PENGARUH VARIASI BERAT PARTIKEL TERHADAP SIFAT PAPAN GIPSUM

(Effect of Particle Weight Variation on the Properties of Gypsum Board)

Oleh/By:
Gusti Syahrany Noor ¹)

ABSTRACT

Research of gypsum board made from meranti (Shorea sp) wood particle with particle weight variation of 300 g, 400 g and 500 g has been carried out.

Result of research showed that moisture content of gypsum board is 15.56 - 16.18 %, density 0.80 - 1.02 g/cm³, thickness swelling 1.51 - 2.32 % and modulus of rupture 16.28 - 43.98 kg/cm². Particle weight did not significantly effect thickness swelling, but significantly effect moisture content and density, and had highly significant effect on modulus of rupture. Thickness swelling requirement fulfilled the standard of Germany while density and modulus of rupture did not fulfill that requirement.

Keyword: Gypsum board, wood particle, physical property and mechanical property.

ABSTRAK

Penelitian papan gipsum yang dibuat dari partikel kayu meranti (Shorea sp) dengan variasi berat partikel 300 g, 400 g dan 500 g telah dilakukan.

Hasil penelitian menunjukkan bahwa nilai rata-rata kadar air papan gipsum 15,56 - 16,18 %, kerapatan 0,80 - 1,02 g/cm³, pengembangan tebal 1,51 - 2,32 %, modulus patah 16,28 - 43,98 kg/cm². Berat partikel tidak berpengaruh terhadap pengembangan tebal, tetapi berpengaruh nyata terhadap kadar air dan kerapatan dan berpengaruh sangat nyata terhadap modulus patah. Sifat pengembangan tebal papan memenuhi persyaratan standar Jerman sedangkan kerapatan dan modulus patah tidak memenuhi persyaratan tersebut.

Kata kunci: Papan gipsum, partikel kayu, sifat fisis dan sifat mekanis

¹) Peneliti pada Badan Litbang Daerah Provinsi Kalimantan Selatan di Banjarmasin
I. PENDAHULUAN

Kebutuhan bahan bangunan berbasis kayu setiap tahun meningkat, sementara akibat krisis bahan baku, produksi industri pengolahan kayu semakin menurun. Dampak krisis bahan baku kayu menyebabkan percepatan pembangunan perumahan nasional juga ikut menjadi terganggu karena kekurangan pasokan bahan bangunan berupa papan dari kayu utuh. Salah satu upaya untuk mencukupi kekurangan papan dari kayu utuh sekaligus mendukung upaya peningkatan pemanfatan kayu adalah mengolahnya menjadi papan gipsum.

Papan gipsum adalah salah satu produk panel atau papan komposit dan merupakan salah satu bahan bangunan yang banyak diminati oleh masyarakat karena tampilannya yang dekoratif dalam menghiasi dan memperindah ruangan. Papan gipsum cocok untuk pemakaian di bawah atap dan tidak selalu berhubungan dengan kelembaban tinggi (Simatupang dalam Memed, Santososo dan Sutigno, 1992). Produk ini biasanya dipasang sebagai plafon (langit-langit), sekat ruangan, lis dan asesoris ruangan untuk rumah, hotel, gedung dan perkantoran.

Umumnya produk gipsum yang beredar di pasaran terbuat dari tepung gips dicampur dengan air, serat fiber atau tali dari nilon dan hasilnya berupa lembaran, cetakan atau lis. Sifat fisis dan mekanis papan gipsum dapat dipengaruhi oleh berbagai faktor, antara lain adalah bahan baku, jenis perekat dan kadar perekat yang digunakan. Penggunaan perekat yang semakin banyak akan meningkatkan kekuatan papan partikel (Haygreen dan Bowyer, 1993).

Dalam tulisan ini disajikan hasil penelitian pembuatan papan gipsum dari partikel finir kayu meranti. Tujuan penelitian ini adalah untuk mengetahui pengaruh variasi berat partikel terhadap sifat fisis dan mekanis papan gipsum. Sasaran penelitian adalah untuk mendapatkan papan gipsum yang memenuhi persyaratan tehnis sebagai bahan bangunan.

