapat KS-semigrup fuzzy. Teori himpunan fuzzy 

dapat diimplementasikan menjadi sub KS-semigrup fuzzy jika dibentuk himpunan 

bagian fuzzy μ ∶ X → [0,1] dan aspek-aspek pada teori ideal dibahas mengenai KS-

ideal fuzzy dan KS-p-ideal fuzzy. 

Kata kunci : KS-semigrup, himpunan fuzzy, teori ideal. 

 

1. PENDAHULUAN 

 

Dalam mempelajari struktur aljabar yang diketahui selama ini mungkin hanya 

grup dan ring saja, ternyata masih banyak stuktur aljabar yang lain diantaranya yaitu 

BCK-aljabar.  

Pada Tahun 1966, Y. Imai dan K. Iseki memperkenalkan BCK-aljabar [4]. 

Dari perkembangan umum BCK-aljabar terdapat teori ideal yang memiliki peranan 

penting. Seiiring berjalannya waktu dan perkembangan ilmu pengetahuan yang 

semakin pesat, pada Tahun 2006 Kyung Ho Kim memperkenalkan struktur aljabar 

baru yaitu KS-semigrup yang merupakan kombinasi dari BCK-aljabar dan semigrup 

[4]. Kemudian oleh D.R Prince Williams dan Shamshad Husain dibahas lanjut 

mengenai sub KS-semigrup fuzzy, KS-ideal fuzzy, dan KS-p-ideal fuzzy[8].  

KS-semigrup merupakan suatu struktur aljabar yang dilengkapi dengan dua 

operasi biner dan memenuhi aksioma-aksioma tertentu. KS-semigrup telah dibahas 
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dalam tugas akhir yang disusun oleh Rina Puji Anggraeny yang didalamnya mengkaji 

tentang Homomorfisma KS-semigrup dan Teorema Fundamental Isomorfisma pada 

KS-semigrup [6]. Dalam KS-semigrup, salah satu aksioma yang harus dipenuhi yaitu 

BCK-aljabar. Fenomena yang menarik dari KS-semigrup adalah KS-semigrup 

mempunyai konsep-konsep yang hampir sama dengan BCK-aljabar. Dalam BCK-

aljabar terdapat konsep BCK-aljabar fuzzy yang diperkenalkan oleh O.G Xi, begitu 

pula dalam KS-semigrup juga terdapat konsep baru yang akan dikaji meliputi konsep 

sub KS-semigrup fuzzy, KS-ideal fuzzy, dan KS-p-ideal fuzzy[5]. Dengan 

menggunakan konsep - konsep tersebut maka dapat dilihat beberapa hasil KS-

semigrup fuzzy yang sangat erat terkait dengan hasil BCK-aljabar fuzzy. 

 

2. SUB KS-SEMIGRUP FUZZY 

Definisi 2.1 

Misalkan 𝑋 KS-semigrup dan 𝜇 suatu himpunan fuzzy didalam 𝑋, 𝜇 disebut sub KS-

semigrup dari 𝑋 jika memenuhi aksioma – aksioma berikut : 

(FSKS1) 𝜇(𝑥 ∗ 𝑦) ≥ min   𝜇 𝑥 , 𝜇 𝑦   
(FSKS2) 𝜇 𝑥 ⋅ 𝑦  ≥ min   𝜇 𝑥 , 𝜇 𝑦    
untuk semua 𝑥, 𝑦 ∊ 𝑋 

Contoh 2.1 

Diberikan  𝑋 = {0,1,2,3} suatu KS-semigrup dan didefinisikan suatu operasi biner 

" ∗ " dan " ⋅ " sebagaimana diberikan oleh tabel berikut : 

   Tabel 2.1 Pendefinisian operasi  " ∗ " pada 𝑋 

 ∗ 0 1 2 3 

0 0 0 0 0 

1 1 0 1 0 

2 2 2 0 0 

3 3 2 1 0 
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Tabel 2.2 Pendefinisian operasi  " ⋅ " pada 𝑋 

⋅ 0 1 2 3 

0 0 0 0 0 

1 0 1 0 1 

2 0 0 2 2 

3 0 1 2 3 

  

Teorema 2.2 

Misalkan  𝑋  KS-semigrup dan 𝜇 suatu himpunan fuzzy di dalam 𝑋, 𝜇  disebut sub 

KS-semigrup fuzzy jika dan hanya jika untuk setiap 0 ≤ 𝑡 ≤ 1 himpunan tingkat atas 𝜇𝑡   merupakan himpunan kosong atau sub KS-semigrup dari 𝑋. 

