Studi Eksperimental: Mengurangi Bias Pengukuran Umum Balanced Scorecard Dalam Penilaian Kinerja Pada Mahasiswa S1 Angkatan 2010 dan 2012

Evelyne Tri Kurniawati dan Juniarti

Akuntansi Bisnis Universitas Kristen Petra Email: yunie.peter.petra.ac.id

ABSTRAK

Dalam penelitian Lipe dan Salterio (2000) menemukan adanya bias pengukuran umum. Bias pengukuran umum ini mengurangi manfaat dari BSC serta berpengaruh pada keputusan manajer terutama dalam mengalokasi kompensasi. Dengan memakai pendekatan disaggregated / mechanically aggregated dan pengetahuan, bias pengukuran umum dapat berkurang, tetapi kedua pendekatan ini belum sepenuhnya dapat mengurangi bias pengukuran umum. Oleh karena itu, dilakukanlah penelitian ini dengan menggabungkan kedua pendekatan tersebut serta melihat apakah evaluasi kinerja menggunakan BSC mempengaruhi alokasi kompensasi. Metodologi penelitian yang dilakukan adalah eksperimen laboratorium. Uji hipotesis penelitian ini menggunakan repeated measure ANOVA, independent sample t test serta analisis Hasil penelitian menunjukan bahwa pendekatan disaggregated/ mechanically aggregated memiliki pengaruh signifikan mengurangi bias pengukuran umum dalam mengevaluasi kinerja menggunakan BSC. Ditemukan juga bahwa pendekatan pengetahuan tidak memiliki pengaruh signifikan mengurangi bias pengukuran umum. Selain itu, evaluasi kinerja menggunakan BSC memiliki pengaruh signifikan terhadap alokasi kompensasi.

Kata kunci: BSC, pengukuran umum, pengukuran unik, *debiasing*, bias pengukuran umum, *disaggregated/mechanically aggregated*, pengetahuan, alokasi kompensasi.

ABSTRACT

In the research of Lipe & Salterio (2000), it was found a common measurement bias. This common measure bias reduces the benefits of the BSC and the effect on the manager's decision, especially in allocating compensation. By using the disaggregated/mechanically aggregated and knowledge approach, common measure bias can be reduced, but these two approaches is not yet fully reduced the bias. Therefore, this study was conducted by combining both approaches and seen if the performance evaluation by using the BSC affected the allocation of compensation. The methodology of research was a laboratory experiment. The hypothesis test of this study used a repeated measure ANOVA, independent sample t test and regression analysis. The results showed that the disaggregated / aggregated mechanically approach had significant influence in reducing general bias in evaluating the performance measurement by using BSC. It was also found that the knowledge approach didn't have a significant influence in reducing the common measure bias. Furthermore, the evaluation of the performance by using BSC had a significant influence on the allocation of compensation.

Keywords: BSC, common measurement, unique measurement, debiasing, common measure bias, disaggregated /mechanically aggregated, knowledge, allocation of compensation.

PENDAHULUAN

BSC merupakan sistem pengukuran yang rumit dan memiliki biaya yang mahal (Lipe & Salterio, 2000; Malina & Selto, 2001; Lindberg & Schonfeldt, 2008; Sawalqa, Holloway, & Alam, 2011; Islam, 2010). Sehingga dalam mengadopsi BSC, perlu digunakan secara optimal agar biaya yang telah dikeluarkan untuk menerapkan BSC dapat dimanfaatkan dengan baik. Tetapi hasil penelitian Lipe & Salterio (2000) menemukan adanya bias pengukuran umum pada BSC, dikarenakan manajer lebih cenderung menggunakan pengukuran umum dibandingkan pengukuran unik. Dampak adanya bias ini adalah manfaat BSC mengurangi sebagai alat manajemen strategi perusahaan (Dilla & Steinbart, 2005; Libby, Salterio, & Webb, 2002), dan membatasi keefektifan sebagai alat pengukuran kinerja (Dilla & Steinbart, 2005). Selain itu, bias pengukuran umum juga mempengaruhi manajer untuk mengambil keputusan yang kurang tepat terutama dalam menentukan kompensasi (Malina & Selto, 2001).

Agar penggunaan BSC dapat optimal, ada beberapa penelitian berusaha untuk mengurangi bias pengukuran umum. Seperti penelitian Roberts, Albright, & Hibbets (2004) disaggregated/ memakai pendekatan mechanically aggregated serta Dilla & (2005)memakai Steinbart pendekatan pengetahuan. Hasil dari kedua pendekatan itu telah berhasil untuk mengurangi bias, namun bias tersebut masih ada. Walaupun kedua pendekatan tersebut dapat mengurangi bias, tetapi hasil dari kedua pendekatan itu belum dapat mengoptimalkan BSC karena kedua pendekatan tersebut dilakukan secara parsial.

Penelitian ini akan mencoba untuk menggabungkan kedua pendekatan tersebut agar dapat mengoptimalkan BSC. Tujuan penelitian ini menguji pengaruh pendekatan disaggregated/ mechanically aggregated dan pengetahuan terhadap bias pengukuran umum serta menguji pengaruh evaluasi kinerja menggunakan BSC terhadap alokasi kompensasi. Sampel yang digunakan pada penelitian ini adalah mahasiswa S1 angkatan 2010 dan 2012 Fakultas Ekonomi Universitas Kristen Petra. Berdasarkan latar belakang diatas, ada dua rumusan masalah dalam penelitian ini, pertama adalah Apakah penggabungan pendekatan disaggregated/ mechanically aggregated dan pengetahuan kepada partisipan dapat mengurangi bias pengukuran umum pada BSC? Serta yang kedua adalah Apakah penilaian kinerja berbasis BSC berpengaruh pada alokasi kompensasi?

