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ABSTRACT

This article discusses integration techniques based on the behavior of the integrand
of certain functions, which is a review of a part of the article written by Clegg,
D.B. and Richmond, A. N. [International of Mathematical Education in Science
and Technology. 18: 4, 519-525 (1987)]. For certain functions which satisfy the
properties of the symmetry behavior of the function, integral value obtained by this
technique is exact despite the methods used are the midpoint method, trapezoidal
method, Simpson’s method, and Gauss quadrature rules for two points.

Keywords: Midpoint method, trapezoidal method, Simpson’s rule Gaussian quadra-
ture rule.

ABSTRAK

Artikel ini membahas teknik integrasi yang didasarkan kepada kelakuan integran
fungsi tertentu yang merupakan review sebagian artikel Clegg, D.B. and Richmond,
A.N. [International of Mathematical Education in Science and Technology. 18:4, 519-
525 (1987)]. Untuk fungsi tertentu yang kelakuan fungsinya memenuhi kesimetrisan,
nilai integral yang didapat adalah eksaks walaupun menggunakan metode titik te-
ngah, metode trapesium, metode Simpson, dan aturan kuadratur Gauss untuk dua
titik.

Kata kunci: Metode titik tengah, metode trapesium, aturan Simpson, aturan
kuadratur Gauss.
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1. PENDAHULUAN

Menghitung integral tentu

b
1(f) = / f(z)d. 1)

dengan fungsi f kontinu pada interval [a,b] dapat dilakukan dengan dua cara yaitu
dengan cara analitik dan numerik. Penyelesaian dengan cara analitik meng-
hasilkan hasil eksak, sedangkan dengan cara numerik diperoleh nilai pendekatan
untuk integral tentu (1) dengan ketelitian tertentu.

Pada artikel ini akan dibahas integrasi numerik yang hasil pendekatannya sama
dengan hasil eksak, sehingga tidak memiliki error. Fungsi yang dapat diintegrasikan
secara eksak adalah fungsi-fungsi tertentu, yaitu fungsi yang kelakuan fungsinya
memenuhi kesimetrisan nilai integral. Tulisan ini adalah merupakan review dari
artikel D. B. Clegg and A. N. Richmond [2].

2. METODE INTEGRASI NUMERIK

Banyak metode integrasi numerik yang diperkenalkan dalam perkuliahan analisis
numerik yang dapat digunakan untuk menaksir integral tentu (1). Semua metode
yang diberikan mempunyai error yang harus diperhatikan.

Metode titik tengah untuk menaksir integral (1) untuk satu interval diberikan
oleh[5, h. 220]

a+b
i =nf (457). )
dengan h = (b — a), yang errornya diberikan oleh
(b — a)?: "
Ey=——"7—""— .
w=-L g ®)

Metode trapesium untuk mengaproksimasi nilai (1) untuk satu interval diperoleh
dengan mengganti f(z) dengan polinomial interpolasi linear[1, h. 162]

(b—2)f(a) + (z — a) f(b)
(b—a) ’

Pl(l’) =

yang menginterpolasi f(x) pada a dan b, kemudian diintegralkan pada [a, b], sehingga
diperoleh rumus umum aturan trapesium

1(7) = P2 V1) + 10 (@)

yang errornya diberikan oleh

(b—a)’

Ep=—
r 12

f(€)- (5)
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Metode Simpson untuk mengaproksimasi nilai (1) pada dua interval didapat
dengan mengaproksimasi f(z) dengan polinomial interpolasi kuadratik Py (z)
(z=o@=b), @—a@=b, . (-aE—c
(@ —c)(a—10) (c—a)(c—0) (b—a)(b—c)

kemudian diintegralkan pada [a,b] dan disederhanakan sehingga diperoleh formula
metode Simpson|[1, h. 166]

Py(x) = fla) + fle)+ f (),

s:) = 52 [ ar (U57) + 100, ©)
dengan errornya diberikan oleh
(b= a)5 4
Lg, = _Wf( 1(©). (7)

Dari error yang dipunyai metode titik tengah dan metode trapesium terlihat bahwa
metode ini eksak untuk fungsi linear, sedangkan metode Simpson eksak untuk fungsi
kubik.

Aturan kuadratur Gauss dua titik untuk menghitung integral

1
1= ota, ®)
-1
dilakukan dengan mengaproksimasi ¢(v) dengan fungsi linear

(b(v) ~ ap + a1,

yaitu

1 1
/ o(v)dv = / ap + avdv, (9)
-1 -1

sedemikian hingga jika dihitung integral (9) adalah eksak untuk polinomial berder-
ajat tiga. Cara ini dapat ditempuh dengan memilih garis

Gy = Aop(vg) + Ar9(v1), (10)

dengan Ay, Ay, vg, dan vy harus dipilih sedemikian luas daerah seperti diilustrasikan
Gambar 1 saling meniadakan.

Misalkan polinomial berderajat tiga yang dimaksud adalah
P(v) = ag + ayv + agv? + azv’,
dapat ditulis juga kedalam bentuk

o(v) = ap+ v + (v —vg) (v —v1)(By + P1v).
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Gambar 1: Tafsiran geometri metode kuadratur Gauss dengan dua titik

Jika oy dan «; harus memenuhi (9) maka vy dan v; harus dipilih sehingga
1
/ (v —wp)(v —v1)(Bo + frv)dv = 0. (11)
-1

Karena persamaan (11) harus benar untuk sebarang pilihan [, dan [,
akibatnya harus disyaratkan bahwa

/ (v —wvg)(v —vy1)dv =0, (12)

1

/_ (v —vg)(v — v1)vdv = 0. (13)

1

Setelah melakukan integrasi pada persamaan (12) dan (13) diperoleh berturut-turut