Bukti : 

(⟹)  

Misalkan 𝜇  sub KS-semigrup fuzzy dari 𝑋 untuk setiap 0 ≤ 𝑡 ≤ 1. Jika  𝜇 𝑥 < 𝑡 

untuk setiap 𝑥 ∊ 𝑋 maka 𝜇𝑡 = ∅. Jika 𝜇𝑡 ≠ ∅ akan ditunjukan 𝜇𝑡  sub KS-semigrup  

maka 𝑥, 𝑦 ∊ 𝜇𝑡 =  𝑥 ∊ 𝑋   𝜇(𝑥) ≥ 𝑡 . Karena 𝑥, 𝑦 ∊ 𝑋 dan 𝜇 himpunan fuzzy dari 𝑋, 

maka berlaku : 𝜇 𝑥 ∗ 𝑦 ≥ min   𝜇 𝑥 , 𝜇 𝑦    ...... (2.1) 𝜇 𝑥 ⋅ 𝑦 ≥ min   𝜇 𝑥 , 𝜇 𝑦    ...... (2.2) 

Selanjutnya karena 𝑥, 𝑦 ∊ 𝜇𝑡 , maka berlaku 𝜇(𝑥) ≥ 𝑡 dan 𝜇(𝑦) ≥ 𝑡  

akibatnya min   𝜇 𝑥 , 𝜇 𝑦  ≥ 𝑡                                                            ......  (2.3) 

Sehingga dari persamaan (3.1) , (3.2), dan (3.3) didapat : 

1. 𝜇 𝑥 ∗ 𝑦 ≥ min   𝜇 𝑥 , 𝜇 𝑦  ≥ 𝑡 akibatnya 𝑥 ∗ 𝑦 ∊ 𝜇𝑡   

2. 𝜇 𝑥 ⋅ 𝑦 ≥ min   𝜇 𝑥 , 𝜇 𝑦  ≥ 𝑡 akibatnya 𝑥𝑦 ∊ 𝜇𝑡   

Dari hasil di atas didapatkan bahwa 𝜇𝑡  adalah sub KS-semigrup dari 𝑋 
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(⟸)  

Misalkan 𝜇𝑡  sub KS-semigrup, maka 𝜇𝑡 = ∅. Karena 𝜇𝑡 = ∅  maka terdapat   𝜇𝑡 = 𝑥 ∊ 𝑋 𝜇(𝑥) ≥ 𝑡  dengan 0 ≤ 𝑡 ≤ 1, suatu sub KS-semigrup.  

Akan dibuktikan 𝜇 adalah sub KS-semigrup fuzzy. 

Selanjutnya misalkan t = min   𝜇 𝑥 , 𝜇 𝑦    ...... (2.4) 

Diambil sebarang 𝑥, 𝑦 ∊ 𝑋,  

maka berlaku  𝜇(𝑥) ≥ 𝑡 dan 𝜇(𝑦) ≥ 𝑡  ......     (2.5) 

Sehingga dari persamaan (3.4) dan (3.5) didapat : 

1. 𝜇 𝑥 ∗ 𝑦 ≥ 𝑡 = min   𝜇 𝑥 , 𝜇 𝑦   
2. 𝜇 𝑥 ⋅ 𝑦 ≥ 𝑡 = min   𝜇 𝑥 , 𝜇 𝑦    
Dari hasil di atas didapatkan bahwa  𝜇  adalah sub KS-semigrup fuzzy. 

 

Teorema 2.3 [8] 

Setiap sub KS-semigrup dari 𝑋 dapat diimplementasikan sebagai tingkat sub KS-

semigrup dari suatu sub KS-semigrup fuzzy. 