Pengertian BSC

BSC adalah alat untuk mengukur kinerja perusahaan secara komprehensif (Kaplan & Norton, 1992), dimana di dalam BSC terdapat ukuran keuangan dan non keuangan yang perspektif pembelajaran meliputi dan pertumbuhan, perspektif proses bisnis internal, perspektif pelanggan (Kaplan & Norton, 1996; Dilla & Steinbart, Grevinga, 2013). Dalam BSC juga meliputi dua macam pengukuran yaitu pengukuran umum dan unik (Lipe & Salterio, 1998, 2000; Dilla & Steinbart, 2005; Roberts, Albright, & Hibbets, 2004; Grevinga, 2013).

Pengertian Pengukuran Umum dan Unik

Pengukuran umum adalah pengukuran kinerja baik keuangan ataupun non keuangan yang berlaku untuk seluruh organisasi perusahaan (Kaskey, 2008). Pengukuran umum sesuai dengan strategi organisasi (Grevinga, 2013). Manfaatnya adalah dapat membantu menyederhanakan tugas pengambil keputusan pada saat melakukan penilaian kinerja bawahan.

Pengukuran unik adalah pengukuran kinerja baik keuangan ataupun non keuangan yang berlaku untuk masing-masing tiap unit bisnis. Pengukuran unik merupakan ukuran yang sesuai dengan strategi tiap divisi (Grevinga, 2013). Saat mengevaluasi kinerja, pengambil keputusan yang menggunakan pengukuran unik akan dapat berhasil mengimplementasi strategi.

Pengertian Bias Pengukuran Umum

Adanya bias pengukuran umum lebih cenderung karena manajer menggunakan ukuran umum daripada ukuran unik (Lipe & Salterio, 2000; Humphreys & Trotman, 2011; Banker, Chang, & Pizzini, 2004; Bone & Solihin, 2012). Dampak dari bias pengukuran umum adalah mengurangi manfaat BSC sebagai alat manajemen strategi perusahaan (Dilla & Steinbart, 2005; Libby, & Salterio. Webb, 2002), membatasi keefektifan BSC sebagai alat pengukuran

kinerja (Dilla & Steinbart, 2005), mempengaruhi keputusan manajer yang kurang tepat dalam alokasi kompensasi (Roberts, Albright, & Hibbets, 2004).

Mengurangi Bias Pengukuran Umum (Debiasing)

Debiasing adalah prosedur untuk mengurangi atau menghilangkan bias dari strategi kognitif pembuat keputusan & Moore, 2009), (Bazerman sehingga memerlukan waktu dan usaha agar dapat berhasil menghilangkannya (Serfas, 2011). Temuan Einhorn (1972) pada BSC telah melibatkan dua langkah yaitu pertama, memisahkan keputusan evaluasi menjadi beberapa keputusan yang lebih kecil serta yang kedua, mengaggregatkan keputusankeputusan kecil kedalam nilai total berdasarkan pre-determined weights (dalam Albright, Roberts, & Hibbets, 2004). Dilakukan pemilahan, sebab manusia memiliki kemampuan kognitif yang terbatas (Tversky & Kahneman, 1973, 1974).

Penilaian dalam pendekatan disaggregated/mechanically aggregated, dapat mengurangi bias serta dapat menurunkan tuntutan kognitif. Pada pendekatan ini, BSC menjadi empat sampai pengukuran untuk setiap empat kategori dalam BSC (Kaplan & Norton, 1996). Pendekatan lain untuk mengurangi bias yaitu pengetahuan. Pengambil keputusan vang memiliki pengetahuan dapat lebih informasi memanfaatkan semua saat mengevaluasi kinerja ataupun mengalokasi kompensasi.

BSC Pengukuran dan Alokasi Kompensasi

Dalam mengadopsi BSC seharusnya dikaitkan dengan keputusan kompensasi (Kaplan & Norton, 1996). Jika perusahaan tidak menggunakan kompensasi, motivasi karyawan akan menurun dan memberikan dampak pada penggunaan BSC yang tidak adanya efektif. Namun dengan pengukuran umum, mempengaruhi keputusan manajer yang kurang tepat terutama dalam menentukan kompensasi (Holmstrom Milgrom, 1991) serta mempengaruhi motivasi kinerja karyawan dimana karyawan akan mengurangi usaha mereka pada aktivitas yang dianggap tidak utama (Malina & Selto, 2001; Holmstrom & Milgrom, 1991)

Pengaruh pendekatan Disaggregated/ Mechanically Aggregated terhadap bias pengukuran umum

Lipe & Salterio (2000) menemukan adanya bias pengukuran umum pada saat evaluasi kinerja. Bias ini telah mengurangi manfaat BSC sebagai alat manajemen strategi perusahaan (Dilla & Steinbart, 2005; Libby, Salterio, & Webb, 2002).

Untuk mengurangi bias pengukuran umum, penelitian ini akan memakai pendekatan disagregated/ mechanically aggregated. Sebab jika dilakukan pemisahan pada BSC, akan membantu manajer untuk lebih memberikan perhatian pada ukuran unik daripada ukuran umum (Grevinga, 2013). Berdasarkan kajian diatas, hipotesis yang dapat disimpulkan adalah:

H1: Disaggregated/Mechanically Aggregated akan mengurangi bias pengukuran umum dalam mengevaluasi kinerja menggunakan Balanced Scorecard.