2 +2 0
=+ 2v9v; = 0,
3 0¥1
Vo + V1 = 07
yang menghasilkan
1
V) = —Vg = —=. (14)

V3

Selanjutnya untuk menentukan Ay dan A; pada persamaan (10), perhatikan bahwa
1 1

/ o(v)dv :/ (ap + ayv)dv,

-1 1

/_1 o(v)dv = 2ay. (15)
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Jadi dengan mensubstitusikan persamaan (14) ke persamaan (10) diperoleh
1
V3

Dengan menyamakan persamaan (16) dengan persamaan (15) diperoleh

ngadAm+AQ—a1( (AO—AQ>. (16)

Sehingga rumus aturan Gauss untuk dua titik sebagai berikut

1 1
Gy = —— — . 18
=o(-35)+() .
Untuk menerapkan rumus aturan Gauss untuk dua titik untuk menyelesaikan in-

tegral (1) harus terlebih dahulu dilakukan transformasi dari interval [a, b] ke [—1, 1],
yang dapat dilakukan dengan menyatakan(3, h.183]

:2:1:—(b+a)
(b—a) ~

sehingga diperoleh
1 1
r = §(b —a)v+ §(b+ a).

dengan demikian

1 1 1
§(b —a)v+ 5(()—1— a)

3. INTEGRASI NUMERIK TANPA FRROR UNTUK
FUNGSI-FUNGSI TERTENTU

Bila dilakukan transformasi variabel pada persamaan (1), dengan u = = — d dengan

1
d= §(a + b), dan misalkan ¢ = i(b — a), persamaan (1) dapat ditulis menjadi

fz/iﬂu+@mL

Selanjutnya misalkan f(u + d) = g(u), sehingga

I= /C g(u)du. (19)

—C
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Gambar 2: Grafik fungsi Antisimetris

Misalkan integral (19) dapat diintegrasikan secara eksak dengan menggunakan metode
titik tengah, maka diperoleh

c+ (—c)

M; = (c—(—0))g (T) = 2¢g(0).

Perhatikan bahwa fungsi ¢ memenuhi kesimetrisan seperti yang ditunjukkan pada
Gambar 2, AB =CD dan ¢(0) — g(—u) = g(u) — g(0) untuk 0 < u < ¢. Sehingga
diperoleh syarat yang harus dipenuhi fungsi tertentu agar integral yang diperoleh
eksaks adalah

9(=u) + g(u) = 29(0). (20)
Selanjutnya jika digunakan metode trapesium, hasil integral pada persamaan (19)
adalah

7, = D)4 )

Ty = clg(—c) + g(c)]. (21)
Dengan memperhatikan persamaan (20), persamaan (21) dapat ditulis menjadi
Ty = 2¢g(0).

Selanjutnya dengan menggunakan metode Simpson, hasil integral pada persamaan
(19) adalah

c—¢C

5= 25D g0y 449 (S55) + 900)| = 2e000

Teorema 1 (Formula Kuadratur) Integral I pada persamaan (19) dapat
dievaluasi tanpa galat pemotongan dengan menggunakan sebarang formula
kuadratur simetris jika ¢ memenuhi kondisi

g(—u) + g(u) = 2g(0),

untuk semua u pada [—c, ¢|. Selanjutnya hasil untuk I adalah 2cg(0).
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Bukti: Perhatikan

/_ZQ(U)du = /_(ig(U)du + /ch(u)du. (22)

Dengan mengganti v dengan —u dalam integral pertama pada ruas kanan persamaan
(22) menghasilkan

/ g(u)du :/ (9(—u) + g(u))du. (23)
—c 0
Selanjutnya dengan mensubstitusikan persamaan (20) ke persamaan (23) diperoleh
/ g(u)du = / 2¢g(0)du = 2¢g(0) = I.
—c 0

Kemudian dengan menerapkan aturan kuadratur Gauss untuk menaksir I meng-
hasilkan

¢(v) = cg(ev),

sehingga diperoleh dengan menggunakan persamaan (20)
1 1
Gy =c ——=c | +g|—=cC
=lo(-359) ++ (75|
Go = 2¢g(0).
Jadi G5 sama dengan I dan teoremanya terbukti. [

Contoh 1 Selesaikan integral berikut dengan menggunakan metode titik tengah,
trapesium, Simpson dan aturan kuadratur Gauss.

INIE]

I :/ (sinz + 1)dz. (24)

s
2

Solusi: Penyelesaian dengan integral biasa diperoleh sebagai berikut

Wl

/ (sinx+1)dz=[—cosx+x]§ =.

us
2

Kemudian ditunjukkan fungsi integral memenuhi syarat yang terdapat pada
persamaan (20)
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Kemudian dengan menggunakan metode titik tengah diperoleh

/5 T (-I))s <g+ (‘%))

(sinz + 1)dz = (5 — (— i 5

[ME]

Selanjutnya dengan menggunakan metode trapesium diperoleh

[ simar s 1y = G-(3) (D) +r(Z)] -~

2

Wl

Selanjutnya dengan menggunakan metode Simpson diperoleh

Jus

/_2(sinx+1)dx_m f(_f>+4f M +f<§>

6 2 2 2

[ME]

=T.
Dengan menggunakan aturan kuadratur Gauss untuk dua titik diperoleh

G-(9) (B)-(3), Gr(5))

2 2

¢(v) =

sehingga

ngg(<sing~ (—%) +1) + (sing-%Jrl)) —

Terlihat bahwa hasil yang diperoleh dengan menggunakan metode titik tengah,
trapesium, Simpson dan aturan kuadratur Gauss adalah sama dan memenuhi syarat
yang telah ditentukan sehingga menghasilkan jawaban yang eksak.
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