Bukti : 

Misalkan 𝐴 adalah sub KS-semigrup fuzzy dari 𝑋 dan 𝜇 menjadi himpunan bagian 

fuzzy dari 𝑋 yang didefinisikan oleh 

      𝑡       𝑗𝑖𝑘𝑎 𝑥 ∊ 𝐴  𝜇 𝑥 =   

                   0       𝑗𝑖𝑘𝑎 𝑥 ∉ 𝐴                                                                                                            

dengan 0 < 𝑡 < 1, yaitu akan dibuktikan : 𝐴 ⊆ 𝜇𝑡  dan 𝜇𝑡 ⊆ 𝐴 

i) Akan diperlihatkan 𝐴 ⊆ 𝜇𝑡 .  

 Diambil sebarang 𝑥 ∈ 𝐴, maka 𝜇 𝑥 = 𝑡,  
 Dalam hal ini 𝜇(𝑥) ≥ 𝑡  akibatnya 𝑥 ∊ 𝜇𝑡 .  

 Hal ini berlaku untuk setiap 𝑥 ∊ 𝐴, maka 𝐴 ⊆ 𝜇𝑡  

ii) Selanjutnya akan diperlihatkan 𝜇𝑡 ⊆ 𝐴. 

 Diambil sebarang 𝑦 ∈ 𝜇𝑡 , maka 𝜇(𝑦) ≥ 𝑡, 
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 Karena  0 < 𝑡 < 1, maka 𝑡 ≠ 0 dan 𝜇 𝑥 ≠ 0. 

 Akibatnya 𝜇 𝑦 = 𝑡, ini memberikan 𝑦 ∊ 𝐴 

Hal ini berlaku untuk setiap 𝑦 ∊ 𝐴, maka didapat  𝜇𝑡 ⊆ 𝐴.  

 Dengan diperlihatkan bahwa 𝐴 ⊆ 𝜇𝑡   dan  𝜇𝑡 ⊆ 𝐴 maka 𝐴 = 𝜇𝑡  

Selanjutnya ambil sebarang 𝑥, 𝑦 ∊ 𝑋, dalam hal ini terdapat tiga kemungkinan dari 

tingkat sub KS-semigrup dari suatu sub KS-semigrup fuzzy, yaitu : 

1) Misalkan 𝑥, 𝑦 ∈ 𝐴 

Karena 𝑥, 𝑦 ∈ 𝐴, maka 𝜇 𝑥 = 𝜇 𝑦 = 𝑡 dan berlaku, 𝜇 𝑥 ∗ 𝑦 ≥ min { 𝜇 𝑥 , 𝜇(𝑦)} = 𝑡 dan  

 𝜇(𝑥 ⋅ 𝑦)  ≥ min { 𝜇 𝑥 , 𝜇(𝑦)} = 𝑡,  

 Oleh karena itu 𝑥 ∗ 𝑦 ∊ 𝜇𝑡  dan  𝑥𝑦 ∊ 𝜇𝑡  

2) Misalkan 𝑥, 𝑦 ∉ 𝐴 

Karena 𝑥, 𝑦 ∉ 𝐴, maka 𝜇 𝑥 = 𝜇 𝑦 = 0 dan berlaku,                                                                     𝜇 𝑥 ∗ 𝑦 ≥ min { 𝜇 𝑥 , 𝜇(𝑦)} = 0 dan 𝜇(𝑥 ⋅ 𝑦)  ≥ min { 𝜇 𝑥 , 𝜇(𝑦)} = 0, 

Oleh karena itu  𝑥 ∗ 𝑦 ∊ 𝜇𝑡  dan  𝑥𝑦 ∊ 𝜇𝑡  

3) Misalkan 𝑥 ∈ 𝐴 atau 𝑦 ∈ 𝐴 

Karena 𝑥 ∈ 𝐴 atau 𝑦 ∈ 𝐴, maka 𝜇 𝑥 = 0 atau 𝜇 𝑦 = 0 dan berlaku, 𝜇(𝑥 ∗ 𝑦)  ≥ min { 𝜇 𝑥 , 𝜇(𝑦)} = 0 dan  𝜇(𝑥 ⋅ 𝑦) ≥ min { 𝜇 𝑥 , 𝜇(𝑦)} = 0.  