II. BAHAN DAN METODE

Bahan yang digunakan dalam penelitian ini adalah sisa-sisa finir kayu meranti (Shorea sp) yang berasal dari limbah industri plywood di Banjarmasin, Kalimantan Selatan, sedangkan bahan perekatnya adalah tepung gips (CaSO₄.2H₂O). Pertama-tama finir kayu dirajang dengan parang kemudian dimasukan kedalam mesin penghancur (crusher) hingga menjadi partikel. Partikel yang digunakan dalam penelitian ini adalah yang lolos ayakan 6 mm dan tertahan pada ayakan 0,5 mm. Partikel diibarkan mengering secara alami di udara terbuka sampai kadar air mencapai ± 12%.
Berat partikel (kadar air ± 12%) untuk satu buah papan adalah 300 gram, 400 gram dan 500 gram. Jumlah gips yang digunakan pada setiap papan adalah 1.200 gram sedangkan air 50% dari berat gips. Proses pembuatan papan dimulai dengan membasahi partikel dengan air, lalu ditaburkan serbuk gips sedikit demi sedikit sambil diaduk hingga rata. Kemudian campuran tersebut dimasukkan ke dalam cetakan yang berukuran ukuran 30 cm x 30 cm dan dikempa dingin dengan tekanan 12 kg/cm² hingga tebal papan menjadi 1,0 cm dan dibiarkan selama 5 menit. Setelah itu dikeluarkan dari cetakan dan dikondisikan di ruangan terbuka di bawah atap selama 7 hari. Selanjutnya papan diuji sifat fisik dan mekanisnya berdasarkan standar Jerman (Kollmann et al., 1975) meliputi kadar air, kerapatan, pengembangan tebal dan keteguhan lentur (modulus patah).

Data hasil pengujian dianalisis dengan rancangan acak lengkap dan bagi sidik ragam berpanggaruh nyata maka dilanjutkan dengan uji beda menurut prosedur Tukey (Sudjana, 1994; Steel and Torrie, 1993). Faktor yang diamati adalah berat partikel kayu yang terdiri atas tiga taraf yaitu 300 gram, 400 gram dan 500 gram dengan ulangan sebanyak 3 kali.

III. HASIL DAN PEMBAHASAN

Kualitas dan kekuatan papan gipsum ditentukan oleh sifat fisik dan mekanisnya. Nilai rata-rata hasil pengujian sifat fisik dan mekanis papan gipsum dapat dilihat dalam Tabel 1, sedangkan analisis sidik ragamnya tercantum dalam Tabel 2.

Tabel 1. Nilai rata-rata sifat fisik dan mekanis papan gipsum

Table 1. Average value of physical and mechanical properties of gypsum board

<table>
<thead>
<tr>
<th>Sifat (Properties)</th>
<th>Berat partikel kayu (Weight of wood particle), g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300</td>
</tr>
<tr>
<td>1. Kadar air (Moisture content), %</td>
<td>16,18</td>
</tr>
<tr>
<td>2. Kerapatan (Density), g/cm³</td>
<td>1,02</td>
</tr>
<tr>
<td>3. Pengembangan tebal (Thickness swelling), %</td>
<td>1,51</td>
</tr>
<tr>
<td>4. Modulus patah (Modulus of rupture), kg/cm²</td>
<td>43,98</td>
</tr>
</tbody>
</table>
Pada Tabel 1 dapat dilihat bahwa nilai kadar air papan gipsum rata-rata dari tiga perlakuan berkisar antara 15,56 - 16,18 %. Berdasarkan sidik ragam (Tabel 2) perlakuan berpengaruh nyata terhadap kadar air dan dari uji beda, berat partikel 500 gram berbeda nyata dengan partikel 300 gram. Berarti variasi berat partikel berpengaruh nyata terhadap kadar air papan, yang mana makin banyak partikel kayu yang dicampurkan makin rendah kadar air papan gipsum bersangkutan. Diduga makin banyak partikel kayu, kerapatan papan makin berkurang, akibatnya air yang berada pada partikel mudah keluar sehingga kadar air papan menjadi rendah. Kadar air papan ini (Tabel 1) lebih tinggi dari pada papan gipsum dari wol kayu sengon serta standar papan majemuk. Kadar air papan gipsum dari wol kayu sengon bervariani dari 12,06 - 12,33 % (Memed, Santoso dan Sutigno, 1992), sedangkan standar papan majemuk dari BISON adalah 12 - 15 % (Rosita, 2005).