Pengaruh pendekatan pengetahuan terhadap bias pengukuran umum

Salah satu penyebab munculnya bias pengukuran umum yang ditemukan oleh Lipe Salterio (2000)adalah kurangnya pengetahuan tentang BSC yang dimiliki oleh partisipan dalam eksperimen mereka. Sehingga untuk dapat mengurangi pengukuran umum, penelitian ini juga menggunakan pendekatan pengetahuan.

Pengetahuan dapat memungkinkan pengambil keputusan untuk lebih memanfaatkan semua informasi serta digunakan untuk mengevaluasi kinerja dan alokasi kompensasi (Dilla & Steinbart, 2005). Berdasarkan kajian diatas, hipotesis yang dapat disimpulkan adalah:

H2: Pengetahuan akan mengurangi bias pengukuran umum dalam evaluasi kinerja menggunakan BSC.

Pengaruh penilaian kinerja terhadap alokasi kompensasi

BSC digunakan sebagai alat untuk mengevaluasi kinerja dan alat manajemen dapat meningkatkan strategis, karena konsistensi evaluasi kinerja dan keputusan kompensasi (Dilla& Steinbart, 2005). Dengan adanya BSC dapat membantu pengambil keputusan untuk mengevaluasi kinerja tiap karyawan (Grevinga, 2013; Roberts, Albright, & Hibbets, 2004), sehingga pengambil keputusan dapat menentukan alokasi kompensasi yang tepat. Alokasi kompensasi tepat dapat meningkatkan motivasi kinerja karyawan menjadi lebih baik untuk dapat mencapai tujuan perusahaan (Malina & Selto, 2001). Berdasarkan kajian diatas, hipotesis yang dapat disimpulkan adalah:

H3: Evaluasi kinerja menggunakan BSC mempengaruhi alokasi kompensasi.

METODE PENELITIAN

Penelitian ini menggunakan model pendekatan eksperimen laboratorium. Tujuan menggunakan pendekatan ini adalah untuk melihat hubungan sebab akibat (kausal) antara variabel yang dikontrol dan variabel kontrol (Fauzi, 2002; Azwar, 2005). Alasan penelitian ini menggunakan eksperimen laboratorium, karena secara langsung peneliti terlibat dalam penelitian (Isnawijayani, 2011). Partisipan dalam penelitian ini adalah 40 mahasiswa S1 angkatan 2010 dan 2012 Fakultas Ekonomi Universitas Kristen Petra baik yang sedang dan sudah mengambil mata kuliah Akuntansi Manajemen sehingga mempunyai pengetahuan tentang struktur dan konsep BSC.

Desain Eksperimen

Penelitian ini diadopsi dari penelitian Lipe & Salterio (2000); Roberts, Albright, & Hibbets (2004); serta Dilla & Steinbart (2005). Penelitian ini tidak menyertakan reward untuk partisipan, dan partisipan tidak mencantumkan identitas dalam hasil pekerjaan mereka. Variabel yang tidak dikontrol adalah pengetahuan partisipan. Partisipan akan diberi kasus yang dari dua divisi perusahaan WCS yaitu divisi RadWear (meniual pakaian wanita) dan WorkWear (menjual seragam kerja). Penelitian ini mereplikasi desain pada penelitian Lipe & Salterio (2000) yang menggunakan desain 2 x 2 x 2, diantara dua faktor between-subjects (umum dan unik) dan satu faktor withinsubjects (divisi). Faktor pertama betweensubjects (umum), menunjukkan apakah RadWear atau WorkWear akan memiliki kinerja lebih baik jika diukur dengan pengukuran umum. Faktor kedua betweensubjects (unik), menunjukkan apakah RadWear atau WorkWear akan memiliki

kinerja lebih baik jika diukur dengan pengukuran unik. Tiap partisipan menilai manajer dari dua divisi, sehingga divisi merupakan faktor within-subjects.

Partisipan diminta berperan sebagai seorang eksekutif senior dari perusahaan WCS untuk menilai kinerja kedua manager divisi. Partisipan akan diberikan informasi mengenai visi dan strategi masing-masing divisi serta instruksi untuk mengerjakan kasus yang diberikan. Setelah itu, partisipan akan diberi informasi tentang latar belakang perusahaan WCS dan partisipan diberikan kesempatan untuk membaca serta memahami kasus selama 15-20 menit. Lalu partisipan akan diberikan 16 ukuran Balanced Scorecard yang meliputi 2 ukuran umum dan 2 ukuran unik untuk tiap perspektif. Bobot masing-masing unit pada 16 pengukuran umum dan unik, menunjukkan 6,25% untuk tiap ukuran (100/16). Total bobot untuk tiap perspektif sebesar 25%, sedangkan bobot predetermined untuk setiap ukuran sebesar 4% dan 9%. Serta pre-determined weight untuk sebesar 64% dari ukuran unik keseluruhan pre-determined weight.

Partisipan diberikan tugas untuk menyelesaikan dua langkah disaggregated BSC, yaitu: partisipan memberikan penilaian kinerja pada tiap manajer, dan poartisipan diminta untuk mengalikan penilaian individu dengan bobot yang telah ditentukan (predetermined weight), menjumlahkan bobot nilai untuk membuat total, dan mengagregatkan nilai pada tiap divisi. untuk pengukuran unique, bobot yang telah ditentukan adalah 64% dari total pre-determined weight.