Oleh karena itu 𝑥 ∗ 𝑦 ∊ 𝜇𝑡  dan  𝑥𝑦 ∊ 𝜇𝑡  

 

3. TEORI IDEAL 

Definisi 3.1 [8] 

Misalkan  𝑋 KS-semigrup dan 𝜇 suatu himpunan fuzzy dari 𝑋, 𝜇 disebut KS-ideal kiri 

fuzzy dari 𝑋 jika memenuhi aksioma – aksioma berikut : 

(KSI1)  𝜇 0     ≥ 𝜇(𝑥) 
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(KSI2)             𝜇 𝑥     ≥ min  {𝜇 𝑥 ∗ 𝑦 , 𝜇(𝑦)}, 

(KSI3)             𝜇 𝑥 ⋅ 𝑎  ≥ min  {𝜇 𝑥 ,𝜇(𝑎)} 

untuk semua 𝑥, 𝑦, 𝑎 ∊  𝑋. 

Suatu himpunan fuzzy 𝜇 disebut KS-ideal kanan fuzzy jika memenuhi aksioma 

(KS1), (KS2), dan aksioma berikut : 

(KSI4)  𝜇 𝑎 ⋅ 𝑥  ≥ min  {𝜇 𝑥 ,𝜇(𝑎)} 

Selanjutnya jika 𝜇 merupakan KS-ideal fuzzy kiri dan sekaligus merupakan KS-ideal 

kanan fuzzy dari 𝑋, maka 𝜇 dikatakan KS-ideal fuzzy dari 𝑋. 

Contoh 3.1 

Diberikan  𝑋 = {0,1,2,3} dengan operasi biner " ∗ " yang didefinisikan pada Tabel 2.1 

dan operasi biner " ⋅ " yang didefinisikan pada Tabel 2.2, merupakan suatu KS-

semigrup. 

 

Definisi 3.2 [8] 

Misalkan  𝑋 KS-semigrup dan 𝜇 suatu himpunan fuzzy dari 𝑋, 𝜇 disebut KS-p-ideal 

kiri fuzzy jika memenuhi aksioma – aksioma berikut : 

(KSP1)     𝜇 0        ≥ 𝜇(𝑥) 

(KSP2)            𝜇 𝑥 ∗ 𝑧 ≥ min  {𝜇( 𝑥 ∗ 𝑦 ∗ 𝑧), 𝜇(𝑦 ∗ 𝑧)}, 

(KSP3) 𝜇 𝑥 ⋅ 𝑎  ≥ min  {𝜇 𝑥 ,𝜇(𝑎)} 

Untuk semua 𝑥, 𝑦, 𝑧, 𝑎 ∊  𝑋. 

Suatu himpunan fuzzy 𝜇 disebut KS-p-ideal kanan fuzzy jika memenuhi aksioma 

(KSP1), (KSP2), dan aksioma berikut : 

(KSP4)            𝜇 𝑎 ⋅ 𝑥  ≥ min  {𝜇 𝑥 ,𝜇(𝑎)} 

Selanjutnya jika 𝜇 merupakan KS-p-ideal kiri fuzzy dan sekaligus merupakan KS-p-

ideal kanan fuzzy dari 𝑋, maka 𝜇 dikatakan KS-p-ideal fuzzy dari 𝑋. 

Teorema 3.3 [8] 

Setiap KS-p-ideal kanan (kiri) fuzzy dari 𝑋 adalah KS-ideal kanan (kiri) fuzzy dari 𝑋. 
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Bukti : 

Diberikan 𝜇 adalah KS-p-ideal kiri fuzzy dari 𝑋, akan dibuktikan bahwa 𝜇 juga 

merupakan KS-ideal kiri fuzzy. Diambil sebarang 𝑥, 𝑦 ∊ 𝑋, maka 

 𝜇 𝑥 = 𝜇 𝑥 ∗ 0       karena 𝑥 = 𝑥 ∗ 0 

          ≥ min  {𝜇( 𝑥 ∗ 𝑦 ∗ 0), 𝜇(𝑦 ∗ 0)}   Aksioma (KSP2) 

          = min  {𝜇 𝑥 ∗ 𝑦 , 𝜇(𝑦)}   Karena  𝑥 ∗ 𝑦 ∗ 0 = 𝑥 ∗ 𝑦                              

dan                        𝑦 ∗ 0 = 𝑦 

Dari hasil diatas didapatkan bahwa 𝜇 KS-ideal kiri fuzzy dari 𝑋. 