Menurut Tabel 1, nilai kerapatan papan gipsum berkisar antara 0,80 - 1,02 g/cm³ dan menurut analisis sidik ragam (Tabel 2), perlakuan berpengaruh nyata dan dari uji beda, partikel 500 gram berbeda nyata dengan partikel 300 gram. Atas dasar tersebut berarti bahwa variasi berat partikel berpengaruh nyata terhadap kerapatan papan, yang mana makin sedikit partikel kayu yang dicampurkan makin tinggi kerapatan papan gipsum bersangkutan. Atau dengan kata lain bahwa semakin banyak gips akan meningkatkan kerapatan papan. Hal ini disebabkan semakin banyak gips (semakin sedikit partikel kayu) yang digunakan maka ikatan antar partikel kayu didalam papan akan menjadi lebihompak. Diduga dengan naiknya kadar gips menyebabkan ikatan adhesi antara partikel kayu dengan gips dalam papan semakin erat, keadaan ini mengakibatkan kerapatan papan semakin tinggi.

Nilai kerapatan papan yang dibuat dalam penelitian ini terutama pada perlakuan dengan berat partikel 300 gram dan 400 gram (Tabel 1), ternyata lebih tinggi dibandingkan dengan kerapatan papan gipsum wol kayu tusam. Berdasarkan hasil penelitian Hidayati (1989), kerapatan papan gipsum dari wol kayu tusam berkisar antara 0,70 - 0,88 g/cm³. Tetapi jika dibandingkan dengan papan gipsum dari partikel sekam padi dan papan gipsum dari wol kayu sengon, nilai kerapatan dalam tabel tersebut lebih rendah. Kerapatan papan gipsum dari sekam padi yang diteliti oleh Rosita (2005) pada tekanan kempa 20 - 30 bar berkisar antara 1,11 - 1,20 g/cm³, sedangkan kerapatan papan gipsum dari wol kayu sengon antara 1,11 - 1,24 g/cm³ (Memed, Santoso dan Sutigno, 1992). Selain itu nilai kerapatan papan yang dibuat dalam penelitian ini ternyata juga lebih rendah jika dibandingkan standar Jerman (Lempfer et al., 1990), karena nilai kerapatan papan semen partikel yang dipersyaratkan dalam standar tersebut minimal 1,2 g/cm³. Tetapi jika dibandingkan dengan standar Jerman DIN 1101 (Kollmann et al., 1975) tentang papan semen yang dibuat dari serutan atau wol kayu, maka semua perlakuan memberikan nilai kerapatan yang lebih baik. Karena menurut standar tersebut nilai kerapatan minimum untuk papan wol semen dengan menggunakan perekat semen porland, adalah 0,46 g/cm³ (Kollmann dalam Kliwon, 1996).

Pada Tabel 1 dapat diketahui bahwa persentase pengembangan tebal papan akibat perendaman dalam air selama 24 jam berkisar antara 1,51 - 2,32 %. Selanjutnya berdasarkan analisis sidik ragam (Tabel 2), perlakuan tidak berpengaruh nyata. Hal ini bermakna bahwa variasi berat partikel kayu tidak berpengaruh nyata terhadap pengembangan tebal papan gipsum.

Jika dilihat dalam Tabel 1 ternyata semua perlakuan memenuhi persyaratan yang ditetapkan dalam standar Jerman (Lempfer et al., 1990), karena nilai pengembangan tebal papan partikel perekat gips yang dipersyaratkan tidak melebihi 2,5%.