Setelah selesai melakukan penilaian dissagregated divisi RadWear, partisipan diminta untuk menjumlahkan hasil perkalian nilai tertimbang agar dapat menghitung skor mechanically aggregated divisi RadWear. Setelah itu, partisipan menyelesaikan kasus divisi WorkWear dengan pengerjaan yang sama dengan divisi RadWear. Penelitian ini tidak menduplikasi separate overall judgment. Setelah melakukan evaluasi tiap manajer kineria divisi, partisipan mengalokasikan dana pada akhir tahun sebesar Rp 100.000.000,00 di antara dua manajer divisi. Partisipan akan menyediakan informasi demografis mereka, serta penelitian ini tidak menguji manipulasi cek karena diasumsikan sudah diuji oleh penelitian sebelumnva.

Variabel dependen adalah perbedaan penilaian kinerja dari kedua manager divisi

dan alokasi kompensasi. Alokasi kompensasi dalam penelitian ini tidak ada dasar perhitungan yang ditentukan. Teknik yang digunakan pada penelitian ini untuk menguji hipotesis yaitu repeated measures ANOVA, independent sample t test, dan analisis regresi linier berganda. Penelitian ini melakukan uji autokorelasi karena data penelitian tidak dilakukan secara time series.

HASIL PENELITIAN DAN PEMBAHASAN

Eksperimen ini dilakukan dua periode, periode pertama kelompok partisipan berpengetahuan dan periode kedua kelompok partisipan nonpengetahuan. Data dalam penelitian ini dilakukan uji normalitas dan uji hipotesis. Hasil dari pengujian hipotesis yang dilakukan, sudah berdistribusi normal. data hipotesis telah bebas dari heterokesdastisitas dan multikolinearitas.

Tabel 1. Profil Partisipan Berdasarkan Angkatan

Angkatan Berdasarkan Partisipan Dengan Pengetahuan dan Tanpa Pengetahuan

Pengetahuan			Frequency	Percent	Valid Percent	Cumulative Percent
Dengan Pengetahuan	Valid	2010	7	46,7	46,7	46,7
		2012	8	53,3	53,3	100,0
		Total	15	100,0	100,0	
Tanpa Pengetahuan	Valid	2010	5	33,3	33,3	33,3
		2012	10	66,7	66,7	100,0
		Total	15	100,0	100,0	

Tabel 2. Profil Partisipan Berdasarkan Jurusan

Jurusan l	Jurusan Berdasarkan Partisipan Dengan Pengetahuan dan Tanpa Pengetahuan						
Pengetahuan			Frequency	Percent	Valid Percent	Cumulati ve Percent	
Dengan Pengetahuan	Valid	Akuntansi Bisnis	5	33,3	33,3	33,3	
-		Manajemen Bisms	2	13,3	13,3	46,7	
		Junusan Lainnya	8	53,3	53,3	100,0	
		Total	15	100,0	100,0		
Tanpa Pengetahuan	Valid	Akuntana Bianis	2	13,3	13,3	13,3	
		Manajemen Bisms	13	86,7	86,7	100,0	
		Total	15	100,0	100,0		

Tabel 3. Uji Normalitas Pengukuran Umum Partisipan Keseluruhan

	One-Sample Kolmogorov	-Smirnov Test	
Division			Common
	N		30
	Normal Parameters **	Mean	28.7923
RadWear	Normal Parameters	Std. Deviation	2.52423
		Absolute	.159
	Most Extreme Differences	Positive	.085
		Negative	159
	Kolmogorov-Smimov Z	.870	
	Asymp. Sig. (2-tailed)		.436
	N	No.	30
	Normal Parameters 3.5	Mean	21.8930
	Normal Parameters	Std. Deviation	5.66974
WorkWear		Absolute	.264
WorkWear	Most Extreme Differences	Positive	.264
		Negative	155
	Kolmogorov-Smimov Z		1.443
	Asymp. Sig. (2-tailed)		.031

[.] Test distribution is Normal.

Tabel 4. Uji Normalitas Pengukuran Unik Partisipan Keseluruhan

Division			Unique
	N		30
	Normal Parameters **	Mean	53.5510
RadWear	Normal Parameters	Std. Deviation	4.02346
		Absolute	.156
	Most Extreme Differences	Positive	.063
		Negative	156
	Kolmogorov-Smimov Z	A STATE OF THE STA	.855
	Asymp. Sig. (2-tailed)		.458
	N	e-c-al-	30
	Normal Parameters 15	Mean	45.2057
	Two man Parameters	Std. Deviation	6.35441
WorkWear		Absolute	.233
work wear	Most Extreme Differences	Positive	.233
		Negative	146
	Kolmogorov-Smimov Z	1-366	1.274
	Asymp. Sig. (2-tailed)		.078

a. Test distribution is Normal.

b. Calculated from data

Data pengukuran umum divisi WorkWear sebesar 0,031 menunjukkan bahwa tidak berdistribusi normal. Untuk mengatasi hal tersebut dilakukan transformasi data ke dalam bentuk logaritma. Berikut adalah hasil transformasi logaritma:

Tabel 5. Uii Normalitas Pengukuran Umum Partisipan Keseluruhan Transformasi Logaritma

Division			LOG_Common
	N		30
	Normal Parameters**	Mean	1.4575
	Normal Parameters	Std. Deviation	.04103
RadWear		Absolute	.183
Kad Wear	Most Extreme Differences	Positive	.107
		Negative	183
	Kolmogorov-Smimov Z		1.004
	Asymp. Sig. (2-tailed)	.265	
	N		30
	Normal Parametersals	Mean	1.3273
	Normal Parameters	Std. Deviation	.10592
*** 1 ***		Absolute	.243
WorkWear	Most Extreme Differences	Positive	.243
		Negative	147
	Kolmogorov-Smimov Z		1.333
	Asymp. Sig. (2-tailed)		.057

a. Test distribution is Normal.
b. Calculated from data.