 

Teorema 3.4 [8] 

Jika 𝜇 adalah KS-ideal kanan (kiri) fuzzy dari 𝑋, maka himpunan tingkat tidak kosong 𝜇𝑡   juga merupakan KS-ideal kanan (kiri) fuzzy dari 𝑋. 

Bukti : 

Misalkan 𝜇 KS-ideal kiri fuzzy dari 𝑋. Jika 𝑥, 𝑦, 𝑎 ∊ 𝜇𝑡  maka 𝜇 𝑥 ≥ 𝑡, 𝜇 𝑦 ≥ 𝑡, dan 𝜇 𝑎 ≥ 𝑡.  

i) Diambil sebarang ∊ 𝜇𝑡  , maka terdapat 𝜇 𝑥 ≥ 𝑡. Dari tingkat himpunan tidak 

kosong 𝜇𝑡  terdapat   𝜇𝑡(𝑥) =  𝑥 ∊ 𝑋 𝜇(𝑥) ≥ 𝑡  maka berlaku 𝜇 0 ≥ 𝜇 𝑥 ≥ 𝑡, oleh karena itu 𝜇𝑡(0) ≥ 𝜇𝑡(𝑥).  

ii) Diambil sebarang 𝑥 ∊ 𝜇𝑡  maka terdapat 𝜇 𝑥 ≥ 𝑡,  Karena untuk setiap 𝑡 = min  {𝜇 𝑥 ∗ 𝑦 , 𝜇(𝑦)} dan didapat 𝜇 𝑥 ≥ 𝑡, maka demikian sehingga  𝜇 𝑥 ≥ 𝑡 = min  {𝜇 𝑥 ∗ 𝑦 , 𝜇(𝑦)}. 

iii) Diambil sebarang 𝑥, 𝑎 ∊ 𝜇𝑡  maka terdapat 𝜇 𝑥 ≥ 𝑡 dan 𝜇 𝑎 ≥ 𝑡, Karena 

untuk setiap 𝑡 = min  {𝜇 𝑥 ,𝜇(𝑎)} dan didapat 𝜇 𝑥 ⋅ 𝑎 ≥ 𝑡,  maka demikian 

sehingga 𝜇 𝑥 ⋅ 𝑎 ≥ 𝑡 = min  {𝜇 𝑥 ,𝜇(𝑎)}  

Oleh karena itu 𝜇𝑡  adalah KS-ideal kiri fuzzy dari 𝑋. 
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Definisi 3.5 [8] 

Misalkan 𝑋 KS-semigrup, 𝜆 dan 𝜇 merupakan himpunan bagian fuzzy didalam 

himpunan 𝑋. Hasil kali kartesius dari 𝜆 × 𝜇 ∶ 𝑋 × 𝑋 ⟶  0,1  didefinisikan bahwa  𝜆 × 𝜇  𝑥, 𝑦 = min 𝜆 𝑥 , 𝜇(𝑦)  untuk semua 𝑥, 𝑦 ∊ 𝑋. 

Berikut akan diberikan contoh mengenai hasil kali kartesius dari himpunan fuzzy. 

Contoh 3.2 

Diberikan 𝑋 = {0,1,2} merupakan KS-semigrup. Untuk memperlihatkan hasil kali 

kartesius dari 𝜆 × 𝜇 ∶ 𝑋 × 𝑋 ⟶  0,1  akan diperlihatkan untuk setiap 𝑥, 𝑦 ∊ 𝑋 

didefinisikan bahwa  𝜆 × 𝜇  𝑥, 𝑦 = min   𝜆 𝑥 , 𝜇(𝑦) . Diambil sebarang 𝑥, 𝑦 ∊ 𝑋 

dan dibentuk himpunan bagian fuzzy : 

       𝜆 0 = 0.7 𝜆 ∶ 𝑋 →  0,1 , dengan  𝜆 𝑥 =            𝜆 1 = 0.4 untuk  𝑥 ∊ 𝑋 𝜆 2 = 0.4 

                𝜇 0 = 0.5 𝜇 ∶ 𝑋 →  0,1 , dengan  𝜇 𝑥 =           𝜇 1 = 0.5 untuk  𝑥 ∊ 𝑋 

 𝜇 2 = 0.5 

 

Teorema 3.6 [8] 

Misalkan 𝑋 KS-semigrup, 𝜆 dan 𝜇 merupakan KS-ideal kanan (kiri) fuzzy dari 𝑋. 