Tabel 2. Rekapitulasi sidik ragam sifat fisik dan mekanik papan gipsum

Table 2. Recapitulation of the analysis of variance on physical and mechanical properties of gypsum board

<table>
<thead>
<tr>
<th>Sumber keragaman (Source of variation)</th>
<th>Dk (Df)</th>
<th>Kuadrat tengah (Mean square)</th>
<th>Ehitung (F.crit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Kadar air (Moisture content)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Perlakuan (Treatment)</td>
<td>2</td>
<td>0,164</td>
<td>9,65*</td>
</tr>
<tr>
<td>- Galat (Error)</td>
<td>6</td>
<td>0,017</td>
<td></td>
</tr>
<tr>
<td>B. Kerapatan (Density)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Perlakuan (Treatment)</td>
<td>2</td>
<td>0,036</td>
<td>9,73*</td>
</tr>
<tr>
<td>- Galat (Error)</td>
<td>6</td>
<td>0,0037</td>
<td></td>
</tr>
<tr>
<td>C. Pengembangan tebal (Thicknessswelling)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Perlakuan (Treatment)</td>
<td>2</td>
<td>2,678</td>
<td>2,15</td>
</tr>
<tr>
<td>- Galat (Error)</td>
<td>6</td>
<td>1,243</td>
<td></td>
</tr>
<tr>
<td>D. Modulus patah (Modulus of Rapture)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Perlakuan (Treatment)</td>
<td>2</td>
<td>578,412</td>
<td>23,23**</td>
</tr>
<tr>
<td>- Galat (Error)</td>
<td>6</td>
<td>24,894</td>
<td></td>
</tr>
</tbody>
</table>

Keterangan (Remarks): ** = berpengaruh sangat nyata (highly significant effect) * = berpengaruh nyata (significant effect)

Dalam penelitian ini, modulus patah papan gipsum pada perlakuan berat partikel 300 gram dan 400 gram (Tabel 1) ternyata nilainya lebih tinggi dibandingkan dengan papan gipsum yang dibuat dari wol kayu tusam. Nilai modulus patah papan gipsum dari wol kayu tusam menurut hasil penelitian Hidayati (1989) adalah 25,80 - 31,73 kg/cm². Tetapi nilai modulus patah papan gipsum dalam penelitian ini lebih rendah jika dibandingkan dengan papan gipsum dari wol kayu sengon dan standar Jerman. Kerapatan papan gipsum dari wol kayu sengon adalah 71,02 - 80,42 kg/cm² (Memed, Santosos dan Sutigno, 1992). Sedangkan
menurut Hubner (1985), persyaratan papan gipsum berdasarkan standar Jerman, keteguhan lenturnya (modulus patah) adalah 60 kg/cm² untuk yang kerapatan 1 g/cm³, 75 - 80 kg/cm² untuk yang kerapatan 1,1 g/cm³ dan 85 - 90 kg/cm² untuk yang kerapatan 1,2 g/cm³.

Tidak tercapainya nilai modulus patah yang dipresyaratkan sesuai standar tersebut di atas, kemungkinan disebabkan oleh sifat perekat gips dan tekanan kempa. Dalam kasus ini diduga akibat perekat gips terlalu cepat mengeras ketika dicampur dengan air, sehingga tekanan kempa yang diberikan pada saat proses pembuatan papan tersebut belum mampu memampatkan atau memadatkan papan, dan akhirnya papan gipsum yang dihasilkan hanya memiliki nilai kerapatan dan modulus patah yang rendah.

IV. KESIMPULAN DAN SARAN

Partikel dari finir kayu meranti dapat dicampur dengan perekat gips untuk dijadikan papan gipsum dan dapat dikembangkan sebagai bahan bangunan di bawah atap.

Berat partikel kayu berpengaruh terhadap modulus patah, kadar air dan kerapatan, tetapi tidak berpengaruh terhadap pengembangan tebal papan gipsum. Semakin sedikit partikel, kerapatan dan modulus patah semakin tinggi dan pengembangan tebal papan gipsum semakin rendah atau kualitas papan gipsum semakin baik. Sifat pengembangan tebal papan gipsum memenuhi standar Jerman sedangkan kerapatan dan modulus patah tidak memenuhi standar.

Untuk mendapatkan kualitas papan gipsum yang lebih tinggi, disarankan penggunaan partikel kayu maksimal 25 % dari berat gipsum dan tekanan kempa harus tinggi. Agar papan tidak cepat mengeras saat dilakukan pengempaan, disarankan dalam perekat gips diberi boraks sebelum dicampur dengan partikel.

DAFTAR PUSTAKA