Tabel 6. Uji Normalitas Pengukuran Unik Partisipan Keseluruhan Transformasi Logaritma One-Sample Kolmogorov-Smirnov Test

Division			LOG_Unique
	N		30
RadWear	Normal Parameters**	Mean Std. Deviation	1.7275 .03412
	Most Extreme Differences	Absolute Positive Negative	.174 .077 174
	Kolmogorov-Smimov Z Asymp. Sig. (2-tailed)		.952 .325
	N		30
	Normal Parameters**	Mean Std. Deviation	1.6512 .05949
WorkWear		Absolute	.209
Workwear	Most Extreme Differences	Positive	.209
		Negative	148
	Kolmogorov-Smimov Z		1.142
	Asymp. Sig. (2-tailed)		.147

Test distribution is Normal b. Calculated from data

Berdasarkan hasil diatas, data yang digunakan telah berdistribusi normal.

Tabel 7. Uji Hipotesis Pertama Partisipan Keseluruhan

Te Measure: MEASURE_1 Transformed Variable: Aver	ests of Between-Subj age	ects Ei	Tects		
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	142.457	1	142.457	64734.873	.000
Common	.160	1	.160	72.685	.000
Unique	1.323	1	1.323	601.058	.000
Common * Unique	.011	1	.011	4.947	.028
Error	.255	116	.002		

Source	division	Type III Sum of Squares	df	Mean Square	F	Sig.
division	Linear	1.323	1	1.323	601.058	.000
division * Common	Linear	.011	1	.011	4.947	.028
division* Unique	Linear	142.457	1	142.457	64734.873	.000
division * Common * Unique	Linear	.160	1	.160	72.685	.000
Error(division)	Linear	.255	116	.002	120000000000000000000000000000000000000	

Hasil ini menyimpulkan bahwa hasil pengukuran umum pada kedua divisi berbeda signifikan dan hasil pengukuran unik pada kedua divisi berbeda signifikan.

Tabel 8. Uji Normalitas Pengukuran Umum Partisipan Berpengetahuan

Division			Common Dengan Pengetahuan
	N		15
	Normal Parameters**	Mean	28.7173
RadWear	Normai Parameter S	Std. Deviation	3.10682
		Absolute	.232
	Most Extreme Differences	Positive	.141
		Negative	232
	Kolmogorov-Smimov Z		.900
	Asymp. Sig. (2-tailed)		.393
	N		15
	Normal Parameters**	Mean	21.8347
	1101mai 1 arameters	Std. Deviation	5.50102
WorkWear		Absolute	.230
WOIL Wear	Most Extreme Differences	Positive	.230
		Negative	164
	Kolmogorov-Smimov Z		.891
	Asymp. Sig. (2-tailed)		.405

Tabel 9. Uji Normalitas Pengukuran Unik Partisipan Berpengetahuan

Division			Unique Dengan Pengetahuan
	N		15
	Normal Parameters**	Mean Std. Deviation	53.5407 4.50374
RadWear	Most Extreme Differences	Absolute Positive	.141 .087
	Kolmogorov-Smimov Z	Negative	141 .548
	Asymp. Sig. (2-tailed)		.925
	N		15
WorkWear	Normal Parameters**	Mean Std. Deviation	44.8887 6.74827
	Most Extreme Differences	Absolute Positive	.249
		Negative	157
	Kolmogorov-Smimov Z Asymp. Sig. (2-tailed)		.966 .308

a. Test distribution is Normal.
b. Calculated from data.

Pengukuran umum dan unik menghasilkan yang signifikan, dapat dilihat dari nilai signifikansi > 0,05 yaitu 0,393 dan 0,405 pada pengukuran umum, serta nilai signifikansi pada pengukuran unik sebesar 0,925 dan 0,308. Maka dapat disimpulkan bahwa data telah berdistribusi normal.

Tabel 10. Uji Hipotesis Pertama Partisipan Berpengetahuan

erpengetahuan						
Tes Measure: MEASURE_1 Transformed Variable: Avera		tween-Subje	ets Eff	ects		
Source		Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	- 1	11616.446	1	41616.446	3148.695	.000
Common	- 1	452.486	1	452.486	34.235	.000
Unique	- 1	4297.948	1	4297.948	325.182	.000
Common * Unique	- 1	5.870	1	5.870	.444	.508
Error		740.155	56	13.217	90(1)	215840
Measure: MEASURE_1	ts of Wi	Type III Sum of Squares	df	Mean Square	F	Sig.
	inear	4297.948	1	4297.948		
livision * Common I	Linear	5.870	1	5.870	.444	.508
	inear	41616.446	1	41616.446		
division * Common * Unique I	Linear	452.486	1	452.486		.000
Error(division) I	inear	740.155	56	13.217		

Nilai signifikansi F sebesar 0,508 > 0,05. dapat disimpulkan bahwa hasil pengukuran umum kedua divisi tidak berbeda signifikan. Nilai signifikansi F sebesar 0,000 < 0,05, dapat disimpulkan pengukuran unik kedua divisi berbeda signifikan.