Kemudian 𝜆 ×  𝜇 juga merupakan KS-ideal fuzzy dari 𝑋. 

Bukti : 

Diberikan 𝑋  KS-semigrup dan 𝜆 merupakan KS-ideal kanan (kiri) fuzzy dari 𝑋. Akan 

ditunjukan bahwa 𝜆 ×  𝜇 merupakan KS-ideal fuzzy dari 𝑋. 

(i) Diambil sebarang  𝑥, 𝑦 (0,0) ∊ 𝑋 × 𝑋 maka berlaku,  𝜆 × 𝜇  0,0   = min   𝜆 0 , 𝜇 0  ≥ min   𝜆 𝑥 ,𝜇(𝑦)   
=  𝜆 × 𝜇  𝑥, 𝑦  
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(ii) Diambil sebarang  𝑥1, 𝑥2 ,  𝑦1 , 𝑦2 ∊ 𝑋 × 𝑋 maka berlaku,  𝜆 × 𝜇  𝑥1, 𝑥2  = min  𝜆 𝑥1 , 𝜇 𝑥2  ≥ min  min{ 𝜆 𝑥1 ∗ 𝑦1 , 𝜆 𝑦1  ,  

min   𝜇 𝑥2 ∗ 𝑦2 , 𝜇 𝑦2     
 = min min 𝜆 (𝑥1 ∗ 𝑦1 , 𝜇 𝑥2 ∗ 𝑦2)   , min 𝜆 𝑦1 , 𝜇 𝑦2   

 = min  𝜆 × 𝜇 ( 𝑥1, 𝑥2 ∗  𝑦1 , 𝑦2 ),  𝜆 × 𝜇  𝑦1, 𝑦2   
(iii) Diambil sebarang  𝑥, 𝑦 ,  𝑎1, 𝑎2 ∊ 𝑋 × 𝑋 maka berlaku,  𝜆 × 𝜇  𝑥, 𝑦  𝑎1, 𝑎2 =   𝜆 × 𝜇  𝑥𝑎1 , 𝑦𝑎2   

= min 𝜆 𝑥𝑎1 ,  𝑦𝑎2  ≥ min{min{𝜆 𝑥 , 𝜆 𝑥𝑎1 }, 

    min{ 𝜇 𝑦 , 𝜇(𝑎2)}} 

                                               = min{min{ 𝜆 𝑥 , 𝜆 𝑦 }, min{𝜇 𝑎1 , 𝜇 𝑎2 } 

                                   = min{  𝜆 × 𝜇 ,  𝜆 × 𝜇  𝑎1, 𝑎2 } 

 

Teorema 3.7 [8] 

Misalkan 𝜆 dan 𝜇 merupakan himpunan fuzzy dari 𝑋 sehingga 𝜆 × 𝜇 adalah KS-ideal 

kanan (kiri) fuzzy dari 𝑋 × 𝑋, maka : 

(i) Salah satu 𝜆 0 ≥ 𝜆 𝑥  atau 𝜇 0 ≥ 𝜇 𝑥 , untuk semua 𝑥 ∊ 𝑋  

(ii) Jika 𝜆 0 ≥ 𝜆 𝑥 , maka 𝜇 0 ≥ 𝜆 𝑥  atau 𝜇 0 ≥ 𝜇 𝑥 , untuk semua 𝑥 ∊ 𝑋 

Jika  𝜇 0 ≥ 𝜇 𝑥 , maka  𝜆 0 ≥ 𝜆 𝑥  atau 𝜆 0 ≥ 𝜇 𝑥 , untuk semua 𝑥 ∊ 𝑋 

Teorema 3.8 [8] 

Misalkan 𝑋 KS-semigrup,  𝜆 dan 𝜇 merupakan himpunan fuzzy dari 𝑋. Jika 𝜆 × 𝜇 

adalah KS-ideal kanan (kiri) fuzzy dari 𝑋 × 𝑋, maka baik 𝜆 atau 𝜇 adalah KS-ideal 

kanan (kiri) fuzzy dari 𝑋. 

 

Definisi 3.9 [8] 

Misalkan 𝐴 suatu himpunan fuzzy didalam  𝑆 yang merupakan relasi fuzzy terkuat 

pada  𝑆 maka relasi fuzzy pada 𝐴 disebut 𝜇𝐴  diberikan relasi 𝜇𝐴 𝑥, 𝑦 =

min{𝐴 𝑥 ,𝐴(𝑦)} 
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Berikut ini akan diberikan contoh dari relasi terkuat pada himpunan fuzzy. 

Contoh 3.3 

Diberikan 𝑆 = {0,1,2,3} merupakan KS-semigrup dan 𝐴 suatu himpunan didalam 𝑆 

yang merupakan relazy fuzzy terkuat pada  𝑆 . Diambil sebarang 𝑥, 𝑦 ∊ 𝑆 dan 

dibentuk himpunan bagian fuzzy : 

 0.7  untuk  𝑠 = 0 𝐴 ∶ 𝑆 →  0,1 , dengan  𝐴 𝑠 =                          untuk  𝑠 ∊ 𝑆 

 0.4  untuk  𝑠 ≠ 0 

 

Teorema 3.10 [8] 

Misalkan 𝐴 adalah himpunan fuzzy didalam 𝑋 dan 𝜇𝐴  merupakan relasi fuzzy terkuat 

pada 𝑋 dan 𝑥𝑥 = 𝑥 untuk semua 𝑥 ∊ 𝑋. Kemudian 𝐴 adalah KS-ideal kanan (kiri) 

fuzzy dari 𝑋 jika dan hanya jika 𝜇𝐴  adalah KS-ideal kanan (kiri) fuzzy dari 𝑋 × 𝑋.  

 

Definisi 3.11 [8] 

Diberikan 𝑓 ∶  𝑋 ⟶ 𝑌 pemetaan dari KS-semigrup dan 𝜇 adalah himpunan fuzzy dari 𝑌. Pemetaan 𝜇𝑓  adalah pra bayangan pada 𝜇 dibawah 𝑓 jika 𝜇𝑓 = 𝜇((𝑓 𝑥 ) untuk 

semua 𝑥 ∊ 𝑋. 

Berikut ini akan diberikan contoh pemetaan dari himpunan fuzzy. 

Contoh 3.4 

Diberikan 𝐴 = {0,1,2,3} merupakan KS-semigrup. Dibentuk himpunan bagian fuzzy : 

 0.7  untuk  𝜇 = 0 𝜇 ∶ 𝑋 →  0,1 , dengan  𝑋 𝜇 =                          untuk  𝑥 ∊ 𝑋 

 0.4  untuk 𝜇 ≠ 0 

Didefinisikan pemetaan 𝑓: 𝑋 ⟶ 𝑋 dengan 𝑓 0 = 0, 𝑓 1 = 2, 𝑓 2 = 1, dan 𝑓 3 = 3. Akan diperlihatkan bahwa 𝑓: 𝑋 ⟶ 𝑋 merupakan homomorfisma KS-

semigrup sebagaimana didefinisikan 𝜇𝑓 = 𝜇( 𝑓 𝑥  = (𝜇 ∘ 𝑓)(𝑥) untuk semua 𝑥 ∊ 𝑋 dimana 𝜇𝑓  pemetaan ke  0,1 . 
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Teorema 3.12 

Diberikan 𝑓 ∶  𝑋 ⟶ 𝑌 adalah homomorfisma KS-semigrup. Jika 𝜇 adalah KS-ideal 

kanan (kiri) fuzzy dari 𝑌 maka 𝜇𝑓  merupakan KS-ideal kanan (kiri) fuzzy dari 𝑋. 

 

Teorema 3.13 

Diberikan 𝑓 ∶  𝑋 ⟶ 𝑌 adalah epimorfisma. Jika 𝜇𝑓  merupakan KS-ideal kanan (kiri) 

fuzzy dari 𝑋 maka 𝜇 adalah KS-ideal kanan (kiri) fuzzy dari 𝑌 
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