Tabel 11. Uji Normalitas Pengukuran Umum Partisipan Non-Pengetahuan

Division			Common Tampa Pengetahuan
	N		15
	Normal Parameters**	Mean	28.8673
RadWear	Normal Parameters	Std. Deviation	1.87996
		Absolute	.125
	Most Extreme Differences	Positive	.125
		Negative	123
	Kolmogorov-Smimov Z	8	.484
	Asymp. Sig. (2-tailed)		.973
	N		15
	Normal Parametersab	Mean	21.9513
	Normal Farameters	Std. Deviation	6.02657
W-J-W		Absolute	.325
WorkWear	Most Extreme Differences	Positive	.325
		Negative	178
	Kolmogorov-Smimov Z	ALLEGO TO SECTION	1.257
	Asymp. Sig. (2-tailed)		.085

a. Test distribution is Normal. b. Calculated from data

Tabel 12. Uji Normalitas Pengukuran Unik Partisipan Non-Pengetahuan Une-Sample Kolmogorov

Division			Unique Tanpa Pengetahuan
	N		15
	Normal Parameters 2.5	Mean	53.5613
	Normal Parameters	Std. Deviation	3.63990
RadWear		Absolute	.181
RadWear	Most Extreme Differences	Positive	.101
		Negative	181
	Kolmogorov-Smimov Z		.701
	Asymp. Sig. (2-tailed)		.710
	N		15
	Normal Parameters	Mean	45.5227
	Normal Parameters	Std. Deviation	6.15522
WorkWear		Absolute	.266
WOLKWEST	Most Extreme Differences	Positive	.266
		Negative	146
	Kolmogorov-Smimov Z		1.029
	Asymp. Sig. (2-tailed)		.240

a. Test distribution is Normal.

Nilai signifikansi 0,973 dan 0,085 pada pengukuran umum, sedangkan pengukuran unik sebesar 0,710 dan 0,240. Berdasarkan hasil tersebut dapat disimpulkan bahwa data telah berdistribusi normal.

Tabel 13. Uji Hipotesis Pertama Partisipan Non-Pengetahuan

1	Tests of Between-Sub	ects E	ffects		
Measure: MEASURE_1 Transformed Variable: Aver	age				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Intercept	42132.768	1	42132.768	3704.410	.000
Common	419.329	1	419.329	36.868	.000
Unique	4367.892	1	4367.892	384.035	.000
Common * Unique	2.363	1	2.363	.208	.650
Error	636.926	56	11.374	5500000	

Tests of Within-Subjects Co.	ntrasts
------------------------------	---------

Source	division	Type III Sum of Squares	df	Mean Square	F	Sig.
division	Linear	4367.892	1	4367.892	384.035	.000
division * Common	Linear	2.363	1	2.363	.208	.650
division* Unique	Linear	42132.768	1	42132.768	3704.410	.000
division* Common * Unique	Linear	419.329	1	419.329	36.868	.000
Error(division)	Linear	636.926	56	11.374	114-10-04-22-4	

 \mathbf{F} Nilai signifikansi sebesar 0,650menunjukkan bahwa pengukuran kedua divisi tidak berbeda signifikan. Sedangkan nilai signifikansi F sebesar 0,000, menunjukkan bahwa pengukuran unik kedua berbeda signifikan. Hal tersebut menunjukkan bahwa kedua pengukuran belum dilakukan secara proporsional.

Tabel 14. Uji Normalitas Pengukuran Umum dan Unik Partisipan Berpengetahuan dan Non-Pengetahuan

Pengetahuan	3		Common	Unique
	N		15	13
		Mean	50.5520	98.429
_10.500.500	Normal Parameters**	Std. Deviation	6.89179	8.3306
Dengan		Absolute	.230	.08
Pengetahuan	Most Extreme Differences	Positive	.230	.080
		Negative	157	08
	Kolmogorov-Smimov Z	9-29	.892	.33
	Asymp. Sig. (2-tailed)		.405	0,99
	N		15	1
		Mean	50.8187	99.084
	Normal Parameters**	Std. Deviation	6.88397	5.8878
Tanpa		Absolute	.256	.22
Pengetahuan	Most Extreme Differences	Positive	.256	.22
		Negative	166	16
	Kolmogorov-Smimov Z		.992	.88
	Asymp. Sig. (2-tailed)		.279	.42

Test distribution is Normal b. Calculated from data

Partisipan yang diberi pengetahuan dan yang tidak diberi pengetahuan, menghasilkan nilai signifikansi pengukuran umum sebesar 0,405 dan 0,279, sedangkan pengukuran unik sebesar 0,999 dan 0,421. Dapat disimpulkan bahwa data telah berdistribusi normal.

Tabel 15. Uji Hipotesis Kedua Pengukuran Umum dan Unik Partisipan Berpengetahuan dan Non-Pengetahuan

CODE N Mean Std. Deviation Std. Error					
	CODE	N	Mean	5td. Deviation	Std. Error Mean
C	Pengetahuan	15	50.552	6.892	1.779
	Non Pengetahuan	15	50.819	6.884	1.777
U	Pengetahuan	15	98.429	8.331	2.151
	Non Pengetahuan	15	99.084	5.888	1.520

			Ind	epende	at Samp	les Test					
		for E	Levene's Test for Equality of Variances t-test for Equality of Means								
							Sig.		Std. Error Differen	95% Confidence Interval of the Difference	
		F	Sig.	t	t df		ence	ce	Lower	Upper	
C	Equal variances assumed	002	965	- 106	28	916	- 267	2 515	-5 419	4 885	
	Equal variances not as sumed			106	28.000	.916	267	2.515	-5.419	4.885	
U	Equal variances assumed	1.23	.276	249	28	.806	655	2.634	-6.050	4.741	
	Equal variances not assumed			249	25.194	.806	655	2.634	-6.050	4.768	

Nilai 0.965 signifikansi sebesar menggunakan metode independent sample t test with equal variances assumed sebesar 0,916. Maka dapat disimpulkan bahwa tidak perbedaan terdapat signifikan pada pengukuran umum pada partisipan yang diberi pengetahuan dan vang tidak. Sedangkan pada pengukuran unik nilai sebesar 0,276menggunakan signifikansi metode independent sample t test with equal variances assumed sebesar 0,806. Maka dapat disimpulkan tidak terdapat perbedaan

b. Calculated from data

signifikan antara partisipan yang diberi pengetahuan dan yang tidak.

Tabel 16. Uji Normalitas Hipotesis 3

		Unstandardized Residual
N		30
Normal Parameters(a,b)	Mean	,0000000
	Std. Deviation	1,23435818
Most Extreme Differences	Absolute	,089
	Positive	,080
	Negative	-,089
Kolmogorov-Smimov Z		,488
Asymp. Sig. (2-tailed)		,971

a Test distribution is Normal.

Tabel ini menunjukkan kedua pengukuran berdistribusi normal dengan nilai signifikan sebesar 0,971.

Tabel 17. Uji Heteroskedastisitas Hipotesis 3

Coemciens(a)				
Model		t	Sig.	
1	(Constant)	-,966	,343	
	RC	,418	,679	
	RU	1,510	,143	
	WC	,627	,536	
	WU	-1,258	,220	

a Dependent Variable: YRatio

Dapat diketahui bahwa nilai signifikansi variabel bebas sebesar 0,679; 0,143; 0,536 dan 0,220. Maka disimpulkan bahwa tidak terjadi heteroskedastisitas pada kedua divisi.

Tabel 18. Uji Multikolinieritas Hipotesis 3

Model		Collinearity Statistics				
1	(Constant)	Tolerance	VIF			
	RC RU	,251 ,266	3,986			
	WC WU		3,752			
	WU	,160	6,257			
		,147	6,786			

a Dependent Variable: YRatio

Variabel bebas kedua divisi dari memiliki multikolinieritas sebab nilai tolerance > 0.10 dan nilai VIF < 10.

Tabel 19. Uji F Hipotesis 3 ANOVA

Mod	el	Sum of Squares	di	Mean Square	F	Sig
1	Regression	30,827	4	7,707	4,360	,008
	Residual	44,186	25	1,767	20010.000	
	Total	75,012	25	554700		

^{8.} Predictors: (Constant), WU, RU, RC, WC b. Dependent Variable: Y Ratio

signifikansi sebesar 0.008 menyimpulkan bahwa kedua pengukuran

simultan berpengaruh signifikan secara terhadap alokasi kompensasi pada kedua divisi.

Tabel 20. Uji R Square Hipotesis 3

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,641 ⁹	,411	,317	1,32944

Predictors: (Constant), WU, RU, RC, WC

Nilai R Square sebesar 0,411 menunjukkan bahwa alokasi kompensasi pada dipengaruhi kedua kedua divisi oleh pengukuran sebesar 41,1%, sedangkan sisanya sebesar 58,9% dipengaruhi faktor lain.

Tabel 21. Uji t Hipotesis 3

Model		Unstandardized Coefficients		Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	-4,288	4,436		-,966	.343
	RC	,082	,195	,128	,418	,679
	RU	,180	,119	,449	1,510	,143
	WC	,068	,109	,241	,627	,536
	WU	-,127	101	-,503	-1,258	.220

Dari Tabel 4.30 diketahui bahwa kedua pengukuran divisi RadWear dan WorkWear, tidak mempengaruhi alokasi kompensasi secara signifikan.

Nilai signifikansi perbedaan antara divisi dengan pengukuran umum dan unik sebesar 0,000 dan 0,028. Dapat disimpulkan bahwa pendekatan dissagregated/ mechanically aggregated dapat mengurangi pengukuran umum pada BSC, diterima. Nilai signifikansi pengukuran umum sebesar 0,806 dan unik sebesar 0,916. Dapat disimpulkan pendekatan pengetahuan akan mengurangi bias pengukuran umum dalam evaluasi kinerja menggunakan BSC, ditolak. Karena tidak ada perbedaan signifikan antara partisipan yang diberikan pengetahuan dengan yang tidak. Partisipan tidak terlalu memperdulikan informasi yang diberikan peneliti, sebab partisipan merasa bahwa informasi tersebut sudah cukup untuk melakukan evaluasi kinerja (Debusk et al, 2005). Jika dilakukan pengujian secara simultan, evaluasi kinerja menggunakan pengukuran di BSC mempengaruhi alokasi kompensasi tiap divisi karena hasilnya kurang dari 0.05.Hasil ini konsisten dengan penelitian Roberts, Albright, & Hibbets (2004), Banker et al (2004), serta Dilla dan Steinbart (2005). Dapat disimpulkan evaluasi kinerja

b Calculated from data

b. Dependent Variable: Y Ratio

menggunakan BSC mempengaruhi alokasi kompensasi, diterima.

KESIMPULAN

Hipotesis 1 penelitian ini diterima, karena pengukuran unik BSC memiliki nilai yang aignifikan dimana menunjukkan bahwa bias pengukuran umum berkurang. Hipotesis 2 penelitian ini ditolak, karena tidak ada perbedaan yang signifikan antara kelompok yang diberi pengetahuan dengan yang tidak, walaupun bias pengukuran umum berkurang. Hipotesis 3 penelitian ini diterima, karena simultan pengukuran secara kedua berpengaruh signifikan terhadap alokasi kompensasi kedua divisi.

Keterbatasan dan Saran untuk Penelitian Selanjutnya

sekaligus Beberapa keterbatasan yang merupakan saran untuk penelitian selanjutnya:

- 1. Menambah dan memilih kriteria partisipan memiliki pengalaman yang cukup menggunakan BSC.
- 2. Menentukan waktu yang disesuaikan dengan kondisi eksperimen.
- 3. Mengukur kembali pengetahuan partisipan sebelum dan sesudah pendekatan diberikan dengan memberikan beberapa pertanyaan terkait BSC.

DAFTAR PUSTAKA

- Azwar, S. (2005). Metode penelitian (cetakan VI). Yogyakarta: Pustaka Pelajar.
- Banker, R. D., Chang, H., & Pizzini, M. J. (2004).The balanced scorecard: performance effects of judgemental linked measures tostrategy. Accounting Review, 79 (1), 1-23.
- Bawono, I. R., Halim, A, & Lord, B. (2012, November). Public sector performance measurement and budget allocation: an indonesian experiment.
- Bazerman, M. H., & Moore, D. A. (2009). Judgement inManagerial Decision Making (7th. ed.). New Jersey: John Wiley & Sons.
- Bone, H. & Sholihin, M. (2012). Pengaruh dan jenis ukuran perspektif dalam balanced scorecard terhadap evaluasi kineria. Thesis. UniversitasGadjahMada.

- E. H. (1963). Consistency and Bowman, optimality in managerial decision making. Management Science, 9 (1), 31-321.
- Dilla, W. N., Steinbart, P. J., (2005). Relative weighting ofcommon and unique balanced scorecard measures by knowledgeable makers. decision Behavioral Research in Accounting, 17, 43-53.
- Fauzi. M. (2002).MetodePenelitian Kuantitatif. Semarang: Walisongo Press.
- Frigo, M. L., & Krumwiede, K. R. (2000, January). The balanced scorecard: a winning performance measurementsystem. strategic finance, 81(7), 50-54.
- Grevinga, K. H. M. (2013). Common measure bias in the balanced scorecard: an experiment with undergraduate students. Unpublished undergraduate University of Twente, Enschede.
- Holmstrom, B., Milgrom, P. (1991). Multitask principal-agent analyses: incentives contracts, asset ownership, and job design. Journal of Law, Economics, and Organization, 7, 24-52.
- Humphreys, K. A., & Trotman, K. T. (2011). The balanced scorecard: the effect of information perfomance strategy on evaluation judgments. JournalManagement Accounting Research, 23, 81-
- Indriantoro, N., & Supomo, B, (1999, Oktober), Metodologi penelitian bisnis untuk akuntansi dan manaiemen. BPFE-Yogyakarta, Edisi Pertama.
- Islam, M. (2010). The link between perception of BSC implementation and corporate strategy and its impact on performance. Management Accounting Section (MAS) Meeting Paper. Retrieved from http:// ssrn.com/abstract=1659845//
- Isnawijayani. (2011, Juni). Metode eksperimen dalam penelitian ilmu komunikasi., 4 (7), 75-88. Retrieved from http://jodfisipunbara.files.wordpress.com/2 012/07/5-isnawijayani-oke-hal-1-8.pdf
- Kahneman, D., Tversky, A. (1973).Availability: a heuristic for iudging frequency and probability. Cognitive Psychology, 5, 207-232
- Kahneman, D., Tversky, A. (1974). Judgement under uncertainty: heuristic and biases. Science, 185, 1124-1131.
- Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard. RetrievedHavard Business Review website: http:// www.hbr.org//

- Kaplan, R. S., Norton, D. P. (1996, Fall). Linking the balanced scorecard to strategy. *California Management Review*, 39 (1), 53-79.
- Kaskey, V. L. (2008). The balanced scorecard a comparative study of accounting education and experience on common measure bias and trust in a balanced scorecard. PhD Dissertation. School of Business and Technology, Capella University, USA.
- Libby, T., Salterio, S., & Webb, A. (2002). The balanced scorecard: the effects of assurance and process accountability on managerial judgement. Retrieved from SSRN Database.
- Lindberg, E., Schonfeldt, S. N. (2008). The balanced scorecard at skelleftea municipality.
- Lipe, M. G., Salterio S. E. (1998). The balanced scorecard: judgemental effects of information organization and diversity. Retrieved from SSRN Database.
- Lipe, M. G., Salterio S. E. (2000, July). The balancedscorecard: judgemental effects off common and unique performance measure. *The Accounting Review*,75 (3), 283-298. Retrieved from ProQuest Database.
- Malina, M. A., Selto, F. H. (2001). Communicating and controling strategy: an empirical study of the effectiveness of the balanced scorecard. *Journal of Management Accounting Research*, 13, 47. Retrieved from SSRN Database..
- Roberts, M. L., Albright, T. L., & Hibbets, A. R. (2004). Debiasing balanced scorecard evaluation. *Behavioral Research in Accounting*, 16, 75-88.
- Sawalqa, F. A., Holloway, D., & Alam, M. (2011). Balanced scorecard implementation in jordan: an initial analysis. International Journal of Electronic Business Management, 9 (3), 196-210.